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Background: Increasing life expectancy results in more elderly people struggling with age related diseases and
functional conditions. This poses huge challenges towards establishing new approaches for maintaining health at a
higher age. An important aspect for age related deterioration of the general patient condition is frailty. The frailty
syndrome is associated with a high risk for falls, hospitalization, disability, and finally increased mortality. Using
predictive data mining enables the discovery of potential risk factors and can be used as clinical decision support
system, which provides the medical doctor with information on the probable clinical patient outcome. This enables
the professional to react promptly and to avert likely adverse events in advance.

Methods: Medical data of 474 study participants containing 284 health related parameters, including questionnaire
answers, blood parameters and vital parameters from the Toledo Study for Healthy Aging (TSHA) was used. Binary
classification models were built in order to distinguish between frail and non-frail study subjects.

Results: Using the available TSHA data and the discovered potential predictors, it was possible to design, develop
and evaluate a variety of different predictive models for the frailty syndrome. The best performing model was the
support vector machine (SVM, 78.31%). Moreover, a methodology was developed, making it possible to explore and
to use incomplete medical data and further identify potential predictors and enable interpretability.

Conclusions: This work demonstrates that it is feasible to use incomplete, imbalanced medical data for the
development of a predictive model for the frailty syndrome. Moreover, potential predictive factors have been
discovered, which were clinically approved by the clinicians. Future work will improve prediction accuracy, especially
with regard to separating the group of frail patients into frail and pre-frail ones and analyze the differences among
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Background

Demographic predictions for the 21% century [1] show a
new scenario characterized by a modest increase in life
expectancy, but a significantly greater burden of disability,
which will increase the demand for health and care costs
and challenge the sustainability of the system. Both the
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aging of the population and the growth of the population
are driving the increase in Disability Adjusted Life Years
(i.e. DALYs) due to the burden of non-communicable dis-
eases in older ages, associated with an increase in years
lived with disability. According to the last Global Burden
of Disease (2010), disability is the main consequence of
the concurrence of the aging process, lifestyles and health
conditions [2].

In [1] (and compare also with [3] it is stated that the
number of people aged 65+, in Europe, will almost double
over the next 50 years, from 85 million in 2008 to 151 mil-
lion in 2060. This is a great challenge for establishing new
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approaches with more efficient targets for public health
and for older people. Hence, the aim is the increase of the
life expectancy free of disability and therefore preventing
and/or delaying the onset of dependence. This will favor
optimization of opportunities for health, participation and
security in order to improve quality of life as people age.
That is active and healthy aging.

In the field of today’s data science there is a wide vari-
ety of new and sophisticated computational methods and
also tools for building predictive models and perform-
ing enhanced data analysis. In clinical medicine these
methods are used to offer support in tasks such as deci-
sion making based on the patient’s data. This covers the
spectrum of diagnostic, therapeutic and monitoring tasks.
Previous collected patient data can be used to build a
predictive model which provides a prediction for the clin-
ical outcome. Clinicians can act on this information and
promptly react to possible or likely adverse events [4].

Such an adverse event is for example the onset of frailty,
which in [5] is defined as a clinical geriatric syndrome
(a more detailed explanation can be found in the sub-
section Frailty in Related Work). Frailty is characterized
by a decreasing capacity to respond to demands of daily
life, caused by diminishing functional reserve. The preva-
lence of frailty in people 65+ ranges from 7 to 16.3%,
increasing with age, and it is the main risk factor for dis-
ability [6]. Therefore, frailty assessment is a key tool for
the prevention of disability by identification of people at
risk.

Data analytics can of course also be applied to ana-
lyze retrospective clinical data of the aging population
which can be crudely separated into healthy and frail
people. This, in order to help to find early predictors for
frailty, which in turn would enable the creation of poli-
cies for early prevention and adequate early on treatment
of the frailty syndrome. Furthermore, this may undoubt-
edly have a high beneficial impact on society. Sure enough
this undertaking, in order to be fruitful, requires extensive
medical records of elderly patients.

Objectives
The main aim of the present work is to demonstrate
that data science applied to medical data of elderly,
partly frail people can help to find new potential pre-
dictors and to obtain a predictive model for the frailty
syndrome.

In order to fulfill this goal we will focus on:

1 Building models that are able to discriminate
between frail and non-frail people
2 Finding potential predictive factors for frailty

In fact we propose just to focus on frail subjects under-
stood as any people either with the status pre-frail or frail
according to the Fried scale [5].
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Related work

The main focus of this paper lies in building predictive
models for the frailty syndrome and in discovering poten-
tial predictors. Consequently, it will be reviewed in what
follows, the existing literature related to data mining in the
medical domain and frailty.

Data mining in the medical domain

Predictive data mining is becoming an important analyt-
ical instrument for the scientific community and clinical
practitioners in the field of medicine [4]. Secondary use
of patient and clinical study data is able to enhance health
care experiences for individuals. Further, it enables the
expansion of knowledge about diseases and treatments
and leads to an increase of efficiency and effectiveness of
health care systems [7]. Moreover, molecular data holds
the potential to offer insights on single patients, therefore
changing decision-making strategies. Thus, it seems pre-
dictive data mining will be a strong ally for the transforma-
tion of medicine from population-based to personalized
practice.

Medical data has already successfully been used for
developing various clinical decision support systems’
(CDSSs), which significantly impact practitioner’s perfor-
mance and the health care process in a positive way and
will do so in the future [8, 9]. Nevertheless, there still is
a lot of room for improvement and the remaining issues
have to be tackled.

Regarding building predictive models, the currently
widely used neural networks (NN) [10] and also the
deep learning approaches [11] are a very robust group
of techniques with a good performance and they do
deliver very promising results, but they are very hard to
interpret because of their complex inner working. Sim-
pler techniques like the naive Bayes classifier (NB) [12],
linear discriminant analysis (LDA) [13], support vector
machines (SVM) [14] and tree-based approaches [15]
produce results that are much easier to interpret. Conse-
quently, we propose in this paper to use the latter kind of
techniques.

An important feature of the medical data due to its
nature, is that in order to understand it, the involve-
ment of the medical professional is paramount. Interactive
machine learning (iML) [16] approaches allow to insert
the physician in the “loop” of learning and that is what we
have attempted to realize in this research.

Frailty

The frailty syndrome was defined by Fried et al. [5] as a
syndrome where three or more of the following criteria are
present: unintentional weight loss (10 lbs/4.54 kg in the
past year), self-reported exhaustion, weakness (measured
via grip strength), slow walking speed, and low physical
activity. Subjects with no deficits in all criteria score 0,
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which means they are not frail. Those who have deficits
in 1 criterion or 2 criteria are called intermediate frail or
pre-frail. All higher scores lead to the classification frail.

Frailty is considered highly prevalent in old age and
associated with an elevated risk for falls, disability, institu-
tionalization, hospitalization, and mortality [5]. However,
it should not be considered synonymous with disabil-
ity or comorbidity. Fried et al. state that comorbidity
should rather be treated as an etiologic risk factor for
frailty and disability as an outcome. Disability cannot be
reversed, but it is preceded, sometimes by several years,
by the frailty syndrome, which can be reversed, and thus
prevented from worsening and its progression monitored.

Even that we use this work [5] as reference, in this
research also other literature regarding frailty is pre-
sented. Apart from the index Fried et al. proposed, also
others have emerged [17, 18]. Moreover, frailty is entan-
gled with other concepts like disability and comorbidity
and some effort has already been made to separate those
[19]. Frailty has been also successfully used as a predictor
itself, for example for predicting postoperative outcomes
[20], where one study [21] found that it is more useful than
conventional methods. These findings affirm the potential
of the syndrome definitions and available indexes as being
a stable concept.

Frailty seems to be strongly connected to physical activ-
ity and exercise, which have been proven to be protective
factors [22, 23]. Further, it seems that the syndrome is
closely related to mental impairment and mental health,
especially depression [24]. Increased age and not having
a daily consumption of vegetables and fruits were each
associated with frailty or pre-frailty [25]. There is also
a considerable gender aspect to this syndrome. Women
are more likely to become frail in higher age and also
frail women have a higher risk of developing disability,
being hospitalized and death [26]. Moreover, some phys-
iological blood parameters seem to be related to frailty
and hold the potential to serve as markers and/or pre-
dictors. Studies found that this geriatric syndrome is also
related to increased inflammation and elevated markers
of blood clotting [27]. In a study done by Baylis et al.
(2013) [28] the relationship between immune-endocrine
parameters and frailty and also mortality after 10 years in
females and males with an age between 65 and 70 years
was investigated. Their findings were that higher baseline
levels of white blood cell counts, lower levels of dehy-
droepiandrosterone sulfate (DHEAS) and higher cortisol
to DHEAS ratio could be related to a higher probabil-
ity of frailty in the future. Additionally, it was found that
the presence of diabetes also is a risk factor for the onset
of the frailty syndrome [25]. Concluding, a lot of suit-
able predictors (preventive and risk factors) have already
been found and are used for frailty screening and also
prediction.
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From the previous review of literature related to the
frailty syndrome the main conclusions are:

1 Fried’s frailty score [5] seems to be the one
widely-used by physicians

2 In the research of Fried et al. the following factors are
used to establish the frailty level (non-frail, pre-frail
and frail):

(a) unintentional weight loss (10 lbs in past year)
(b) self-reported exhaustion

(c) weakness (grip strength)

(d) slow walking speed

(e) low physical activity.

[a¥ale)

These variables are highly correlated with the
variable presenting the frailty status. Thus, we
propose in our research to use any other factors
(variables) to predict frailty.

Methods
Data
We used the data of the Toledo Study for Healthy Aging
(TSHA). In [29] the TSHA is described as follows. The
Toledo study is a population-based study conducted on
24388 individuals aged 65 years and older. The study sub-
jects were selected by a two-stage random sampling from
the Toledo region. Institutionalized as well as commu-
nity dwelling persons were selected. Data was gathered
in 3 waves: first (2006 to 2009) information on social
support, activities of daily living, comorbidity, physical
activity, quality of life, depression symptoms, and cogni-
tive function was collected. Furthermore, anthropometric
data (mass and length of body segments) and results of
physical performance tests (walking speed, upper extrem-
ity and lower extremity strength, and the stand-and-sit
from a chair test) were collected and a blood sample
was obtained. Many of the used variables are also rec-
ommended by the American Geriatrics Society (AGS) for
screening older patients for risk of falling and preventing
falls. The diagnosis of the frailty syndrome was based on
the Fried criteria (weakness, low speed, low physical activ-
ity, exhaustion, and weight loss)[5]. In the second wave
(2011-2013) and in the third wave (2015-2017), which is
ongoing, additional parameters were added (urine param-
eters). In the first wave the data of 474 patients was
available, of which remained 354 in the second wave.
From the aforementioned Toledo study a subset of
data has been made available for this work. In partic-
ular, anonymized data of 474 patients has been pro-
vided. Thereby, for each patient medical data consisting of
284 parameters was available. The majority of attributes
belong to the first wave of the TSHA (2006-2009) and
only 21 come from the second study wave conducted in
2011-2013.
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Definition of the variables

The provided data set contains 284 variables from which
only one is considered the variable to be predicted, the
FRAILTY variable. Even that in the TSHA study this vari-
able takes the values: non-frail, pre-frail and frail, for
the present study the variable is a binary one in which
the classes pre-frail and frail have been fused together.
Therefore, the in this work used target variable FRAILTY
consists of the classes non-frail (value: 0) and frail
(value: 1).

Hence, in total 180 observations are non-frail and 294
observations are frail. The remaining 283 variables will
be used to build models for the FRAILTY variable. They
were grouped according to their semantics into: i) demo-
graphic, ii) phenotype, iii) medication and iv) code fea-
tures. The phenotype features then were further split into
physique, blood, cardiac, disease, self reported disease,
consumption and medical test attributes.The medical test
attributes were further divided into features correspond-
ing to the Geriatric Depression Scale (GDS), Activities of
Daily Living (ADL), Instrumental Activities of Daily Liv-
ing (IADL), Mini-Mental-State-Examination (MMSE) and
Mobility Scale (MS) attributes.

Below you can find a short explanation for each medical
test, which was carried out in the TSHA [29]:

Geriatric depression scale (GDS) This scale was cre-
ated with the objective to obtain a reliable rating for
depression in elderly. The applicant himself answers
in the so called short form 15 different questions. Of
those, 10 questions indicate the presence of depres-
sion when positively answered and the remaining 5
questions indicate the presence of depression when
negatively answered. The test yields a score between
0 and 15, where scores between 0 and 5 mean no
depression is present and values above 5 indicate the
presence of a depression [30, 31].

Activities of daily living (ADL) In this assessment also
a questionnaire is used, which is answered by the
patient. Here the goal is to estimate the patients’
satisfaction in his daily activities, which contain
hygiene, alimentation and independent access to
necessities. There exist different variations of the
ADL test, which differ regarding their contained
number of questions. In this work the ADL accord-
ing to Katz [32] was used. The answers to 6 different
questions provides a score between 0 and 6, where a
score of 0 signifies no ability of self-care and a score
of 6 complete ability of self-care.

Instrumental activities of daily living (IADL) Like the
ADL-test but mainly focused on instrumental activities.
These include following daily tasks and responsibili-
ties: food preparation, shopping, using the telephone,
housekeeping, transportation, responsibility for own
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medications and the ability to handle finances. For
each activity exist 3 to 5 questions, each yielding 0 or
1 point. The maximum for each category is 1 point
and signifies that the ability to perform that certain
task is given. At the end these points are summed
up. This sum represents the [ADL-Score with a range
between 0 and 8. [33]
Mini-mental-state-examination (MMSE) The  Mini-
Mental-State-Examination represents standardized
test for cognitive function or measure of impaired
thinking. The tested areas of cognitive function
consist of orientation, registration, naming recall,
calculation, writing, attention, repetition, compre-
hension, reading and drawing. The range of the
result lies between total cognitive absence (0 points)
and full cognitive function (30 points) [34, 35].
Mobility score (MS) The MS questions belong to the
Physical Activity Scale for the Elderly (PASE) ques-
tionnaire [36]. They provide validated knowledge
about the physical activity of the patients. Here, 5
principal questions and follow-up questions were
asked, yielding to a in this work derived score
between 0 and 5. The maximum score indicates full
mobility and 0 signifies extremely limited mobility.

Data exploration and quality assessment

The retrieved data set was analyzed using different statis-
tical visualization techniques like plotting the histogram,
the kernel density function estimate and box-plots. Fur-
ther, the values of each feature were inspected and com-
pared to the values they should have according to the
provided data dictionary (Additional file 1). Moreover,
statistical measures were calculated and analyzed. The
provided variables were divided according to their cor-
responding data type into continuous, categorical and
binary variables. Depending on this data type, different
visualizations were realized and statistical measures cal-
culated. Features representing codes and IDs of the TSHA
data do not contain relevant information with regard
to frailty prediction, as they were created for organiza-
tional reasons and do not contain information regarding
medical/phenotypic/demographic aspects.

In total the data set contains 474 observations and 284
features including the target variable representing the
frailty status. In total 176 features are more than 90% com-
plete and in 41 features more than 50% of the values are
missing, of which 12 are follow up questions to a previ-
ous asked principal question. For example the feature tabl
contains the answers to the question “Have you smoked
at least 100 cigarettes in your entire life?’, when answered
with 2 (which stands for no) the follow up question, rep-
resented by tabla (“If yes, Did you smoke cigarettes daily,
occasionally, or not at all?”), has not been asked. So as a
matter of fact, these values are not missing at random, but
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rather the question was not applicable for these observa-
tions. One can see that in order to make use of all the
observations and therefore of the contained information,
a special strategy for dealing with missing data is clearly
necessary. For many features a special treatment is neces-
sary in order to better capture their actual meaning as the
current values do not sufficiently reflect it.

Through analysis of known frailty related factors via
ontology-guided PCA using the approach described by
Wartner et al. (2016) [37], mining association rules using
the apriori algorithm [38] and general correlation statis-
tics, it can be assumed that the from the doctors described
relationships are also present in the data.

Data preparation

In this phase the data is cleaned, prepared and when nec-
essary transformed. Further, new features are derived and
the quality of the features in terms of predictiveness is
assessed.

First the features are analyzed regarding their contained
information in a statistical view and in a semantic view.
In the scope of this work it was decided to exclude infor-
mation regarding drugs. On the one hand because the
information presented is not sufficiently structured and
the pre-processing required exceeds the time available
for this work and on the other hand, because doctors
preferred to have the first predictive model only with
phenotypical parameters and results of the different tests.

Features which belong to the follow-up study conducted
in the years 2011-2013, were discarded, as there were only
21 of them (and the remaining 264 are from the earlier
study wave) and therefore a temporal analysis was not pos-
sible. Also features, which in a statistical sense contain no
information, were excluded. An example therefore is the
feature that describes binarily the presence of leukemia or
polycythemia. As all the observations have the same value
“2” (meaning “not present”), this feature was excluded.
Summing up, a total of 196 variables were left for further
analysis.

The data set was inspected regarding potential out-
liers, using the reference variable ranges according to the
data dictionary (Additional file 1). Not described appear-
ing values were examined from a statistical point of view
using the informal box plot method. Additionally, the ker-
nel density estimate was analyzed. After that exploration,
domain-knowledge was used to analyze the significance of
appearing extreme values. Further, the doctors of the hos-
pital were involved in the decision if the values are plau-
sible and should be kept, or if they should be discarded.
Moreover, possible/plausible values were discussed with
them and thresholds were established, exceeding values
then simply were set to not available (NA).

After the data had been cleaned, the following step was
to extend the available data set by creating new features,
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using the available ones. Sometimes the doctors can pro-
vide some scores or ideas for building features. A simple
example for this purpose is the Body Mass Index (BMI)
[39], which can be easily calculated using the patients
weight in kg and his height in cm (see Eq. 1).

1)

Other than the BMI also features representing the mobil-
ity score (sum of the answers to the principal questions of
the mobility score, see subsection Definition of the Vari-
ables) and the total income (sum of household income and
individual income) were created.

Imputation of missing data
Once data is prepared and new features have been derived,
the following step is to make sure all the observations can
be used in the modeling phase. Therefore, it was decided
to calculate different estimates for each missing value.
Thus, missing values are imputed (filled) with estimates.
In Table 1 the features where more than 5% of the val-
ues are missing can be seen. These measures are referring
to the already in the previous steps pre-processed data
set. An important step before applying imputation tech-
niques, is to assess the reason for missingness. Three types
of missing data exist and they are called Missing Com-
pletely At Random (MCAR), Missing At Random (MAR)
and Missing Not At Random (MNAR). The assumed rea-
son for the missingness and the according applicability
of imputation techniques is also presented in Table 1.
Features where more than one third of the values are miss-
ing were excluded from further investigations. They are
marked in bold. Overall, all MNAR cases can be found in
features which represent follow-up questions, they there-
fore were only be answered if the underlying basis ques-
tion was answered positively. For them no imputation is
possible because they can’t be derived from other features.
In order to use all the available information contained in
the data set, different imputation settings using the MICE
implementation, more specifically the CALIBERrfimpute
[40] expansion of it, were considered. Following configu-
ration, regarding the imputation method, was chosen:

e For continuous features: rfcont for numeric random
forest (RF) imputations

e For binary, ordered and unordered categorical
features: rfcat for categorical RF imputations (factor,
> 2 levels)

Due to the size of the data set and the high number of fea-
tures it was decided to use a selection of suitable features
for the imputation models. One way is selecting manually
every predictor for every imputation model and another
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Feature

Percentage of missing data

Reason for missingness

Imputation possible

Times stopped smoking
Daily wine consumption
Daily beer consumption
Daily spirits consumption
Duration of alcohol consumption
Earlier alcohol consumption
Kind of drinker (earlier)
Starting age alcohol consumption
Ending age alcohol consumption
D Dimer [ug/L]
High-sensitivity C-reactive protein (hs-CRP) [mg/L]
Number of IADL abilities
Total MMSE score

Total GDS

Depression

Insulin [U/mL]

HDL

LDL

Total testosterone [ng/dL]
Free testosterone [ng/dL]
Mobility scale question 5
Mobility scale question 6
Mobility scale question 8
Mobility scale question 9
Mobility scale question 11
Mobility scale question 12
Mobility scale question 14
Mobility scale question 15
MMSE temporal domain 1
MMSE temporal domain 2
MMSE temporal domain 3
MMSE temporal domain 4
MMSE temporal domain 5
MMSE spatial domain 1
MMSE spatial domain 2
MMSE spatial domain 3
MMSE spatial domain 4
MMSE spatial domain 5
MMSE remembering 1

MMSE remembering 2
MMSE backward counting

MMSE spell the word
MMSE object naming
MMSE repeat phrase
MMSE left right

75.11
91.14
98.73
98.95
82.91
19.20
86.29
86.50
86.92
17.72
14.98
6.33
15.82
9.49
9.49
11.60
9.07
9.07
37.97
37.97
844
844
14.35
13.92
7.81
7.59
25.95
26.16
17.93
18.78
18.14
22.57
12.87
13.08
13.29
13.29
13.29
13.29
18.99
1941
51.05

61.60
13.92
13.08
13.50

MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MAR

MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MAR

MAR

MAR

MAR

MAR

related to {gdstotal}

MAR

MAR

MAR

MAR

MAR

MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MNAR (follow-up question)
MAR

MAR

MAR

MAR

MAR

MAR

MAR

MAR

MAR

MAR

MAR

MAR

MAR

MAR
MAR
MAR
MAR

No
No
No
No
No
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
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Table 1 Overview of features with more than 5% missing values (Continued)

Reason for missingness Imputation possible

Feature Percentage of missing data
MMSE following written order 13.29
MMSE write sentence 13.92
MMSE copying design 13.50
Cognitive impairment 17.09
Individual income 844
Household income 13.29
Number of persons in the family 18.78
Insulin like growth factor 1 (IGF1) [ng/mL] 27.00
Dementia type 98.73
Overall income 13.71

MAR Yes
MAR Yes
MAR Yes
MAR Yes
MAR Yes
MAR Yes
MAR Yes
MAR Yes
MNAR (follow-up question) No
MAR Yes

Features where more than one third of the values are missing are presented in bold

way is to use statistical measures for the selection. Conse-
quently, is it for example possible to just consider variables
which show a correlation higher than a certain specified
percentage. As it is a rule to use as much information as
possible as this leads to multiple imputations which have
a minimal bias and a maximal certainty [41], a minimal
correlation-threshold of 7% was used.

Additionally, only such variables which are more than
a certain desired percentage complete will be used. For
the first imputation only predictors, which correlate more
than 7% and are more than 80% complete were selected
by configuring the parameter pred. The overall config-
uration of the mice() function can be seen in following
code-fragment.

mice (data, seed = 219,

pred = quickpred (imp, mincor = 0.07,
minpuc = 0.8),

defaultMethod = ¢("rfcont","rfcat","”
rfcat","rfcat"),

m = 5, maxit = 70, MaxNWts = 9000)

Here, MaxNWsts depicts the maximal number of
weights used by the inner neural network. The argument
maxit was used to set the maximal numbers of iterations
to 70. As creating 5 different imputations was desired,
the parameter m was set to 5. The argument default-
Method contains the different per default used methods
for the different data types, which were already men-
tioned earlier. Using pred, different restrictions regarding
minimum correlation and completeness of the predictors
were added. The first argument represents the data set in
matrix form for which the imputations should be com-
puted. The parameter seed can be used to set the number
for initializing the pseudo-random generator.

The mean and the standard deviation for each variable
at each iteration can be observed in the received impu-
tation object. These values were plotted for the features
with the highest amount of missing values in order to see

if median and variance of the different imputations do
converge. It seemed that 70 iterations are quite sufficient
in this regard.

The obtained imputations are then examined using
visualization tools. One possibility to check if the obtained
imputations are reasonable, is to compare the kernel den-
sity estimates of the observed and the imputed values
for ideally all variables. As this would not have been fea-
sible within the scope of this work, only features with
more than 5% missing values were examined. Further,
the kernel-density function was plotted and analyzed for
each feature and each imputation in order to evaluate the
quality.

The second imputation was done the same way, but
this time also the selected features were included for
every imputation model. This is recommended by Buuren
and Groothuis-Oudshoorn (2011) [41]. The connection
between the imputation and the feature selection process
is demonstrated in Fig. 1.

The overall configuration of the mice() function for
the second imputation can be seen in following code-
fragment.

mice (data, seed = 219,

pred = quickpred (imp, mincor = 0.07,
minpuc = 0.8,

include = selected_features),
defaultMethod = c¢("rfcont","rfcat","”
rfcat","rfcat"),

m = 5, maxit = 50, MaxNWts = 9000 )

The only difference is that by adding the parame-
ter include = selected_features to the attribute pred, the
selected features are used additionally for every imputa-
tion model.

Here, the obtained imputations were also analyzed as it
has been done before. With the help of density plots of
the imputed and the original values, once again the quality
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Fig. 1 Imputation Process. This figure illustrates how the imputation and the feature ranking process are connected. At first, the imputation models
are built using features, which show a minimum correlation (here 7% was used) to the feature to be imputed. After that, the obtained 5 different
data sets are used for the feature selection process. Knowing the selected features, the imputation is re-done. This by using as predictors additional

of the imputations was assessed. The obtained 5 differ-
ent imputed data sets then were used for the modeling
process.

Feature selection

As the objective is to predict the FRAILTY variable with
a subset of features, which are highly predictive, the most
predictive features were determined using feature rank-
ing methods. Further, the obtained results were compared
with the suggested factors from the doctors of the Toledo
study.

In order to make just use of the features which are
indeed predictive and therefore beneficial for the final pre-
dictive model in terms of performance, different feature
selection methods were considered. Finally, it was decided
to use the Boruta [42] algorithm, which uses a RF wrap-
per method. The implementation of the R package Boruta
[42] was used. The selection was performed with regard
to the binary target variable FRAILTY.

For each imputed data set the feature selection process
using the Boruta algorithm was executed. For the sake
of obtaining reliable and stable results, the method was
configured to use 1000 trees for the RF algorithm and to
perform 1000 runs in order to avoid so called tentative
results. This means there are still features, which could
not be rejected nor accepted for the final set. At the end, 5
different sets of selected features were present. The finally
chosen selected features were those, which appeared at
least 3 times in the 5 different Boruta sets. The com-
plete feature selection process, which begins after the first
executed imputation procedure and provides the selected
features for the second imputation, is shown in Fig. 2.

Findings In Fig. 3 the result of the feature selection is
presented. The variables are ordered by importance, the
rejected ones are colored red, the selected ones green and
those, for which no decision could be made, are yellow. All
the importance measures of the features were compared
to randomly permuted copies of themselves, so called

shadow attributes. The Z-Score of the most important
shadow attribute was used as separator between selected
and rejected features. Features where no decision could be
made were marked tentative and colored yellow.

By using the function TentativeRoughFix those features,
with a median importance higher than the maximal one
of the shadow attributes, were selected and the others
rejected. This is a simple test for judging these tentative
attributes. Tentative attributes could also be resolved by
increasing the number of importance runs of the Boruta
algorithm. That is why instead of the default 100 runs,
1000 runs were used.

After the feature selection, the obtained final variables
were used for another imputation round. As suggested by
Buuren and Groothuis-Oudshoorn (2011) [41], the fea-
tures which are powerful in terms of predictiveness, with
regard to the target variable, should always be used in
the imputation for each feature. That is why they all were
included in each imputation model.

Modeling and evaluation

Once data had been prepared, the following step was to
build predictive models. As can be seen in the sections
to come, different techniques have been applied. Later
the received results have been compared and validated. In
what follows, one can find the model settings, the mod-
eling and validation schema, the model performance and
lastly the evaluation of the models.

Classification model settings

Following learning algorithms for the predictive models
have been chosen: the NB algorithm, Classification And
Regression Trees (CART), bagging CART, C5.0, RF, SVM
and LDA. They have been selected as representative of
the most widely used in the literature [43]. This variety of
algorithms allows to analyze the robustness of the solution
and how different methods influence the performance.
The different algorithms were implemented in the R envi-
ronment using different third party packages, which are
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Fig. 2 Feature Selection Process. This figure shows the overall feature selection process. At first, the Boruta algorithm is applied on each imputed data
set. Then, the 5 different selected feature sets are compared and features which appear in 3 or more selected sets are chosen for the final feature set

listed in what follows. Further, changed configurations,
which differ from the default settings are described in this
listing.

NB The NB classifier naiveBayes of the R package el071
was used in its standard configuration.

CART The CART algorithm tree of the same titled R
package was used in it’s standard configuration.

Bagging CART The bagging CART implementation bag-
ging from the R package ipred lead to the best results,
when using 55 bootstrap replications.

C5.0 The best accuracy for the C5.0 algorithm (from the
R package C50) could be achieved using 50 iterations
for the multiclass classification and 55 iterations for the
binary classification.

RF The best accuracy in the RF implementation “ran-
domForest” from the R package with the same name was
achieved, using 1000 trees, no replacements in the inner
sampling of cases and 5 as number of variables randomly
sampled as candidates at each split.

SVM The best setting for this algorithm was using as
type the C-classification, as kernel the radial basis func-
tion (RBF) and as tolerance of termination criterion the
value 1073, The degree was set to 3, the ‘C’-constant of the

20
|

Importance
10 15
.

5
1

T T T T T T T T T T T T T T T T T T T T T T T T o T T

Attributes

Fig. 3 Feature Selection Results (Boruta). This image shows the attributes and their importance measure, by which they were selected (green) or
rejected (red). This decision was made by comparing their importance measure to randomly permuted copies of themselves, the so called shadow
attributes [54]. Features which could neither be selected nor rejected were marked tentative (yellow)
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regularization term in the Lagrange formulation was set
to 10 and the gamma of the RBF was set to 0.07.

LDA This method from the R package MASS was used in
its standard configuration.

Optimization of algorithm input

In order to utilize the data in the best way, it has been
shown that sometimes it is beneficial for the performance
of the learning algorithms to transform the data to differ-
ent ranges and also to change the distribution. This was
also considered in this work and therefore, every algo-
rithm was used on the z-score standardized, the Min-Max
normalized and the raw data set. Where the raw form
represents the data after completion of the preprocessing
phases.

Min-Max Normalization Min-Max normalization is a
method where the values of the data are transferred into a
range of [0, 1]. Where the lowest appearing value %, is
set to zero and the maximal value x,;,,, is set to 1. The used
formula is shown in Eq. 2. Here each value x; is Min-Max
normalized using its current value, %y, and Xy4x.
mm(x;) = _Ki ™ Xmin_ )
Xmax — Xmin
For each learning algorithm the 3 aforementioned input
data set variants were used and the resulting perfor-
mances were compared. Then for each algorithm the
variant which leads to the best performance was chosen.
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Modeling and validation schema

After preparing the data for the modeling phase, the next
step was building the models and validating them. In Fig. 4
the procedure for modeling and evaluating is presented.
At the beginning each obtained imputed data set is used
to build the different models (e.g. RF, DT, SVM), which
are tested in a cross-fold validation setup. The resulting
performance measure values of each model for each impu-
tation are then compared and the one with the overall best
performance is chosen as final model. Therefore, 5 differ-
ent final models are obtained at the end. Afterwards they
can be used as an ensemble classifier, which provides one
result for new unseen instances.

In order to evaluate the out of sample error of the built
models, as mentioned before, the very commonly used
10-fold cross-validation was performed. Here, the train-
ing data is split into 10 different, generally equal-sized
folds. Then, for each fold k the model is trained on all the
folds but the k’th. After that the obtained model is tested
on the k’th fold. This is repeated for all 10 folds, where
k = 1...10. The error averaged over all the folds is then
computed.

Due to the fact that the classes are imbalanced (180
observations are non-frail and 294 observations are frail),
a stratification technique was implemented. This in order
to have the same number of frail and non-frail observa-
tions in each created fold and thereby maintaining the
initial class balance. At first, the observations were split
according to their frailty status (2 classes). Afterwards, the
10 folds were created separately for each class and then
fused according to the fold-number. The observations
were chosen randomly.

Imputed
Data set

Imputed
Data set

MICE
Multiple
Imputations

(using correlation
as predictor criteria

“Tmputed
Data set

“Imputed
Data set

Imputed
Data set

Predictive
Models, set #1
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Fig. 4 Modeling and Evaluation Procedure. This image shows the general modeling and evaluation procedure. Firstly, models are built using the 5
different obtained imputed data sets. Secondly, the models are evaluated in a cross-fold validation setup. Then the resulting performance measure
values (e.g. accuracy, sensitivity, specificity) can be compared
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By using multiple 10-fold cross-validations, a first esti-
mate of the generalization error is obtained. For the
modeling phase five different imputed data sets were con-
sidered, thereby five different best performing classifiers
were obtained. The final predictive model represents an
ensemble classifier, which can be used on new unseen
instances. The final predicted class is the result of five
different votes, where each vote is the corresponding
classification result of each model.

Performance measures

The confusion matrix of the prediction results is the
basis for the following used measures: accuracy, sensitiv-
ity (also called true positive rate), specificity (also called
true negative rate), precision, F;-Score and the area under
the receiver operating characteristic curve (AUC) [44].
A more detailed description of the used performance
measures can be found in [45].

Results

Selected features

The finally selected features, which appeared at least 3
times in the 5 different feature selection sets, using the
Boruta algorithm, can be seen in Table 2.

Model performance

The model performances were obtained by averaging each
performance measure for the 10 different 10-fold cross-
validation setups. The obtained results can be seen in
Table 3. For each performance measure, the over the folds
averaged value including the standard deviation is shown.
The highest obtained value for each performance category
is marked in bold.

Discussion

The goal of this work was to build models that are able to
discriminate between frail and non-frail people and to find
potential predictive factors for frailty using data mining.
For this purpose the medical data provided from the
TSHA was used.

Data understanding

The data understanding phase has shown to be useful
to understand the relationship between variables and to
find outliers, correlations and obtain general insights that
have guided later the predictive modeling process. In
fact the analysis of all the features helped to determine
their particular importance in the frailty prediction. Fur-
ther, the application of the ontology-based PCA approach
described by Wartner et al. (2016) [37] was able to deliver
some insights, which were further investigated.

Selected features
A step of the process that resulted to be especially impor-
tant was feature selection, given the high number of
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Table 2 Obtained final selection of features using the Boruta
algorithm and a voting system (presence of the feature in at least
3 out of the 5 sets)

Description Type
Height (cm) Numeric
Presence of cognitive impairment Binary
Presence of depression Binary
Mobility Scale follow-up question (tiredness when Binary
going out)

Mobility Scale question (stair-climbing ability) Binary
Mobility Scale follow-up question (tiredness when Binary
walking outside)

Mobility Scale question (walking outside ability) Binary
MMSE follow-up question (remembering objects Categorical
ability)

Total GDS Binary

Age in years Numeric
ADL question (difficulty washing) Categorical
Number of ADL abilities Numeric
Number of IADL abilities Numeric
IADL question (difficulty using telephone) Categorical
IADL question (difficulty shopping) Categorical
IADL question (difficulty cooking) Categorical
IADL question (difficulty doing light housework) Categorical
IADL question (difficulty doing heavy housework) Categorical
IADL question (difficulty using public transportation) Categorical
Total MMSE score Numeric
Sum of mobility score main features (em1,em2, Numeric
em3,em4,em5)

Number of drugs (drug intake) Numeric
Alkaline phosphatase [U/L] Numeric
Presence of polypharmacy Binary
Self-reported health status Categorical
Self-reported health status compared to people the Categorical
same age

Capacity of dealing with problems Categorical
Capacity of dealing with tasks Categorical
GDS question (dropped activity of interests) Binary

GDS question (boredom) Binary
Presence of joint inflammation (more than 4 weeks Categorical

in arow)

variables that were present. Using a RF wrapper based
feature selection method, potential predictors were iden-
tified. Further, previously known predictors for frailty,
from the medical community, could be used to validate
the built model and vice versa, the feature selection pro-
cess confirmed their predictability. The present work has
identified potential predictors for predicting frailty, which
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Table 3 10-fold cross-validation results for the binary classification models for each imputed data set, working with the two classes

non — frail and frail

Prediction method Accuracy AUC Sensitivity Specificity Precision F1-Score
Imputation 1
Naive Bayes 7320 +£597% 0.756 £0.052 0.656 £0.102 0.856 +0.079 0.885+0.054  0.749 £0.067
CART 72.77 £5.20% 0.710 £0.061 0.782 £0.108 0.639 £0.168 0.789 £0.065 0.778 £0.049
Bagging CART 7551 £7.16% 0.731 £0.070 0.830 £0.086 0.633 £0.084 0.786 £0.048 0.806 £ 0.060
50 77.83+7.13%  0.752 £0.086 0.860 +0.056 0.644 £0.164 0.804 £0.075 0.829 +0.051
Random forest 77.64 £5.62% 0.755 £0.053 0.844 £0.089 0.667 £ 0.087 0.806 £ 0.041 0.823 £0.050
Support vector machines (RBF) 77.64 £ 6.55% 0.762 + 0.065 0.824 £0.09 0.700 £0.099 0.819 £0.053 0.819 £0.057
Linear discriminant analysis 7511 £5.34% 0.739 £0.042 0.789 £0.096 0.689 £ 0.047 0.805 £0.023 0.795 £0.055
Imputation 2
Naive Bayes 72.78 £6.47% 0.750 £0.059 0.656 £0.109 0.844 +0.094 0.878 +0.063 0.745 £0.072
CART 70.89 £ 5.94% 0.699 £ 0.057 0.741 £0.098 0.656 £0.104 0.781 £0.047 0.757 £0.058
Bagging CART 7511 £659% 0.729 £0.072 0.820 £0.089 0.639 £0.134 0.792 £ 0.066 0.802 £ 0.054
50 7739 £735% 0.745 £0.093 0.867 +£0.057 0.622 £0.192 0.797 £0.082 0.828 +0.050
Random forest 77.01 £6.65% 0.752 £0.064 0.827 £0.101 0.678 £0.101 0.809 £ 0.052 0.815 £0.060
Support vector machines (RBF) 77.63+7.01% 0.761 +0.071 0.827 £0.085 0.694 +0.102 0.816 £0.057 0.820 £+ 0.060
Linear discriminant analysis 76.14 £5.15% 0.752 £0.046 0.792 £0.081 0.711 £0.057 0.817 £0.032 0.803 +0.050
Imputation 3
Naive Bayes 7341 £5.64% 0.757 £0.057 0.664 £ 0.083 0.849 +0.102 0.885+0.069 0.755+£0.056
CART 7321 £5.75% 0.728 £0.07 0.746 £ 0.064 0.709 £0.14 0.815 £0.067 0.776 £ 0.045
Bagging CART 7828 £3.92% 0.764 £0.057 0.841+0.058 0.688 £0.148 0.823 £0.062 0.828 £0.026
50 74.06 £7.12% 0.709 £ 0.089 0.837 £0.057 0.581 £0.181 0.774 £0.073 0.802 £0.048
Random forest 77.62 £6.65% 0.762 £0.076 0.820 £ 0.068 0.704 £0.134 0.824 £ 0.068 0.820 £0.052
Support vector machines (RBF) 79.32+5.00% 0.779+0.056  0.838 £0.049 0.720 £0.09 0.833 £0.048 0.834 +0.040
Linear discriminant analysis 7847 £4.77% 0.773 £0.051 0.821 £0.059 0.726 £0.085 0.833 £0.045 0.825 +£0.040
Imputation 4
Naive Bayes 72.78 £5.89% 0.750 £0.061 0.657 £0.083 0.843 +0.111 0.881 +0.075 0.749 £ 0.057
CART 7126 £5.83% 0.697 £0.053 0.762 £0.095 0.631 £0.083 0.774 £0.043 0.765 £0.058
Bagging CART 7638 £5.77% 0.747 £0.069 0.817 £0.076 0.676 £0.147 0.812 £0.065 0.811 £0.046
5.0 7425 £7.13% 0.712 £0.085 0.837 +£0.057 0587 £0.157 0.774 £0.07 0.803 £0.052
Random forest 76.99 £ 5.90% 0.755 £ 0.069 0.817 £0.069 0.693 £0.136 0.819 £0.067 0.815 £0.046
Support vector machines (RBF) 78.47 +£5.14%  0.771 £0.057 0.827 £0.053 0.714 £0.092 0.829 £0.049 0.827 +0.041
Linear discriminant analysis 78.06 £ 5.39% 0.772 +0.057 0.807 £0.061 0.737 £0.091 0.837 £0.049 0.820 £0.045
Imputation 5
Naive Bayes 7341 £5.45% 0.756 £0.053 0.664 £ 0.088 0.849 +0.098 0.885+0.066 0.754 £0.057
CART 71.67 £7.79% 0.702 £0.087 0.762 £0.100 0.642 £0.166 0.786 £ 0.089 0.769 £ 0.066
Bagging CART 76.79 £4.69% 0.749 £0.053 0.827 £0.071 0671 £0.115 0.809 £ 0.049 0.815£0.039
50 7531 £4.08% 0.726 £0.055 0.837+0.065 0.615£0.138 0.787 £0.055 0.808 £ 0.030
Random forest 78.03 £5.10% 0.764 £ 0.060 0.830 £0.073 0.698 £0.129 0.824 £0.061 0.824 £0.041
Support vector machines (RBF) 78.47 £5.39%  0.771 £ 0.059 0.827 £0.055 0.714 £0.092 0.828 £0.049 0.827 +£0.043
Linear discriminant analysis 77.62 £5.35% 0.769 +0.058 0.800 £0.063 0.737 £0.102 0.836 £ 0.054 0.816 +£0.045

The highest obtained value for each performance category for each imputed data set is marked in bold
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were conformed by the doctors. Most of the found predic-
tors are variables describing the mobility, the mental state
and the capability of performing daily tasks.

Some interesting findings, according to the physicians
is for example the presence of blood alkaline phosphatase
level in U/L in the selected feature set (Table 2). Less
surprising is that age is also among these features. More-
over, the final feature set also included variables regard-
ing: depression (presence of depression, total GDS, 2
GDS question, 4” GDS question), polypharmacy (pres-
ence of polypharmacy, number of drugs), mobility (mobil-
ity score), Mini-Mental-State-Examination (total MMSE
score, presence of cognitive impairment, MMSE follow-
up question [remembering objects ability]), Instrumental
Activities of Daily Living (number of IADL abilities and
the first 6 IADL questions), Activities of Daily Liv-
ing (number of ADL abilities and ADL question [diffi-
culty washing]), self-reported health-status (self-reported
health status, self-reported health status compared to
people the same age, capacity of dealing with problems,
capacity of dealing with tasks) and rheumatic disease
(presence of joint inflammation [more than 4 weeks
in a row]), which also according to the doctors seem
to be relevant.

The found feature set seems to be consistent with
known frailty risk factors or preventive factors found
by the medical community. Interesting seems to be the
finding that the feature p40falc, representing the blood
alkaline phosphatase level in U/L, is highly predictive.
This certainly requires some follow up investigations,
as this could possibly be a new biomarker for frailty
detection. The doctors said that this variable is proba-
bly a good predictor, because it gives information about
inflammation processes in the body. They are already
investigating it, in the scope of the FRAILOMIC initia-
tive [46], which is a research project aiming to identify
the factors that turn frailty into disability. The doctors
conformed that the found predictors are related to frailty.
They commented also on the missingness of the gen-
der feature. According to them, it’s one of the important
markers for determining frailty and they were surprised
that it did not appear in the final predictor set. It is
possible that the feature selection algorithm found this
variable to be redundant and that the contained informa-
tion is already provided by other features. The variable
height is, for example, highly correlated to the gender
variable (correlation coefficient = 0.725). This mani-
fests that further analysis with a bigger population is
required in order to understand the role of this vari-
able in particular but also for all the found potential
predictors.

The set presented, results to be the best subset of fea-
tures for the task of predicting frailty, even that some
of these variables showed to be correlated in the data
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understanding phase. Machine learning algorithms are
very flexible with regard to problems of multicollinearity,
especially tree based ones and the SVM [47, 48]. In fact,
that are the methods which were used for the predictive
modeling. Consequently, the possible collinearity impact
on the prediction models is avoided.

Evaluation of the built models
For this research two different evaluations are required.
First, the analyses of the performances of the models and
later, the analysis of how the models actually fit the goals.
The overall best performances in nearly all measures have
SVMs with a RBF as kernel. Followed by RE, LDA, bagging
CART, C5.0, NB and CART. Striking is the high obtained
specificity and precision of the NB classifier, while it per-
forms inferior in the other measures compared to the
other models. In this case specificity represents the ratio
of predicted real non-frail patients to all non-frail patients.
Thus, this classifier shows an extraordinary performance
in the task of detecting non-frail patients. The highest val-
ues for accuracy and AUC are always achieved by RF and
SVMs, which do not differ significantly in their results.
The highest scores in each category for each imputation
are marked in bold in Table 3. The variation of the results
between the different imputed data sets is also very small,
which indicates that also the variation of the imputed val-
ues is small. For example, the accuracy of SVM averaged
over all imputed data sets is 78.31 £0.70%. The stan-
dard deviation is not even one percent. The RF algorithm
performed slightly inferior with an averaged accuracy of
77.46 £ 0.45%. Here the standard deviation is below a half
percent, which shows that the performance is quite stable.
The built models achieved an accuracy of more than
78% for binary classification of the frailty variable, with-
out using features, which are directly related to the target
or used to build it (see Fried’s frailty criteria and stages
[5]). The results show, that it is feasible to build predictive
models for the frailty syndrome using medical data.

Interpretability of the built models

The tree models derived by CART and C5.0 are easy to
interpret as they can provide “human-friendly” explana-
tions, which is an extremely important aspect (see e.g.
[49]). Tree structures are ideal for capturing interactions
between the features and present themselves a natural
visualization with edges and nodes. Hence, good expla-
nations could be derived, although linear relationships
are presented by splits. When bagging is used (bagging
CART, RF), the resulting model is not a single tree but
an ensemble of trees, which significantly decreases the
interpretability. NB is a simple and interpretable model.
The contribution of each feature towards the final chosen
class is clear. LDA also provides a result, which is very easy
to interpret, as the output is a linear combination of the
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features. In case of the SVM the interpretability depends
on the chosen kernel. If a non linear kernel is used, as in
this work, the relationships can not be easily captured.

Limitations

Predictive models, using the predictors obtained in the
feature selection process, were built in order to predict
frailty in patients. It was decided to derive a binary classi-
fier, which is able to separate the two classes non-frail and
frail. The classes pre-frail and frail from the original mul-
ticlass problem were fused into the class frail in order to
work on a binary classification problem. Even though that
could cause a degradation of the performance of the built
models.

Further, it has to be stated that the derived model
is technically speaking a predictive model, but presents
semantically a diagnostic model. As already mentioned,
temporal analysis was not possible as mainly data from
one point in time was available. Thus, the built model
relies only on data which has been collected at the same
time as the diagnosis has been made.

By using multiple 10-fold cross-validations, a first esti-
mate of the generalization error is obtained. Though,
according to Bellazzi et al. (2011) [50] the prediction per-
formance should also be tested on an independent data
test set from another study.

Regarding the performed imputations of missing values,
one could argue that using correlation between variables
as a criteria for the imputation process could boost exist-
ing correlations, however multiple imputations have been
used to reflect the degree of uncertainty when making use
of such an approach and therefore not an exact result but
an performance estimate has been presented.

Null imputation is a task that on its own requires a lot of
work due to the vast amount of decisions that have to be
made. In fact for each attribute a deep analysis is required.
In this work 157 attributes are given for which data impu-
tation is required. Due to the fact that the main goal of the
present work is showing that prediction of frailty is feasible
rather than analyzing the most efficient algorithm for a
prediction, quite enough effort has been dedicated to null
imputation. However, a deeper analysis would be needed
in order to answer questions related to the statistical anal-
ysis of the multiple imputations and also to the obtained
statistical results, which are pooled into a final point estimate
plus standard error, applying Rubin’s pooling rules [51].

It is also important noting that several issues make med-
ical data mining a hard task today. On the one hand,
problems related to legal issues and all the issues concern-
ing privacy and confidentiality and on the other hand, the
problem of interoperability of systems make it difficult to
have a complete view of the patient or to integrate data
from different services at the hospital. Besides, one cannot
forget the effort of obtaining a complete cohort of patients
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from which we can extract results. Consequently, in this
work we would only analyze a cohort of 474 patients for
which 284 variables were available. These data limita-
tions allowed for only rough performance estimates for
the models. It would be desirable to have a bigger sam-
ple, so that results would become more significant and
validations would be possible in different cohorts.

Conclusions

In this paper the feasibility of applying data mining tech-
niques in order to extract models for frailty prediction
using medical data from patients some of which are frail,
has been analyzed.

From the work developed, it has been shown that in
fact it is possible to extract meaningful patterns. Further,
the importance of data preparation and data understand-
ing for the successful extraction of predictive patterns
has been demonstrated. Despite the importance of intel-
ligent algorithms to extract the patterns, in this work we
have additionally shown the paramount importance of
pre-processing. Without a modest amount of effort in this
phase, a reliable prediction model can not be built. There-
fore, investing a lot of work here proved to be highly ben-
eficial in terms of accuracy and reliability of the obtained
predictions.

Future work

This work contributed towards obtaining predictive
models that can anticipate the onset of age related
deterioration. In particular, the problem of frailty has
been analyzed in this paper. However, for these models
to be used in daily routine, some work still needs to
be done, nevertheless, this work opens new lines of
research.

A next step is to analyze the best algorithm depending
on the size of the data set. In this work the main focus was
to show that data analysis is possible rather than show-
ing which methods are the most efficient. Consequently,
in future work the feature selection process should be
repeated once data of more patients is available. Moreover,
we have focused on obtaining models for a binary variable
FRAILTY, but in the future more models should be cre-
ated in order to analyze differences between the the stages
non-frail and pre-frail, and pre-frail and frail respectively.

All in all, one remaining task is removing step by step
the expert from the deep processes of the data prepara-
tion pipeline by further developing the autonomy of the
system. Yet, according to Holzinger (2017) [52] it seems to
be unrealistic that such fully automatic approaches can be
realized in the near future, most of all it is very important
in the medical domain to foster transparency and trust.
Standard black-box approaches lack transparency, hence
do not foster trust and acceptance. Rising legal and pri-
vacy aspects, e.g. with the new European General Data
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Protection Regulations will make it more important in the
future to explain why a decision has been made [53]. So in
contrast to pursue the objective of increasing the auton-
omy of the process, it should be considered to include
doctors as agents in the development of the predictive
algorithm, in order make their domain-knowledge dur-
ing the learning process available, which potentially could
increase the performance of the final model [52]. Maybe
in a more distant future fully automatic approaches will be
feasible.

Besides, future research will include analyzing more
features. In particular investigating the impact of med-
ication or the impact of nutritional information is very
promising. Moreover, future work could also focus on
evolution analysis of patients regarding the frailty syn-
drome. The most important future work is to validate the
results in other cohorts and it is necessary to check how
the model

Albeit the results seem to be very promising, for them
to have more impact, it would be required to further val-
idate the results in other cohorts, along with testing on
how the derived model from retrospective data performs
in prospective trials.

Additional file

Additional file 1: Data Dictionary: Description of the Variables. This file
"Additional File 1.pdf" contains tables where for each available variable the
name, expected values, a description and the data type is stated. The
variables where divided into semantic groups, where for each group a
table has been created. These groups have already been mentioned in the
subsection Definition of the Variables. (PDF 93 kb)

Abbreviations

ADL: Activities of daily living; AUC: Area under the curve; CART: Classification
and regression trees; CDSS: Clinical decision support system; DALY: Disability
adjusted life year; DHEAS: Dehydroepiandrosterone sulfate; GDS: Geriatric
depression scale; IADL: Instrumental activities of daily living; iML: Interactive
machine learning; LDA: Linear discriminant analysis; MAR: Missing at random;
MCAR: Missing completely at random; MMSE: Mini-mental-state-examination;
MNAR: Missing not at random; MS: Mobility scale; NA: Not available; NB: Naive
Bayes; NN: Neural network; PASE: Physical activity scale for the elderly; RBF:
Radial basis function; RF: Random forest; SVM: Support vector machine; TSHA:
Toledo study for healthy aging

Acknowledgements

The authors are grateful to Dr. Angel Garcia-Pedrero and Juan Manuel Tufias
Martin and also to the rest of the team of the MEDAL Laboratory of the Center
of Biomedical Technology (CTB) of the Universidad Politécnica de Madrid
(UPM) for their help and their insightful comments.

Funding
The work has been partially financed under the project FACET (EIT-HEALTH).

Availability of data and materials

The data are available from from the authors upon reasonable request for
research and with permission of Complejo Hospitalario de Toledo and
Hospital Universitario de Getafe.

Authors’ contributions
All authors contributed in writing this article. EM proposed developing a
binary classifier for the diagnosing of frail patients using the Toledo Study for

(2019) 19:33

Page 15 of 17

Healthy Aging (TSHA) data. Further, EM helped with the development of the
methodology. FJGG provided the TSHA study data and gave feedback
throughout the process. LRM helped with interpreting the medical data and
providing feedback for the obtained results from the medical perspective.
APH designed, implemented and validated the methodology, supervised by
AH and EM. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The TSHA has been approved by the Ethic Committee of both Complejo
Hospitalario de Toledo and Hospital Universitario de Getafe. All individuals
participating in this study provided full written informed consent to have their
samples and data used for research purposes, including genetic ones
(although this is not applicable in this case).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests. AH is an Editorial
Board Member for BMC Medical Informatics and Decision Making.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

"Holzinger Group, HCI-KDD, Institute for Medical Informatics/Statistics, Medical
University Graz, 8036 Graz, Austria. 2Institute of Interactive Systems and Data
Science, Graz University of Technology, 8010 Graz, Austria. 3Center for
Biomedical Technology, Universidad Politecnica de Madrid, 28000 Madrid,
Spain. 4Division of Geriatric Medicine, Virgen del Valle Geriatric Hospital, 45000
Toledo, Spain. ®Division of Geriatric Medicine, University Hospital of Getafe,
28905 Getafe, Spain.

Received: 19 September 2017 Accepted: 18 January 2019
Published online: 18 February 2019

References

1. Economic Policy Committee and others. The 2009 Ageing Report:
economic and budgetary projections for the EU-27 Member States
(2008-2060). European Economy. 2009;2. https://doi.org/10.2765/80301.

2. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati
M, Shibuya K, Salomon JA, Abdalla’s, et al. Disability-adjusted life years
(dalys) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic
analysis for the global burden of disease study 2010. Lancet.
2013;380(9859):2197-223.

3. Kleinberger T, Becker M, Ras E, Holzinger A, Muller P. Ambient
intelligence in assisted living: Enable elderly people to handle future
interfaces. 2007103-112. https://doi.org/10.1007/978-3-540-73281-5_11.

4. Bellazzi R, Zupan B. Predictive data mining in clinical medicine: Current
issues and guidelines. Int J Med Inform. 2008;77(2):81-97. https://doi.org/
10.1016/j.ijmedinf.2006.11.006.

5. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J,
Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA. Frailty in older
adults: Evidence for a phenotype. J Gerontol A Biol Sci Med Sci.
2001;56(3):146-57. https://doi.org/10.1093/gerona/56.3.m146.

6. Rodriguez-Mafas L, Fried LP. Frailty in the clinical scenario. Lancet.
2015;385(9968):7-9. https://doi.org/10.1016/50140-6736(14)61595-6.

7. Safran C, Bloomrosen M, Hammond WE, LabkoffS, Markel-Fox S, Tang
PC, Detmer DE. Toward a national framework for the secondary use of
health data: An american medical informatics association white paper.

J Am Med Inform Assoc. 2007;14(1):1-9. https://doi.org/10.1197/jamia.
m2273.

8. Jaspers MWM, Smeulers M, Vermeulen H, Peute LW. Effects of clinical
decision-support systems on practitioner performance and patient
outcomes: a synthesis of high-quality systematic review findings. J Am
Med Inform Assoc. 2011;18(3):327-34. https://doi.org/10.1136/amiajnl-
2011-000094.

9. BrightTJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR,

Samsa G, Hasselblad V, Williams JW, Musty MD, et al. Effect of clinical
decision-support systemsa systematic review. Ann Intern Med.
2012;157(1):29-43.


https://doi.org/10.1186/s12911-019-0747-6
https://doi.org/10.2765/80301
https://doi.org/10.1007/978-3-540-73281-5_11
https://doi.org/10.1016/j.ijmedinf.2006.11.006
https://doi.org/10.1016/j.ijmedinf.2006.11.006
https://doi.org/10.1093/gerona/56.3.m146
https://doi.org/10.1016/s0140-6736(14)61595-6
https://doi.org/10.1197/jamia.m2273
https://doi.org/10.1197/jamia.m2273
https://doi.org/10.1136/amiajnl-2011-000094
https://doi.org/10.1136/amiajnl-2011-000094

Hassler et al. BMC Medical Informatics and Decision Making

20.

22.

23.

24.

25.

26.

27.

28.

29.

Bose NK, Liang P. Neural network fundamentals with graphs, algorithms,
and applications. New York: McGraw-Hill Inc; 1996.

. Schmidhuber J. Deep learning in neural networks: An overview. Neural

Netw. 2015;61:85-117.

Rish 1, et al. An empirical study of the naive bayes classifier. In: JCAI 2001
Workshop on Empirical Methods in Artificial Intelligence, vol 3. New York:
IBM; 2001. p.41-6.

Izenman AJ. Linear Discriminant Analysis. In: Modern Multivariate
Statistical Techniques: Regression, Classification, and Manifold Learning.
New York: Springer; 2008. p. 237-80. https://doi.org/10.1007/978-0-387-
78189-1_8.

Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector
machines. IEEE Intell Syst Appl. 1998;13(4):18-28. https://doi.org/10.1109/
5254.708428.

Breiman L. Classification and Regression Trees; 2017. https://doi.org/10.
1201/9781315139470. https://doi.org/10.1201%2F9781315139470.
Holzinger A. Interactive machine learning for health informatics: when do
we need the human-in-the-loop? Brain Inform. 2016;3(2):119-31.

Ensrud KE, Ewing SK, Taylor BC, et al. Comparison of 2 frailty indexes for
prediction of falls, disability, fractures, and death in older women. Arch
Intern Med. 2008;168(4):382-9. https://doi.org/10.1001/archinternmed.
2007.113.

Drubbel I, de Wit NJ, Bleijenberg N, Eijkemans RJC, Schuurmans MJ,
Numans ME. Prediction of adverse health outcomes in older people using
a frailty index based on routine primary care data. J Gerontol A.
2013;68(3):301-8. https://doi.org/10.1093/gerona/gls161.

Fried LP, FerrucciL, Darer J, Williamson JD, Anderson G. Untangling the
concepts of disability, frailty, and comorbidity: Implications for improved
targeting and care. J Gerontol A. 2004;59(3):255-63. https://doi.org/10.
1093/gerona/59.3.M255.

Makary MA, Segev DL, Pronovost PJ, Syin D, Bandeen-Roche K, Patel P,
Takenaga R, Devgan L, Holzmueller CG, Tian J, et al. Frailty as a predictor
of surgical outcomes in older patients. J Am Coll Surg. 2010;210(6):901-8.
Kim SW, Han HS, Jung HW, Kim KI, Hwang DW, Kang SB, Kim CH.
Multidimensional frailty score for the prediction of postoperative
mortality risk. JAMA Surg. 2014;149(7):633-40. https://doi.org/10.1001/
jamasurg.2014.241. /data/journals/surg/930571/50i140018.pdf.

Fiatarone MA, O'neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME,
Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ. Exercise training and
nutritional supplementation for physical frailty in very elderly people. N
Engl J Med. 1994;330(25):1769-75. https://doi.org/10.1056/
NEJM199406233302501.

Wolf SL, Barnhart HX, Kutner NG, McNeely E, Coogler C, Xu T. Reducing
frailty and falls in older persons: An investigation of tai chi and
computerized balance training. J Am Geriatr Soc. 44(5):489-497. https://
doi.org/10.1111/j.1532-5415.1996.tb01432.x. https://onlinelibrary.wiley.
com/doi/pdf/10.1111/.1532-5415.1996.tb01432.x.

Collard RM. Frailty & late-life depression: a delicate balance. Radboud
University Nijmegen; 2015. https://repository.ubn.ru.nl/handle/2066/
144024.

Bouillon K, Kivimaki M, Hamer M, Shipley MJ, Akbaraly TN, Tabak A,
Singh-Manoux A, Batty GD. Diabetes risk factors, diabetes risk algorithms,
and the prediction of future frailty: The whitehall ii prospective cohort
study. J Am Med Dir Assoc. 2013;14(11):851-18516. https://doi.org/10.
1016/jjamda.2013.08.016.

Bandeen-Roche K, Xue Q-L, Ferruccil, Walston J, Guralnik JM, Chaves P,
Zeger SL, Fried LP. Phenotype of frailty: Characterization in the women's
health and aging studies. J Gerontol A. 2006;61(3):262-6. https://doi.org/
10.1093/gerona/61.3.262.

Walston J, McBurnie M, Newman A, et al. Frailty and activation of the
inflammation and coagulation systems with and without clinical
comorbidities: Results from the cardiovascular health study. Arch Intern
Med. 2002;162(20):2333-41. https://doi.org/10.1001/archinte.162.20.2333.
Baylis D, Bartlett DB, Syddall HE, Ntani G, Gale CR, Cooper C, Lord JM,
Sayer AA. Immune-endocrine biomarkers as predictors of frailty and
mortality: a 10-year longitudinal study in community-dwelling older
people. AGE. 2013;35(3):963-71. https://doi.org/10.1007/511357-012-
9396-8.

Garcia-Garcia FJ, Avila GG, Alfaro-Acha A, Andres MSA, de la Torre Lanza
MDLA, Aparicio MVE, Aparicio SH, Zugasti JLL, Reus MG-S,
Rodriguez-Artalejo F, Rodriguez-Manas L. The prevalence of frailty
syndrome in an older population from spain. the toledo study for healthy

(2019) 19:33

30.

31

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45,

46.

47.

48.

49.

50.

51

Page 16 of 17

aging. J Nutr, Health Aging. 2011;15(10):852-6. https://doi.org/10.1007/
$12603-011-0075-8.

Yesavage JA, Sheikh JI. 9/geriatric depression scale (GDS). Clin Gerontol.
1986;5(1-2):165-73.

Yesavage JA, Brink TL, Rose TL, Lum O, HuangV, Adey M, Leirer VO.
Development and validation of a geriatric depression screening scale: a
preliminary report. J Psychiatr Res. 1983;17(1):37-49.

KATZ S. Assessing self-maintenance: Activities of daily living, mobility, and
instrumental activities of daily living. J Am Geriatr Soc. 1983;31(12):721-7.
https://doi.org/10.1111/j.1532-5415.1983.tb03391.x.

Lawton MP, Brody EM. Assessment of older people: self-maintaining and
instrumental activities of daily living. Nurs Res. 1970;19(3):278. https://doi.
org/10.1097/00006199-197005000-00029.

Folstein MF, Folstein SE, McHugh PR. “mini-mental state”: a practical
method for grading the cognitive state of patients for the clinician.

J Psychiatr Res. 1975;12(3):189-98.

Cockrell JR, Folstein MF. Mini-mental state examination. Principles and
practice of geriatric psychiatry. 2002;140-141. https://doi.org/10.1002/
0470846410.ch27(ii).

Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale
for the elderly (PASE): Development and evaluation. J Clin Epidemiol.
1993;46(2):153-62. https://doi.org/10.1016/0895-4356(93)90053-4.
Wartner S, Girardi D, Wiesinger-Widi M, Trenkler J, Kleiser R, Holzinger A.
Ontology-guided principal component analysis: Reaching the limits of
the doctor-in-the-loop. In: International Conference on Information
Technology in Bio-and Medical Informatics. Springer; 2016. p. 22-33.
https://doi.org/10.1007/978-3-319-43949-5_2. https://doi.org/10.1007
%2F978-3-319-43949-5_2.

Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo Al, et al. Fast
discovery of association rules. Adv Knowl Disc Data Min. 1996;12(1):307-28.
Eknoyan Garabed. Adolphe Quetelet (1796-1874)-the average man and
indices of obesity. Nephrol Dial Transplant. 2007,23(1):47-51.

Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H.
Comparison of random forest and parametric imputation models for
imputing missing data using MICE: A CALIBER study. Am J Epidemiol.
2014;179(6):764-74. https://doi.org/10.1093/aje/kwt312.

van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by
chained equations in r. J Stat Softw. 2011;45(3):. https://doi.org/10.18637/
js5.v045.i03.

Kursa MB, Rudnicki WR. Feature selection with the boruta package. J Stat
Softw. 2010;36(11):1-13.

Le J. The 10 algorithms machine learning engineers need to know.
KDnuggets Analytics Big Data Data Min Data Sci. 2016. https://www.
kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.
html. Accessed 15 Aug 2017.

Bradley AP. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recogn. 1997;30(7):1145-59.
Sokolova M, Lapalme G. A systematic analysis of performance measures
for classification tasks. Inf Process Manag. 2009;45(4):427-37.

Lippi G, Jansen-Duerr P, VifAa J, Durrance-Bagale A, Abugessaisa |,
Gomez-Cabrero D, Tegnér J, Grillari J, Erusalimsky J, Sinclair A,
Rodriguez-Manas L, on behalf of the FRAILOMIC consorti. Laboratory
biomarkers and frailty: presentation of the FRAILOMIC initiative. Clin Chem
Lab Med (CCLM). 2015;53(10):. https://doi.org/10.1515/cclm-2015-0147.
Caraviello D, Weigel K, Craven M, Gianola D, Cook N, Nordlund K, Fricke P,
Wiltbank M. Analysis of reproductive performance of lactating cows on large
dairy farms using machine learning algorithms. J Dairy Sci. 2006;89(12):4703-22.
Kotsiantis SB, Zaharakis |, Pintelas P. Supervised machine learning: A
review of classification techniques. In: Proceedings of the 2007
Conference on Emerging Artificial Intelligence Applications in Computer
Engineering: Real Word Al Systems with Applications in eHealth, HCI,
Information Retrieval and Pervasive Technologies. Amsterdam: IOS Press;
2007. p. 3-24. http://dl.acm.org/citation.cfm?id=1566770.1566773.
Hudec M, Bedndrové E, Holzinger A. Augmenting statistical data
dissemination by short quantified sentences of natural language. J Off
Stat JOS). 2018;34(4):981. https://doi.org/10.2478/jos-2018-0048.

Bellazzi R, Ferrazzi F, Sacchi L. Predictive data mining in clinical medicine:
a focus on selected methods and applications. Wiley Interdiscip Rev Data
Min Knowl Disc. 2011;1(5):416-30. https://doi.org/10.1002/widm.23.
Buuren S. Flexible Imputation of Missing Data; 2012. https://doi.org/10.
1201/b11826. https://doi.org/10.1201%2Fb11826.


https://doi.org/10.1007/978-0-387-78189-1_8
https://doi.org/10.1007/978-0-387-78189-1_8
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/5254.708428
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201%2F9781315139470
https://doi.org/10.1001/archinternmed.2007.113
https://doi.org/10.1001/archinternmed.2007.113
https://doi.org/10.1093/gerona/gls161
https://doi.org/10.1093/gerona/59.3.M255
https://doi.org/10.1093/gerona/59.3.M255
https://doi.org/10.1001/jamasurg.2014.241
https://doi.org/10.1001/jamasurg.2014.241
http://arxiv.org/abs//data/journals/surg/930571/soi140018.pdf
https://doi.org/10.1056/NEJM199406233302501
https://doi.org/10.1056/NEJM199406233302501
https://doi.org/10.1111/j.1532-5415.1996.tb01432.x
https://doi.org/10.1111/j.1532-5415.1996.tb01432.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1532-5415.1996.tb01432.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1532-5415.1996.tb01432.x
https://repository.ubn.ru.nl/handle/2066/144024
https://repository.ubn.ru.nl/handle/2066/144024
https://doi.org/10.1016/j.jamda.2013.08.016
https://doi.org/10.1016/j.jamda.2013.08.016
https://doi.org/10.1093/gerona/61.3.262
https://doi.org/10.1093/gerona/61.3.262
https://doi.org/10.1001/archinte.162.20.2333
https://doi.org/10.1007/s11357-012-9396-8
https://doi.org/10.1007/s11357-012-9396-8
https://doi.org/10.1007/s12603-011-0075-8
https://doi.org/10.1007/s12603-011-0075-8
https://doi.org/10.1111/j.1532-5415.1983.tb03391.x
https://doi.org/10.1097/00006199-197005000-00029
https://doi.org/10.1097/00006199-197005000-00029
https://doi.org/10.1002/0470846410.ch27(ii)
https://doi.org/10.1002/0470846410.ch27(ii)
https://doi.org/10.1016/0895-4356(93)90053-4
https://doi.org/10.1007/978-3-319-43949-5_2
https://doi.org/10.1007%2F978-3-319-43949-5_2
https://doi.org/10.1007%2F978-3-319-43949-5_2
https://doi.org/10.1093/aje/kwt312
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html
https://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html
https://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html
https://doi.org/10.1515/cclm-2015-0147
http://dl.acm.org/citation.cfm?id=1566770.1566773
https://doi.org/10.2478/jos-2018-0048
https://doi.org/10.1002/widm.23
https://doi.org/10.1201/b11826
https://doi.org/10.1201/b11826
https://doi.org/10.1201%2Fb11826

Hassler et al. BMC Medical Informatics and Decision Making (2019) 19:33

52.

53.

54.

Holzinger A. Introduction to machine learning & knowledge extraction
(make). In: Machine Learning and Knowledge Extraction, vol 1; 2017.

p. 1-20. https://doi.org/10.3390/make1010001.

Holzinger A, Plass M, Kickmeier-Rust M, Holzinger K, Crisan GC, Pintea
C-M, Palade V. Interactive machine learning: experimental evidence for
the human in the algorithmic loop. Appl Intell. 2018. https://doi.org/10.
1007/510489-018-1361-5.

Kursa MB, Jankowski A, Rudnicki WR. Boruta—a system for feature
selection. Fundam Informaticae. 2010;101(4):271-85.

Page 17 of 17

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

o gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions k BMC



https://doi.org/10.3390/make1010001
https://doi.org/10.1007/s10489-018-1361-5
https://doi.org/10.1007/s10489-018-1361-5

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Objectives

	Related work
	Data mining in the medical domain
	Frailty

	Methods
	Data
	Definition of the variables

	Data exploration and quality assessment
	Data preparation
	Imputation of missing data

	Feature selection
	Findings

	Modeling and evaluation
	Classification model settings
	NB
	CART
	Bagging CART
	C5.0
	RF
	SVM
	LDA

	Optimization of algorithm input
	Min-Max Normalization


	Modeling and validation schema
	Performance measures


	Results
	Selected features
	Model performance

	Discussion
	Data understanding
	Selected features
	Evaluation of the built models
	Interpretability of the built models
	Limitations

	Conclusions
	Future work
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

