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Abstract

Background: Major adverse cardiac event (MACE) prediction plays a key role in providing efficient and effective
treatment strategies for patients with acute coronary syndrome (ACS) during their hospitalizations. Existing prediction
models have limitations to cope with imprecise and ambiguous clinical information such that clinicians cannot reach
to reliable MACE prediction results for individuals.

Methods: To remedy it, this study proposes a hybrid method using Rough Set Theory (RST) and Dempster-Shafer Theory
(DST) of evidence. In details, four state-of-the-art models, including one traditional ACS risk scoring model, i.e,, GRACE, and
three machine learning based models, i.e., Support Vector Machine, L;-Logistic Regression, and Classification and
Regression Tree, are employed to generate initial MACE prediction results, and then RST is applied to determine
the weights of the four single models. After that, the acquired prediction results are assumed as basic beliefs for the

problem propositions and in this way, an evidential prediction result is generated based on DST in an integrative manner.

Results: Having applied the proposed method on a clinical dataset consisting of 2930 ACS patient samples, our model
achieves 0.715 AUC value with competitive standard deviation, which is the best prediction results comparing with the
four single base models and two baseline ensemble models.

Conclusions: Facing with the limitations in traditional ACS risk scoring models, machine learning models and
the uncertainties of EHR data, we present an ensemble approach via RST and DST to alleviate this problem.

The experimental results reveal that our proposed method achieves better performance for the problem of
MACE prediction when compared with the single models.

Background

Acute coronary syndrome (ACS) refers to a group of
conditions due to decreased blood flow in the coronary
arteries such that part of the heart muscle is unable to
function properly or dies [1, 2]. Major adverse cardiac
events (MACE) indicates the composite of a variety
of adverse events related to the cardiovascular system
[3, 4], which may lead severe or fatal outcome for
ACS patients. MACE prediction, as a crucial and
widely explored topic, plays a pivotal role in the
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optimal management for ACS patients at their early
stage of hospitalization, e.g., clinical decision making
of care and treatment, drug development and cost
estimation [4, 5].

Over the past decades, a mountain of studies has been
proposed to facilitate risk assessment [1, 4]. Many tra-
ditional ACS risk score tools, e.g., TIMI [5], PURSUIT
[6] and GRACE [7], have been widely used in real cli-
nical circumstances and shown good discriminatory
accuracy in predicting MACE for ACS patients [8, 9].
However, these traditional models have several inherent
limitations [10]. In particular, these models developed
using data from clinical trials and registries may be not
representative of a general department patient popula-
tion because there are strict inclusion and exclusion cri-
teria of the cohort [1]. In addition, to obtain a simple
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and easy-use tool, traditional risk scoring models are
established on a small set of handy-picked risk factors
based on the significant univariate relationship to the end
point by univariate logistic regression, which may cause
deterioration of predicting performance [4, 10, 11]. More-
over, it is hard to enroll new and more discriminatory risk
factors into those traditional models, which limits their
extension ability [1].

Recently, with the rapid growth of electronic health re-
cords (EHRs) data, a multitude risk prediction models
utilizing the potential of EHRs have become available
and achieved significant improvements in this field [4,
10-13]. Most of these models are built based on
machine learning and data mining techniques. Although
valuable, there are still some deficiencies to apply them
on mining EHRs, particularly due to the vagueness,
impreciseness and uncertain clinical information con-
tained in EHR data. Specifically, most of these models
assume that MACEs have been correctly annotated in
the EHR dataset and the focus is on the learning capabi-
lities of the MACE prediction scheme. However, un-
ambiguous MACE annotations may be difficult and
imprecise due to the lack of information required for
specifying certain MACE labels to patient individuals.

Both the traditional risk scoring models and machine
learning based models provide us with diverse perspec-
tives on the problem of MACE prediction [4], so that
each of them results in complementary information and
could be fused to produce an integrative and reliable
result. By utilizing a proper strategy for the construction
of an ensemble network, it can be successfully applied to
MACE prediction problem with imprecise and uncertain
information. Dempster-Shafer Theory [14, 15] (DST) of
evidence is a general framework for reasoning with
uncertainty by combining multiple evidences together to
obtain a more reliable result, which has been widely
employed in sensor fusion [16], financial distress detec-
tion [17], medical diagnosis [18] and etc. To this end, we
propose a hybrid method using Rough Set Theory [19]
(RST) and Dempster-Shafer Theory of evidence for
MACE prediction. The proposed approach integrates
four state-of-the-art models, including one traditional
ACS risk scoring model, i.e., GRACE, and three machine
learning based models, i.e., Support Vector Machine [20]
(SVM), L,-Logistic Regression [21] (L;-LR), and Classifi-
cation and Regression Tree [22] (CART), to generate
comprehensive and reliable MACE prediction results. In
particular, RST is applied to determine the weights of
the four single models, and then the prediction results
generated by these single models are assumed as basic
beliefs for the problem propositions and in this way, an
ensemble MACE prediction result is generated by com-
bine each single model’s evidence such that the overall
prediction performance can be enhanced.
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We comparatively evaluate the performance of the
proposed model on a clinical dataset consisting of 2930
ACS patients and collected from the cardiology depart-
ment of Chinese PLA General Hospital. The experimental
results demonstrate that, in terms of reducing uncertainty
caused human subjective cognition on patient data
recording and annotation, our proposed method performs
better than traditional single models.

Preliminaries

Rough set theory

Rough set theory was first proposed by Pawlak [19],
which is widely used to deal with problem containing
uncertainty. In RST, an information system is defined as
a pair I = (U, AuUR), where U= {uj,uy, ...,uy is a non-
empty set of finite objects, A ={a;,ay, ...,a,} is a non-
empty set of finite attributes, R={r;,ry, ..., 1} is a
nonempty set of finite results. With each subset P A,
there is an indiscernibility relation (also called equiva-
lence relation) defined asIND(P) = {(x,y) € U?| Va; €D,
a;(x) = aj(y)}. The set of objects U can be partitioned
based on the relation IND(P), which is denoted by
U/IND(P), where an element from U/IND(P) is called
an equivalence class. According to equation above,
the indiscernibility relation of A, R, and A -{a}, are
defined as IND(A)={(x,y) e U?| Va; € A, ai(x) = a(y)},
IND(R) = {(x,y) € U*| Vr; € R, 1;(x) = r;(y)}, and IND(A
-fah) ={xy) eV’ Vae A, a2 a, a(x) =ay)}, j=1, 2,
.., m. Depending on the theory of entropy, the de-
pendence of R to A can be defined as:

D(IND(R)/IND(A)) =~ >~ pix] > p(yl/[) In(p(lyl/[x]))

[x]eU/IND(R) [y]eU/IND(A)
(1)
card[x card([y]n[x] . epe
where p[x] = W[[U]]’ p(lyV[x]) = %. The signifi-
cance of attribute a; can be defined as:
o(aj,A,R) = [D(IND(R)/IND(A-{a;}))-D(IND(R)/IND(A))|,j = 1,2, ...,m.
(2)

Finally, the weight of attribute a; is defined as follows:

wla) = AR ®
Zw(aj,A, R)

=1

Dempster-Shafer theory

Let ® be the frame of discernment, which represents
all possible mutually exclusive states of a system. The
power set 2° is the set of all subset of ®, including
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the empty set @, which represents propositions

related to actual state of the system. The basic prob-

ability assignment (BPA) is defined as m:2° — [0, 1],

where m satisfies: m(@) =0, Z m(A) =1 and m(A)
ASX

is called BPA of proposition A. If m(A) >0, the subset

A is called focal element. The belief function of prop-

osition A denoted as Bel(A) is defined as Bel(A)

= Z m(B),VAC®. The plausibility function of prop-
BCA
osition A denoted as PI(A) is defined as Pl(A) = 1-

Bel(A) = Z m(B),VAC®. The belief function and
BnAzQ
plausibility function represent the minimal and max-
imal support of A based on the BPA, respectively.
When the system has more than one basic probability
assignment functions, Dempster’s combinational rule
can combine them together. Let m; and m;, be the two
different BPA functions, and the evidences are A;, A,,
..., A, with respect to m; and By, B, ..., B, with respect
to my, if Z m; (Aj)my(Bj) < 1, we have:
AinBj=2

1
— A; B),vCcO, C£0
m; 2(C) = m;®my(A) = { 17[<A;le( Jma(B;)

inBj=

0,C=0
(4)

where K= > my(A;)my(B;), which indicates the
AinBj=2
conflict between the evidences, called conflict probability.

And the coefficient 1 is a normalization factor.

Methods

In this study, we propose an ensemble approach to inte-
grate traditional risk scoring models and advanced
machine learning based models together to alleviate the
limitations we mentioned above. Figure 1 shows the
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outline of our proposed method. As depicted in Fig. 1,
we firstly calculated the weights for the four single
models, i.e., GRACE, SVM, CART, and L;-LR, based on
RST. After that, we employed the DST to integrate the
weighted outputs of each model together as our ensemble
MACE prediction result.

To give a more understandable explanation for our
proposed method, we employed a subset of our real
world dataset to show how we implemented our method
step by step. Table 1 shows 10 patient samples from the
collected dataset with their corresponding outputs from
models trained in our previous work.

Weights calculation using rough set theory

Before calculating the weight of each single prediction
model, we need to transform the models’ outputs into
dichotomous variables, such that we can apply RST to
calculate the dependence of each model to the final pre-
diction results. We choose the output that is closest to
the top-left point in the area under the curve (AUC)
figure as our threshold to transform the model’s outputs.
Experimentally on all patient samples we have, the
thresholds are 0.2348, 0.22689, 0.2584 and 106.5 for
SVM, L;-LR, CART and GRACE, respectively. We tend
to use the data obtained from our work to give a more
practical description in this and following sections.
According to the dichotomized outputs, we can calculate
the weight for each single model based on Eq. (1-3).
The weights are 0.5363, 0.1765, 0.1177 and 0.1696 for
SVM, L;-LR, CART and GRACE. Table 2 shows the
dichotomized outputs, optimal thresholds and weights
of the 4 single models.

Model fusion using Dempster-Shafer evidence theory

Before using the Dempster-Shafer Theory to combine
the four models’ outputs together, we need to transform
the models’ outputs into basic probability assignments
(BPA). However, in our study, we notice that the range
of GRACE’s outputs is from 2 to 258, which cannot be
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Regression Tree
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Fig. 1 The outline of the proposed method
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Table 1 The original outputs of single models for 10 patient

samples

Instances Single Models Actual
SVM L-LR CART cRace  MACE

1 0.7434 0.6032 06716 201 Y

2 0.1250 0.1884 0.1890 85 N

3 0.2651 0.1798 0.1890 56 N

4 0.1735 0.3272 0.3277 92 N

5 0.1608 03347 03277 119 N

6 0.7260 0.6531 06716 132 N

7 0.1601 0.3104 0.3346 133 Y

8 01171 0.1927 0.1890 137 N

9 04829 0.3041 0.3346 92 Y

10 0.1743 0.2050 03277 97 N

directly used as the BPA, and moreover, the four single
models we employed have different optimal thresholds
which may influence the combination results. To allevi-
ate these problems, we first normalize the GRACE'’s out-
puts to between 0 and 1 by Eq. (5), and then apply Eq.
(6) to adjust the threshold of each single model to the
same value, i.e. 0.5, to eliminate the influence caused by
different optimal thresholds.

OGRrACE,j— mingrace

j=1,2,3,...n
(5)

where n is the number of patients, Ograce, j and
Agracg, j indicate the original and normalized output of
the GRACE model for the jth patient, respectively.

AGRACE,j = - ;
MAaXGRACE— MiNGRACE

Table 2 The dichotomized outputs, optimal thresholds and
weights of single models for 10 patient samples

Instances Single Models Actual
SVM IR CART GRACE X?uﬁi

1 1 1 1 1 1

2 0 0 0 0 0

3 1 0 0 0 0

4 0 1 1 0 0

5 0 1 1 1 0

6 1 1 1 1 0

7 0 1 1 1 1

8 0 0 0 1 0

9 1 1 1 0 1

10 0 0 1 0 0

Threshold 0.2348 0.2689 0.2584 106.5 NA

Weight 0.5363 0.1765 01177 0.1696 NA
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maxgrace and mingrace, the maximum value and mini-
mum value of the original output of GRACE, are 37 and
201 in our study, respectively.

A

05 X ————
x Threshold; ’

Ajj < Threshold;

A%y = 0.5, A;j = Threshold; ;j=1,2,...,n
A; j—Threshold;
0.5 x m +0.5,A;j > Threshold;
(6)
where A’ ; is the adjusted output of ith model for the

jth patient with ie{SVM, L;-LR, CART, GRACE},
Threshold; is the ith model’s optimal threshold utilized
in the dichotomization procedure for weights calculation
using RST. Table 3 shows the adjusted outputs of each
single model based on Egs. (5, 6).

Based on the adjusted outputs, we can obtain the BPA
for each patient. In our method, we combined the
weights calculated by RST into the BPA using the
following functions:

mA*i,i(Q) =0 (7)
wi X A*i,j
myr (1) = :
A H( ) Wi X A*i,j + wj X (I—A*”) +1 (8)
wi X l—A*L‘
my-,,(0) = ( ) 9)

N wi X Fiﬁj + wi X (I—A*i’j> +1

1
- wi X A*i,j —+ Wi X (]-_A*i,j) + 1

mA*i,i(G) (10)
where w; is the weight of the ith model with i€{SVM,
L,-LR, CART, GRACE}.

According to the weighted BPA obtained by Egs.
(7-10), we can employ the Dempster’s combinational
rule to combine the four models’” BPA functions to-
gether. Based on Eq. (4), we have:

Table 3 The adjusted outputs of single models for 10 patient

samples

Instances Models Actual
SVM LR CART GRACE  MACE

1 0.8323 0.7286 0.7786 1.0000 1

2 0.2663 03503 0.3658 0.3453 0

3 05198 03344 0.3658 0.1367 0

4 0.3695 0.5399 0.5468 03957 0

5 0.3424 0.5450 0.5468 0.5661 0

6 0.8210 0.7628 0.7786 0.6349 0

7 0.3409 05284 05514 0.6402 1

8 0.2494 03583 0.3658 0.6614 0

9 0.6621 0.5241 05514 0.3957 1

10 03712 03812 0.5468 04317 0
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ma=, (1) = mA*SVM.j®mA*L1—LR,j®mA*CART.j®mA*GRACE.j (1)
(11)

ma~,; (0) = mA*SVM.7®mA*LrLR.jgmA*CART.j®mA*GRACE,j (0)
(12)

Thus, the final decision value for the jth patient,
i.e., Ry, j can be simply represented as:
mA*au,j(l)
ma-,, (0> + ma«, ; (1)

Rayj = (13)

Table 4 shows the patient sample’s BPA, the combined
BPA and the final decision value. Note that the
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prediction results are determined by the optimal thresh-
old of decision value, i.e., 04759, determined based on
the same criteria as the dichotomization procedure.
After all the procedures above, we can obtain the en-
semble prediction model, which can consider the weight
of each single model calculated by RST when combining
the BPA by DST.

Experiments and results

Based on our previous work, we have obtained the ori-
ginal outputs of the four single models, e.g., SVM,
L,-LR, CART and GRACE, for a total of 2930 ACS pa-
tient samples collected from the Cardiology Department
of the Chinese PLA General Hospital. We employed

Table 4 The BPA, combined BPA and the final decision value for 10 patient samples

Instances BPA Single Models Combined Decision Prediction Actual
SVM LR CART GRACE BPA value results MACE

1 1 0.2905 0.1093 0.0820 0.1450 04806 0.8631 1 1
0 0.0585 0.0407 0.0233 0.0000 0.0762
S} 0.6509 0.8500 0.8947 0.8550 04432

2 1 0.0929 0.0525 0.0385 0.0501 0.1549 0.2845 0 0
0 0.2561 0.0975 0.0668 0.0949 0.3894
S} 0.6509 0.8500 0.8947 0.8550 04557

3 1 0.1814 0.0502 0.0385 0.0198 0.2046 0.3785 0 0
0 0.1676 0.0998 0.0668 0.1252 0.3360
S} 0.6509 0.8500 0.8947 0.8550 04594

4 1 0.1290 0.0810 0.0576 0.0574 0.2260 04190 0 0
0 0.2201 0.0690 0.0477 0.0876 03133
S} 0.6509 0.8500 0.8947 0.8550 04607

5 1 0.1195 0.0817 0.0576 0.0821 02371 04404 0 0
0 0.2296 0.0683 0.0477 0.0629 0.3012
S} 0.6509 0.8500 0.8947 0.8550 04617

6 1 0.2866 0.1144 0.0820 0.0921 04396 0.7999 1 0
0 0.0625 0.0356 0.0233 0.0529 0.1100
S} 0.6509 0.8500 0.8947 0.8550 04504

7 1 0.1190 0.0793 0.0581 0.0928 0.2433 04523 0 1
0 0.2301 0.0707 0.0472 0.0522 0.2947
S} 0.6509 0.8500 0.8947 0.8550 04620

8 1 0.0870 0.0537 0.0385 0.0959 0.1834 03397 0 0
0 0.2620 0.0962 0.0668 0.0491 0.3564
S} 0.6509 0.8500 0.8947 0.8550 04603

9 1 02311 0.0786 0.0581 0.0574 03146 0.5839 1 1
0 0.1180 00714 0.0472 0.0876 0.2242
S} 0.6509 0.8500 0.8947 0.8550 04611

10 1 0.1296 0.0572 0.0576 0.0626 02124 0.3931 0 0
0 0.2195 0.0928 0.0477 0.0824 0.3278
S} 0.6509 0.8500 0.8947 0.8550 0.4598
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Table 5 The weights of single models in each fold

Folds Models

SVM L-LR CART GRACE
1 0.5363 0.1765 0.1177 0.1696
2 0.2824 0.3410 0.2943 0.0823
3 0.5583 02189 0.1041 0.1187
4 04427 0.2433 0.2177 0.0962
5 03183 0.2988 0.2194 0.1634

5-fold cross validation to construct both the four single
models and our proposed model. To compare with other
ensemble methods, we trained the Bagging [23] and
AdaBoost [24] models by 5-fold cross validation as well.
The metrics of area under the curve [25] (AUC), predic-
tion accuracy (ACC) and their corresponding standard
deviations (STD) are employed to evaluate all these
models. All model constructions and statistical analyses
were completed by R version 3.3.1 (The R Foundation
for Statistical Computing, Vienna, Austria). Table 5 illus-
trates four single models’ weights in 5-fold cross
validation. Tables 6 and 7 shows the AUC value and
accuracy for all models in our study.

From Table 5, we can find that each model has differ-
ent weights in each fold, which indicates that the weight
calculation step in our method distinguishes the discrim-
ination ability of each single model and affects the con-
struction of the proposed model in each fold cross
validation. As illustrated in Tables 6 and 7, we can notice
that our proposed method achieves the highest AUC
value comparing with the 4 single models which means
it can combine the output of each single model and
generate a more reliable prediction result. And also, the
accuracy of our model is competitive in all models with
AUC values above 0.70. Moreover, when compared with
the traditional ensemble methods, ie., Bagging and
AdaBoost, our models achieve a better performance with a
significant margin. Furthermore, we can notice that the
proposed model is the only one whose all AUC values in
5-fold are above 0.70 with a competitive standard deviation,
which indicates the outstanding stability of our method.

Table 6 The AUC values of all models
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Figures 2 and 3 presents a more understandable compari-
son between our proposed model and other models.

Discussion

The problem of MACE prediction plays a vital role in
the optimal treatment management for ACS patients
during their hospitalizations. Facing with the limitations
in traditional risk scoring models, machine learning
methods and the uncertainties of EHR data, we present
an ensemble approach to alleviate this problem. We
firstly employed RST to determine each single MACE
prediction model’s weight. And then, DST was applied
to combine all weighted single models as our ensemble
model so as to enhance the performance of MACE pre-
diction. Experiments have been conducted on a clinical
dataset collected from the Cardiology Department of the
China PLA General Hospital. The experimental results
show our proposed method achieves the best prediction
performance with 0.715 AUC value, which indicates our
model can combine various information provided by the
single models to generate more reliable and stable pre-
diction result on the MACE prediction problem.

It should be mentioned that there exist some problems
needed further exploration.

In our current work, the single models we employed
are based on our previous work directly with no further
selection. However, the single model’s outputs will have
a significant impact on the final prediction results. Thus,
we need to explore which single models are the most ap-
propriate for the proposed method to combine so as to
improve the prediction performances. Furthermore, re-
sampling, a key technique to construct more single
models, is also a potential direction to build more
powerful and robust ensemble prediction model based
on the proposed method.

In our future research, we plan to develop and deploy
a continuous MACE prediction service in practice. Note
that the dynamic nature of a patient status is often es-
sential to risk stratification and subsequent treatment in-
terventions adopted in clinical practice. Thus, it would
be valuable to provide a continuous MACE prediction

Folds Single Models Ensemble Models Proposed
SVM L-LR CART GRACE Bagging AdaBoost

1 0.742 0.724 0.644 0.641 0.714 0678 0.736

2 0.696 0.715 0.664 0.629 0.688 0.701 0.713

3 0.704 0.689 0.5%4 0.635 0.707 0.696 0.707

4 0.682 0.702 0.604 0.640 0.706 0.686 0.700

5 0.711 0.704 0.645 0.636 0.683 0672 0.717
Average 0.707 0.707 0630 0.636 0.700 0.687 0.715
STD +0.022 +0.013 +0.030 +0.005 +0.013 +0.012 +0.013
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Table 7 The accuracy values of all models

Folds Single Models Ensemble Models Proposed
SVM L-LR CART GRACE Bagging AdaBoost
1 0.715 0.725 0.693 0625 0674 0630 0.724
2 0.662 0.703 0679 0592 0.667 0.655 0.717
3 0635 0.684 0.715 0.560 0.659 0671 0.674
4 0.695 0.659 0.734 0679 0677 0.654 0.671
5 0676 0.677 0.696 0.601 0.676 0.689 0.686
Average 0676 0.690 0.703 0611 0671 0.660 0.694
SD +0.031 +0.025 +0.021 +0.045 +0.008 +0.022 +0.024
0.74 -
0.72 A
0.70 A
0.68 -
g 0.66 -
<
0.64 A
0.62 -
0.60 -
0.58 -
Li-LR CART GRACE Bagglng AdaBoost Proposed
Fig. 2 The average AUC values with standard deviation

0.73 -~
0.71 4

0.69 A

0.67 A
0.61
0.59
0.57
0.55 -

Li-LR CART GRACE Bagging  AdaBoost Proposed

Fig. 3 The average accuracy values with standard deviation
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service during patients’ length of stay. Such a service not
only anticipate MACEs at runtime, but also monitors
patient treatment processes in a continuous and
predictive fashion.

Conclusion

In this paper, we present an ensemble approach to allevi-
ate the limitations in traditional ACS risk scoring
models, machine learning models and the uncertainties
of EHR data. We first employed RST to determine the
weight for each single model. After that, DST was
applied to combine the weighted outputs of single
models as the final prediction results. The experimental
results indicate our proposed method achieves 0.715
AUC value with a competitive standard deviation, which
is a better performance for the problem of MACE pre-
diction when compared with the single models.

Abbreviations

ACC: Accuracy; ACS: Acute Coronary Syndrome; AUC: Area Under the Curve;
BPA: Basic Probability Assignment; CART: Classification and Regression Tree;
DST: Dempster-Shafer Theory; EHR: Electronic Health Record; GRACE: Global
Registry of Acute Coronary Events; L;-LR: L;-Logistic Regression; MACE: Major
Adverse Cardiac Event; PURSUIT: Platelet glycoprotein Ilb/llla in Unstable
angina: Receptor Suppression Using Integrilin (eptifibatide) Therapy;

RST: Rough Set Theory; STD: Standard Deviation; SVM: Support Vector
Machine; TIMI: Thrombolysis in Myocardial Infarction

Acknowledgements

This work was supported by the National Nature Science Foundation of
China under Grant No. 61672450. The author would like to give special
thanks to all experts who cooperated in the evaluation of the proposed
method. The authors are especially thankful for the positive support received
from Chinese People Liberate Army General Hospital as well as to all medical
staff involved.

Funding
Publication costs are funded by the National Nature Science Foundation of
China under Grant No. 61672450.

Availability of data and materials

The datasets generated and/or analyzed during the current study are not
publicly available due to the hospital's regulations, but are available from the
corresponding author on reasonable request.

About this supplement

This article has been published as part of BMC Medical Informatics and
Decision Making Volume 19 Supplement 2, 2019: Proceedings from the 4h
China Health Information Processing Conference (CHIP 2018). The full contents
of the supplement are available online at URL. https.//
bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-
19-supplement-2.

Authors’ contributions

DH, KH and ZH conceived of the proposed idea and planned the
experiments. DH implemented the methods, carried out the experiments
and evaluated the proposed models. DH and ZH wrote the manuscript with
the comments from WD, KH, XL and HD. All authors have read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Page 16 of 197

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'College of Biomedical Engineering and Instrument Science, Zhejiang
University, Key Lab for Biomedical Engineering of Ministry of Education,
Zheda Road, Hangzhou, China. *Department of Cardiology, Chinese PLA
General Hospital, Fuxing Road, Beijing, China. *Beijing Key Laboratory Of
Chronic Heart Failure Precision Medicine, Beijing, China.

Published: 9 April 2019

References

1. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR,
Jaffe AS, Jneid H, Kelly RF, Kontos MC, et al. 2014 AHA/ACC guideline for
the Management of Patients with non-ST-elevation acute coronary
syndromes a report of the American College of Cardiology/American
Heart Association task force on practice guidelines. Circulation. 2014;
130(25):E344-426.

2. Acute Coronary Syndrome. https://en.wikipedia.org/wiki/Acute_coronary_
syndrome. Accessed 12 Oct 2017.

3. YeS. Coronary event. In: Gellman MD, Turner JR, editors. Encyclopedia of
behavioral medicine. New York: Springer New York; 2013. p. 503.

4. Hu DQ, Huang ZX, Chan TM, Dong W, Lu XD, Duan HL. Utilizing Chinese
admission records for MACE prediction of acute coronary syndrome. Int J
Env Res Pub He. 2016;13(9):912.

5. Antman EM, Cohen M, Bernink PM, et al. The timi risk score for unstable
angina/non-st elevation mi: a method for prognostication and therapeutic
decision making. JAMA. 2000;284(7):835-42.

6. Boersma E, Pieper KS, Steyerberg EW, Wilcox RG, Chang WC, Lee KL,
Akkerhuis KM, Harrington RA, Deckers JW, Armstrong PW, et al. Predictors of
outcome in patients with acute coronary syndromes without persistent ST-
segment elevation results from an international trial of 9461 patients.
Circulation. 2000;101(22):2557-67.

7. Granger CB, Goldberg RJ, Dabbous O, et al. Predictors of hospital
mortality in the global registry of acute coronary events. Arch Intern
Med. 2003;163(19):2345-53.

8. Goncalves PDA, Ferreira J, Aguiar C, Seabra-Gomes R. TIMI, PURSUIT, and
GRACE risk scores: sustained prognostic value and interaction with
revascularization in NSTE-ACS. Eur Heart J. 2005;26(9):865-72.

9. D'Ascenzo F, Biondi-Zoccai G, Moretti C, Bollati M, Omede P, Sciuto F,
Presutti DG, Modena MG, Gasparini M, Reed MJ, et al. TIMI, GRACE and
alternative risk scores in acute coronary syndromes: a meta-analysis of 40
derivation studies on 216,552 patients and of 42 validation studies on
31,625 patients. Contemp Clin Trials. 2012,33(3):507-14.

10.  Huang ZX, Dong W, Duan HL. A probabilistic topic model for clinical risk
stratification from electronic health records. J Biomed Inform. 2015;58:28-36.

11. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH,
Andreini D, Budoff MJ, Cademartiri F, Callister TQ, et al. Machine
learning for prediction of all-cause mortality in patients with suspected
coronary artery disease: a 5-year multicentre prospective registry
analysis. Eur Heart J. 2017;38(7):500-7.

12. Huang ZX, Chan TM, Dong W. MACE prediction of acute coronary
syndrome via boosted resampling classification using electronic medical
records. J Biomed Inform. 2017,66:161-70.

13. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning
improve cardiovascular risk prediction using routine clinical data? PLoS One.
2017;12(4):20174944.

14. Dempster AP. Upper and lower probabilities induced by a multivalued
mapping. In: Yager RR, Liu L, editors. Classic works of the Dempster-Shafer
theory of belief functions. Berlin, Heidelberg: Springer Berlin Heidelberg;
2008. p. 57-72.

15. Shafer G. A mathematical theory of evidence. Princeton: Princeton
University Press; 1976.

16. Basir O, Yuan XH. Engine fault diagnosis based on multi-sensor
information fusion using Dempster-Shafer evidence theory. Inform
Fusion. 2007;8(4):379-86.


https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-19-supplement-2
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-19-supplement-2
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-19-supplement-2
https://en.wikipedia.org/wiki/Acute_coronary_syndrome
https://en.wikipedia.org/wiki/Acute_coronary_syndrome

Hu et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 2):61 Page 17 of 197

17.  Xiao Z, Yang XL, Pang Y, Dang X. The prediction for listed companies'
financial distress by using multiple prediction methods with rough set and
Dempster-Shafer evidence theory. Knowl-Based Syst. 2012,26:196-206.

18. Wang JW, Hu Y, Xiao FY, Deng XY, Deng Y. A novel method to use fuzzy
soft sets in decision making based on ambiguity measure and Dempster-
Shafer theory of evidence: an application in medical diagnosis. Artif Intell
Med. 2016;69:1-11.

19.  Pawlak Z. Rough sets. Int J Comput Inform Sci. 1982;11(5):341-56.

20. James G, Witten D, Hastie T, Tibshirani R. Support vector machines. In: An
introduction to statistical learning: with applications in R. New York:
Springer New York; 2013. p. 337-72.

21. James G, Witten D, Hastie T, Tibshirani R. Linear model selection and
regularization. In: An introduction to statistical learning: with applications in
R. New York: Springer New York; 2013. p. 203-64.

22.  Loh W-Y: Classification and regression trees. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 2011, 1(1):14-23.

23.  Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123-40.

24.  Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning
and an application to boosting. J Comput Syst Sci. 1997,55(1):119-39.

25. Bradley AP. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recogn. 1997,30(7):1145-59.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Preliminaries
	Rough set theory
	Dempster-Shafer theory

	Methods
	Weights calculation using rough set theory
	Model fusion using Dempster-Shafer evidence theory

	Experiments and results
	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

