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Abstract

Background: Congestive heart failure is one of the most common reasons those aged 65 and over are hospitalized
in the United States, which has caused a considerable economic burden. The precise prediction of hospitalization
caused by congestive heart failure in the near future could prevent possible hospitalization, optimize the medical
resources, and better meet the healthcare needs of patients.

Methods: To fully utilize the monthly-updated claim feed data released by The Centers for Medicare and Medicaid
Services (CMS), we present a dynamic random survival forest model adapted for periodically updated data to
predict the risk of adverse events. We apply our model to dynamically predict the risk of hospital admission among
patients with congestive heart failure identified using the Accountable Care Organization Operational System Claim
and Claim Line Feed data from Feb 2014 to Sep 2015. We benchmark the proposed model with two commonly
used models in medical application literature: the cox proportional model and logistic regression model with L-1
norm penalty.

Results: Results show that our model has high Area-Under-the-ROC-Curve across time points and C-statistics. In
addition to the high performance, it provides measures of variable importance and individual-level instant risk.

Conclusion: We present an efficient model adapted for periodically updated data such as the monthly updated
claim feed data released by CMS to predict the risk of hospitalization. In addition to processing big-volume
periodically updated stream-like data, our model can capture event onset information and time-to-event
information, incorporate time-varying features, provide insights of variable importance and have good prediction
power. To the best of our knowledge, it is the first work combining sliding window technique with the random
survival forest model. The model achieves remarkable performance and could be easily deployed to monitor
patients in real time.

Keywords: Claim data, Survival analysis, Dynamic prediction, Random survival forest, Sliding window, Congestive
heart failure, Hospitalization

Background
There is a great need for health care service providers,
such as Accountable Care Organization (ACO), to closely
monitor the health conditions of their registered benefi-
ciaries, predict their future adverse events, and then take
prompt actions to alleviate or prevent such events [1].
The Centers for Medicare and Medicaid Services (CMS)

has established the ACO model where groups of health
care providers could unite to form their own ACO for
Medicare beneficiaries. CMS releases the Claim and Claim
Line Feed (CCLF) files monthly which contain up-to-date
beneficiary-level claim feed data. The traditional batch-
mode models used for static data may not achieve the best
prediction performance. Currently, there are few predic-
tion models built on such continuously updated medical
files. To fully utilize such data, we developed a novel
model called the dynamic random survival forests (DRSF)
model, which combines the advantage of data stream

* Correspondence: xyy62006@gmail.com
†Tianzhong Yang and Yang Yang contributed equally to this work.
1Philips Research North America, Cambridge, MA 02141, USA
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Yang et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 1):18
https://doi.org/10.1186/s12911-019-0734-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-019-0734-y&domain=pdf
mailto:xyy62006@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


models and random survival forest (RSF) model. The
model updates adaptively with time-varying features that
balance between the comprehensiveness and the timeli-
ness of historical information. It also predicts the risk of
future adverse events in a day unit for every beneficiary
with few model assumptions. We demonstrate that our
DRSF model is effective and powerful to make risk predic-
tion and stratification for periodically updated medical
data and can be deployed to monitor patients in real time.
In this paper, we focus on hospitalization caused by

Congestive Heart Failure (CHF) as our future adverse
events. CHF is a serious medical condition in which the
heart cannot pump enough blood to meet the body
needs. It is one of the most common reasons those aged
65 and over are hospitalized in the United States [2, 3].
CHF has created considerable economic burdens in the
elderly and has been estimated to account for approxi-
mately 1 to 2% of the annual total costs to a health care
system [4, 5]. On the other hand, CHF is a highly prevent-
able condition. Taking appropriate medication, proper
management of hypertension, and routine checkups can
help ensure the prevention of heart failure. Therefore, a
precise prediction of hospitalization caused by CHF in the
near future could advise ACOs to avoid possible hospita
lization, optimize their medical resources and better meet
the healthcare needs of beneficiaries.
The CCLF claims data are provided by CMS on a

monthly basis to Medicare ACOs. The CCLF files
released by CMS contain rich beneficiary-level informa-
tion covering the health conditions and all visiting
episodes of beneficiaries. Besides, the files are continu-
ously released to the participating ACOs in a unified for-
mat, so it is cost-effective to extract the beneficiary’s
information from these files. However, it raises statistical
challenges regarding efficiently utilizing such
high-volume and high-velocity data. Our proposed dy-
namic survival predictive model, the DRSF model, is able
to accommodate those requirements. To our knowledge,
this is the first work that combines data stream model
and RSF model with a real application to predict adverse
events using claim data. Shaker and Wang proposed to
combine a Cox-like proportional model and data stream
[6, 7]. However, their work focused on examining the in-
fluence of covariates changing over time rather than pre-
dicting adverse events. The following sections discuss
the details of our method and the application of our
model in predicting hospitalization caused by CHF. We
apply our method to the CCLF claims data from Feb
2014 to Sep 2015 for predicting hospitalization caused
by CHF. We compare our model with traditional batch-
mode models that ignore temporality. In addition, we
explore the validity of our assumption whether the re-
cent past is more informative for prediction purposes
than the older.

Methods
Study population
Our study cohort consists of those with previous CHF
diagnoses who are at high risk of future hospitalization
due to CHF. Alexian Brother ACO, locating in the sub-
urbs of Chicago, IL, serves over 60,000 Medicare benefi-
ciaries. We collected all the data necessary for this study
within Alexian Brother ACO from the CCLF files. The
high-risk beneficiaries were identified as patients who had
CHF comorbidity in the past one year and the CHF co-
morbidity was recognized by the historical International
Classification of Diseases, Ninth Revision, Clinical Modifi-
cation (ICD-9-CM) diagnostic codes in the CCLF files. To
subset and retain members with CHF diagnosis, we used
Quan’s updated Elixhauser’s Comorbidity definition to de-
fine the CHF cohort with the corresponding ICD-9-CM
codes, i.e., 398.91, 402.01, 402.11, 402.91, 404.01, 404.03,
404.11, 404.13, 404.91, 404.93, 428, 428.0, 428.1, and 428.9
as combined from Braunstein et al. [8] and Zolfaghar et al.
[9]. To identify the beneficiaries with high risk based on
the most recent data, we collected CHF cohort at different
index dates, i.e., in a dynamic manner. For example, if
index date is set at Feb 1, 2014, we use claim data between
Feb 1, 2013 and Jan 31, 2014 (12months) to obtain the
evidence of CHF comorbidity and establish the CHF co-
hort. In this way, we collected 14 CHF cohorts corre-
sponding to 14 index dates, with the sample size ranging
from a minimal of 4114 to a maximal of 5231 with a mean
of 4869 patients. The index dates covered from Feb 1,
2014 to Apr 1, 2015. A selected feature descriptive sum-
mary (of patient cohort with an index date of Feb 1, 2014)
is presented in Table 1. Before collecting any data, we
signed the Data Use Agreement Addendum for Data Ac-
quired from the CMS and obtained the approval.

Features and outcome
We built the prediction model using an auto-extracted
candidate feature set. Specifically, seventy-nine features
extracted from the CCLF files were classified into several
major categories, including demographics, chronic con-
dition, health care service, acute exacerbation record,
DME utilization, disease-specific procedure and service,
medication, location, and cost [10]. Features were ex-
tracted at (for baseline feature, e.g., age, gender and race)
or during (for manipulated feature, e.g., count of selected
chronic conditions and Charlson Index Score [11]) the
1 month, 3 months, 6 months, 12 months, or 36 months
prior to the index date (e.g., February 1, 2014, see Fig. 1)
to balance between the comprehensive coverage and the
timeliness of the information contained in the feature
(Table 2). For example, the historical total expenditure
was considered as proxies for overall health condition of
beneficiaries and previous health care efficiency; there-
fore, we collected the total expenditure of beneficiaries
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during the 12months prior to the index date for more
comprehensive coverage. On the contrary, we preferred
more timely information contained in the features such
as the most recent care location, medication history, and
acute exacerbation record of beneficiaries. Therefore, we
collected the features during the 1, 3, or 6 months prior
to the index date respectively. The window length selec-
tion strategy (as shown in Table 2) could be adjusted by
other researchers upon their own discretion of weighing
more on timeliness or on comprehensiveness of the in-
formation contained in a feature.
Our outcome was defined as the hospital admission

with the principal diagnosis code related to CHF. The
time to the event of interest was recorded within half a
year (6 months or 180 days) from the index date so we

had a 6-month-long prediction window. If hospital ad-
mission did not happen within the period, it was consid-
ered as right-censored in our survival analysis. We did
not consider readmission as our outcome of interest, i.e.,
the admission within 30-days of discharge of the most
recent admission. For 30-days readmission events, only
the earlier admission was kept as a valid sample and
readmissions were dropped. For all other multiple-ad-
missions scenarios, we treated the first admission as a
valid sample for predictive modeling.

Data stream models
Since our data were periodically updated, we adopted
the strategy used in the data stream models. The data
stream models are developed for the type of data that

Table 1 Descriptive Statistics of Baseline Features of CHF cohort with an index date of Feb 1, 2014

Without CHF
hospitalization

Encounter CHF hospitalization till
the end of studya

Distribution Significance
(p-value)b

# of members (% in total) 4910 (94.7%) 273 (5.3%)

Demographic Status

Gender (% of Male in total) 43.50% 47.60% 0.199

Ethnicity (# of members in 0/1/2/3/4/5/6 categories)c 22/4470/261/51/65/
38/3

0/245/20/4/2/2/0 0.62

Age (mean age) 80.8 82.6 0.004

Beneficiary Medicare Status Code (# of members in 10/11/20/
21/31/NA categories) d

4372/141/351/31/4/
11

236/20/13/2/1/1 0.0015

Beneficiary Dual Status Code (# of members in 01/02/03/04/06/
08/NA categories) e

21/261/25/59/28/
366/4150

1/16/1/3/0/13/239 0.62

Co-morbidity Status

Has Hypertension % 94.10% 96.00% 0.252

Has Pulmonary circulation disorders % 20.30% 40.30% 7.39 × 10–15

Has Chronic pulmonary disease % 49.60% 69.60% 1.86 × 10–10

Has Diabetes % 48.60% 54.20% 0.082

Has Rheumatic arthritis/collagen vascular diseases % 13.10% 9.90% 0.15

Has Renal failure % 38.00% 57.50% 1.76 × 10–10

Has Liver disease % 11.00% 11.00% 1

Has Psychoses % 12.80% 12.80% 1

Has Depression % 32.50% 33.70% 0.73

Has Obesity % 27.00% 34.10% 0.013

# of non-cardiac co-morbidity (mean #) 8.9 10.4 2.16 × 10–10

Charlson Index Score (mean score) 4.89 5.85 2.88 × 10–07

Other Status

Distance-to-closest-healthcare-facility (mean distance in miles) 8.53 10.37 7.85 × 10–12

Past 12 months total medical charge (mean in dollar) 23,361.56 32,248.25 0.00016
aif more than one admission for a member during the total study window, only count the earliest event
bT-test for continuous variable and Chi square; Fisher’s Exact test for categorical
cEthnicity code values: 0 = Unknown; 1 =White; 2 = Black; 3 = Other; 4 = Asian; 5 = Hispanic; 6 = North American Native
dIndication of the reason for a beneficiary’s entitlement to Medicare benefits as of a particular date as in the following categorie: 10 = Aged without Disabled, and
End Stage Renal Disease (ESRD); 11 = Aged with ESRD; 20 = Disabled without ESRD; 21 = Disabled with ESRD; 31 = ESRD; only NA = Not Available
eIdentifies the most recent entitlement status of beneficiaries eligible for a program(s) in addition to Medicare (e.g., Medicaid). Check Dual Status Codes
here: https://www.resdac.org/cms-data/variables/medicare-medicaid-dual-eligibility-code-january
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arrive in a stream or streams. They have been used in
areas including sensor data, image data, internet, or web
traffic. One common strategy to process such data is to
use the sliding window technique [12]. The assumption
of imposing sliding windows is that the recent past is
more informative for prediction purposes than the older
past [12]. The CCLF claim data contain a large number
of participants and features, which usually occupy a
large amount of computational memory. In addition, the
claims data continuously arrive on a monthly basis,
which share a similar pattern of data streams. By weight-
ing more on more recent data utilizing the
sliding-window technique, we are able to decrease the

memory usage, the processing time, and the number of
assessment per data window. In brief, we can extract the
most important and relevant information from such data
in an incremental mode of learning and model adaption.

Random survival forests
RSF method utilizes ensemble trees to analyze the right
censored survival data [13]. RSF is closely related to ran-
dom forests [14] and it inherits many of the good prop-
erties from random forests. For example, it is an
assumption-free model, which is more flexible than the
parametric and semi-parametric survival models, such as
Weibull model and Cox proportional-hazards model. It

Fig. 1 Illustration of feature extraction. Features are extracted at or during the 3 months, 6 months, 12 months, or more prior to the index date. In
our Dynamic Random Survival Forest (DRSF) model, the index date is corresponding to the beginning date of each prediction window

Table 2 Features pool used in predictive modeling

Feature Category Features

Demographics Age, Gender, Race.

Socioeconomics Medicare status code, Beneficiary Dual Status code

Chronic conditiona Any selected chronic conditions1; Count of selected chronic conditions1; Charlson Index Score [11]

Health care serviceb Count of a specific health care service utilization, including ED visit3, inpatient admission3, SNF stay, HHA stay and
outpatient physician visit.

Acute exacerbation recordb Count of ED visit or inpatient admission with selected exacerbation conditions2.

DME utilizationb Any DME usage; any oxygen-related DME usage.

Disease-specific procedure and
servicec

Any cardio echo test; any spirometry test; any general pulmonary function test.

Medicationd Count of unique prescription.

Locatione Most recent care location prior to admission, including home, HHA, SNF, Inpatient and Outpatient

Costc Total Expenditure
1See Additional file 1: Table S1 for chronic conditions used in CHF predictive models
2See Additional file 1: Table S2 for exacerbation conditions used in CHF predictive models
3We included both the all-cause and disease-specific ED visit/inpatient admission
aSuch features were collected during the 36months window prior to the index date
bSuch features were collected during the 6 months window prior to the index date
cSuch features were collected during the 12months window prior to the index date
dSuch features were collected during the 3 months window prior to the index date
eSuch features were collected during the 1 month window prior to the index date
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usually performs well when there is a highly non-linear
or complex relationship between the features and the re-
sponse. Moreover, the RSF model incorporates ensemble
learning so that it could improve prediction perfor-
mances from base learners. The mean of cumulative
hazard function H(t) is averaged among all the trees for
each individual (Fig. 2). It gets the low prediction error
from the random draw of the bootstrap sample and the
random selection of predictors. In addition, the RSF
model uses log-rank splitting developed from a
well-accepted non-parametric log-rank test. In this
paper, we used an R package randomForestSRC (version
2.2.0 https://cran.r-project.org/web/packages/random-
ForestSRC/index.html) to fit the RSF model. It is
open-source and freely available from the Comprehen-
sive R Archive Network (CRAN).

Dynamic random survival forests model
The DRSF model carries the advantage of properties of
RSF model and sliding window technique. We built the
DRSF as in the following steps (Fig. 3): first, we ex-
tracted features prior to the index date where the predic-
tion window begins as discussed above (also shown in
Table 2 and Fig. 1); second, we trained and validated the
model for the specific window using RSF. The variable
selection and model building procedure was described in
detail later; third, we predicted the survival rate and cal-
culated the prediction accuracy in the following testing
window (no overlap with the previous window used for
model training and validation); fourth, we moved for-
ward the window by one month and repeated the
process until the end of the overall study time; finally,

we obtained the prediction score from each single win-
dow and combined the information of nearby windows
(ensemble windows) to build a classification model.
More specifically, for each individual at time t, let Wτ
denotes the set of all time points: Wτ = { Wt |τ ϵ [t, t +
Δt] }. The hazard rate for individual i at time t can be
calculated by the combination of different nearby win-
dows: hðtÞ ¼ 1

N

P
Wt∈WτhðtÞ, N denotes the total number

of windows available for each individual in time
Wτ.Thus, we can get the survival function as S(t) =
exp(− ∑ h(t)). The combination procedure allows that
more recent window have higher weights in calculating
the hazard rates and the survival function.

Model building and selection
We built our model by a two-step feature selection
method using features in the previously defined feature
pool. In the first step, features with variable importance
less than 0 were excluded. In the second step, we per-
formed a nested sequence of models starting with the
top variables, e.g., with top two variables, three variables
and so on [13]. We finalized our feature selection
process by choosing the features until there was little or
no incremental effect of the features. Each window was
allowed to have different features.

Model evaluation
We adopted two different statistics to compare among
the methods in benchmark. Firstly, we included the con-
cordance summary C-statistics, which is directly related
to Kendall’s tau. It can be interpreted as the probability

Fig. 2 Illustration of Random Survival Forest (RSF) model. Features and Samples are selected by random for each tree. Log-rank splitting is used
to grow the tree. At the end of each branch, a cumulative hazard function is calculated for the selected individuals. Finally, the
ensembled estimated cumulative hazard function is calculated by averaging over all the trees
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that the marker value for a randomly selected case ex-
ceeds the marker value for a randomly selected control.
The marker value for cox-proportional hazard is the cox
linear predictor (xb), the marker value for penalized lin-
ear regression (i.e., batch-mode L1-penalized logistic re-
gression) is the predicted value (i.e., the logarithm odds),
and the marker value for RSF is the ensemble mortality,
proposed by Ishwaran et al. and defined as the expected
value for the cumulative hazard function [13, 15]. Sec-
ondly, we included the cumulative/dynamic time-
dependent AUC evaluated at 60 days and 180 days. The
concordance summary C-statistics is a weighted integral
function of AUC [15]. The cumulative/dynamic time-
dependent AUC cannot be directly compared to logistic
regression, while the C-statistics is comparable. More
details can be found in Additional file 1: S1 Evaluation
Methods.
We used 67% samples of one prediction window to

train and the rest 33% samples, the out-of-bag data, to
validate for RSF. Penalized cox-regression and logistic
regression were trained and validated using the standard
cross-validation procedure embedded in the R package
Glmnet. (available at https://cran.r-project.org/web/
packages/glmnet/index.html) The model was further

tested for their prediction error in the contiguous pre-
diction window. For example, for the first window, the
training and validating window began with the index
date of Feb 1, 2014, we collected features before this
date and collected events as endpoint after this date
until Jul 31, 2014, to train and validate the RSF model
(supervised learning). Then, the contiguous prediction
window started from the index date of Aug 1, 2014 and
ended on Jan 31, 2015. Again, we collected features
before this index date and updated the previously
trained model by these features to obtain the predicted
events. We compared the predicted events with the true
events happened between Aug 1, 2014 and Jan 31, 2015
and calculated the prediction error as the testing error.
Besides using the original dataset in model bench-

mark, we adopted a bootstrap strategy to obtain the
confidence interval of the performance score. Specific-
ally, we used the bootstrap procedure to calculate the
confidence interval of the C-statistics and AUC based
on 500 bootstrap samples. The steps are described as
follows: 1), Fit the model on the training dataset; 2),
Randomly select case and controls separately with the
number equal to that in the testing dataset, i.e., strati-
fied sampling with replacement; 3), Calculate the

Fig. 3 Demonstration of the Dynamic Random Survival Forest (DRSF) Model with sliding windows. The black lines represent different subjects at
risk. The red triangles represent the onset of adverse event, e.g. hospital admission. The red box represents the prediction window of interest,
while the blue box represents the prediction window for model training and validation purpose corresponding to the red box. At the beginning
of the red and blue windows, i.e., the index dates, features are auto-extracted for the model building and prediction (see section “Features and
Outcome”). The black and the green boxes are the historical sliding windows trained and predicted following the same concepts as the blue and
the red box except they were earlier on the time axis. The green boxes and red box are further combined for the ensemble estimation of the
hazard function and survival function at different time points within the red box
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marker value for DRSF and competing methods; 4),
Calculate the AUC and C-statistics for each boot-
strapped dataset, then extract the 2.5% and 97.5% of
the statistics as the confidence interval.

Results
Dynamic random survival Forest model with Most recent
window
When the number of windows in the DRSF model re-
duces to one, it is equivalent to the regular RSF
model with the features extracted from the most re-
cent window (as in Fig. 3). It relies on the assump-
tion that the latest information provides enough
prediction power of the event and the historical data
cannot further improve the prediction power. We
presented the results of multiple DRSF models with
the most recent window across the timeline as in
Table 3. From Feb 1, 2014 to Sep 1, 2014 as the
index date of the window, we were able to collect 8
such individual models. The Harrell’s C statistics of
such models ranged from 0.66 to 0.71. The AUC at
the 60th day and the AUC at the 180th day indicate
that longer prediction was not more accurate than
shorter prediction or vice versa. However, we ob-
served more stable estimates of AUC at the 180th
day with a narrower 95% confidence interval than
those AUC estimates evaluated at the 60th day. One
of the reasons could be that more events happened
up to the 180th day than up to the 60th day, which
increased the outcome frequency and thus reduced
the prediction variance.

Comparison of the models
We further accessed the performance of the DRSF
model with different numbers of windows and compared
it with the benchmark models as in Fig. 4 and Table 4.
The testing dataset (window) for all models were the
same and recorded patient events from Mar 1st, 2015 to
Aug 31st, 2015. In Fig. 4, The first benchmark model
(AUC curve represented by a green line) was the
batch-mode RSF model using baseline features collected
prior to Feb 1st, 2014 and all historical outcome data
from Feb 1st, 2014 to Feb 28th, 2015 for training and
validation purpose, which has been commonly used in
applied survival literature [16, 17]. The second bench-
mark model (AUC curve represented by a red line) was
the penalized Cox regression with (most recent) 1 win-
dow. In a Cox model, the unique effect of a unit increase
in a covariate is multiplicative with respect to the hazard
rate. Additionally, L1-norm type constraint could be
added to the Cox partial log-likelihood to enable model
selection [18]. In short, Fig. 4 showed that the
time-dependent AUC of DRSF with 5 windows (AUC
curve represented by a black line) was consistently larger
than both the batch-mode RSF model and the penalized
Cox regression with the most recent window (1 win-
dow). It suggested that the utilization of time-varying
features via ensemble windows helped improve the
model performance. Table 4 illustrated the numerical re-
sults including AUC at the 60th day, AUC at the 180th
day and Harrell’s C statistics, by comparing five different
DRSF models with an increasing number of ensemble
windows and four benchmark models. We have adopted
the same testing window, which covered days from

Table 3 AUC and C-statistics for DRSF model with the most recent window

Training /Testing
Window Index Date

Evaluation window
Index Date

# of subjects in
evaluation

# of events in
evaluation

Mean time
to event

AUC at the
60th Day

AUC at the
180th Day

Harrell’s C
statistics

# of
covariates1

Feb 1,14 Aug 1,14 5175 263 175.17 0.67a

(0.61,0.73)b
0.64
(0.60,0.67)

0.66
(0.63,0.70)

14

Mar 1,14 Sep 1,14 5143 250 175.14 0.67
(0.61,0.72)

0.67
(0.64,0.71)

0.68
(0.65,0.72)

17

Apr 1,14 Oct 1,14 5069 247 175.07 0.70
(0.65,0.75)

0.68
(0.65,0.71)

0.68
(0.65,0.71)

14

May 1,14 Nov 1,14 4988 230 175.31 0.65
(0.60,0.71)

0.66
(0.63,0.70)

0.69
(0.66,0.72)

20

Jun 1,14 Dec 1,14 4958 225 175.30 0.66
(0.61,0.71)

0.65
(0.62,0.70)

0.69
(0.65,0.72)

24

Jul 1,14 Jan 1,15 4261 201 175.20 0.74
(0.68,0.79)

0.69
(0.66,0.73)

0.71
(0.67,0.74)

16

Aug 1,14 Feb 1,15 4233 176 175.70 0.71
(0.65,0.77)

0.69
(0.65,0.72)

0.71
(0.67,0.74)

24

Sep 1,14 Mar 1,15 4222 172 175.85 0.61
(0.55,0.67)

0.65
(0.61,0.69)

0.68
(0.64,0.71)

14

A larger AUC or C statistics represents a better model prediction performance
1Number of covariates selected by RSF model
aScore obtained with the original dataset
b95% confidence interval of the score obtained with 500 bootstrapped datasets
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Fig. 4 Comparison of the prediction power among DRSF model with 5 windows, Penalized Cox regression model with most recent window (1
window), and the batch-mode RSF model using the testing window from March 1st, 2015 to August 31st, 2015. The black line is the AUC curve
of DRSF with 5 windows, the red line is the AUC curve of Penalized Cox regression with 1 window, and the green line is the AUC curve of batch-
mode RSF model. The x-axis represents the number of days since March 1st, 2015. The y-axis represents the Area-Under-the-ROC-Curve (AUC)

Table 4 AUC and C-statistics for DRSF models with different number of ensemble windows and benchmark models on the testing
window covering days from March 1st, 2015 to August 31st, 2015

Models AUC at the 60th day AUC at the 180th day Harrell’s C statistics

Batch-mode RSF 0.67a (0.61,0.72)b 0.66 (0.63,0.70) 0.67 (0.63,0.71)

Batch-mode Cox1 0.72 (0.65,0.76) 0.72 (0.69,0.76) 0.72 (0.69,0.76)

Cox1 with 1 window 0.63 (0.63,0.74) 0.70 (0.66,0.74) 0.71 (0.67,0.74)

PLS with 1 window2 NA NA 0.71 (0.67,0.74)

DRSF with 1 window 0.61 (0.55,0.67) 0.65 (0.61,0.69) 0.68 (0.64,0.71)

DRSF with 2 windows 0.67 (0.62,0.71) 0.68 (0.65,0.71) 0.70 (0.67,0.72)

DRSF with 3 windows 0.69 (0.66,0.72) 0.68 (0.63,0.72) 0.70 (0.67,0.73)

DRSF with 4 windows 0.67 (0.63,0.72) 0.7 (0.67,0.73) 0.70 (0.67,0.73)

DRSF with 5 windows 0.71 (0.66,0.75) 0.71 (0.68,0.74) 0.71 (0.68,0.74)

Note: A larger AUC or C-statistics represents a better model prediction performance
1Cox: Here we used penalized Cox proportional hazard model
2PLS with 1 window: Cumulative time-dependent AUC at a specific time point is not available in penalized logistic regression model. Thus, we put NA as Not
Available here
aScore obtained with the original dataset
b95% confidence interval of the score obtained with 500 bootstrapped datasets
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March 1st, 2015 to August 31st, 2015, for all benchmark
models to measure performance. Four benchmark
models included the batch-mode RSF model using base-
line features (also in Fig. 4), the penalized Cox regression
with the most recent window (also in Fig. 4), the
batch-mode penalized Cox regression using baseline fea-
tures and the penalized logistic regression with the most
recent window. Table 4 showed that both the point AUC
and C-statistics of the DRSF models with two to five
windows were larger than those of the batch-mode RSF
model. For example, comparing to the batch-mode RSF
model, the C-statistics of DRSF with 5 windows in-
creased by 6% (from 0.67 to 0.71) and the AUC at 60th
day increased by 6% as well (from 0.67 to 0.71). Besides,
we did observe an increasing trend of performance as
the number of windows kept increasing for DRSF
models. A breakdown analysis of these involved sliding
windows as in Additional file 1: Figure S1 revealed that
the 1st (most recent) sliding window actually had a rela-
tively weak performance of prediction regardless of se-
lected models, which was validated in Table 4 that DRSF
with 1 window model rendered bottom performance.
Additional file 1: Figure S1 also revealed that from the
2nd sliding window to the 6th sliding window, all win-
dows have relatively high performance of prediction. As
a validation, we could see DRSF with 2 windows has an
obvious performance boost over DRSF with 1 window in
Table 4. The contingent 5 windows with high prediction
performance also helped explain the observed increasing
trend of performance as the number of windows kept in-
creasing for DRSF models (i.e., from DRSF with 1 win-
dow to DRSF with 5 windows). The windows that have
longer distance to the testing window, such as the win-
dow of 2014-03-01 (the 7th) and the window of
2014-02-01 (the 8th), have relatively low performance.
We speculated the low performance was due to the fact
that the earlier information contained in the earlier win-
dow will not add value to the prediction or classification
task of future events, as signal diluted out and noise
dominated in earlier windows. On the contrary, the low
performance of the 1st (most recent) window may be
due to randomness, e.g., sparser outcome in the window
coverage or sparser predictor information collected be-
fore the index date of the window. We thus inferred the
performance of DRSF model may depend on the tuning
of both the window size and the number of ensemble
sliding windows. For other types of benchmark models,
the penalized logistic regression (PLS) with the most re-
cent window (1 window) operated similarly as the DRSF
with 1 window method in feature collection but differs
in the way of prediction. Specifically, DRSF with 1 win-
dow method predicts the event at all time points within
the prediction window and has taken into consideration
the time-to-event information, as most survival analysis

related method could do; on the contrary, PLS with 1
window method predicts binary event could only pro-
vide point estimate at requested time points. Since the
PLS cannot provide an overall estimation on all time
points, it requires model fitting for each time point of
interest within the prediction window, thus computa-
tionally inefficient. Multiple fitting of penalized logistic
regression could also lead to inconsistent conclusions
among multiple predictions at different time points. On
the other hand, DRSF model with five windows has
comparable performance to the penalized logistic regres-
sion and is immune to these drawbacks. Two other
benchmark models were penalized Cox models, i.e., the
batch-mode Cox model and the Cox with 1 window
model. While both Cox models have high performances,
especially the batch-mode Cox model has 0.72 as the
score for all three metrics, which nearly equates the per-
formance of DRSF with 5 windows model, we concerned
about the potential violation of the proportional hazard
assumption when generalizing this method to other
applications in real-world datasets. Due to the (semi)
parametric nature of the Cox model, if the model as-
sumption by large holds, the penalized Cox model may
have a better performance than the RSF model, which is
nonparametric and has traded the prediction power for
model robustness. We certainly can incorporate Cox
model with the sliding window technique and may ob-
serve a higher performance, like what we did with RSF
and see performance increased on DRSF models. How-
ever, for sliding window concept demonstration and in
favor of a more robust model (with fewer model as-
sumptions), we presented the work of DRSF with mul-
tiple sliding windows. In summary, the results showed
that our DRSF model with 5 windows had an overall
better performance than the other benchmark models.
Given the robustness of DRSF models, we prefer such
methods even when parametric models could yield a
similar performance. We also inferred that a finer tuning
of both the window size and the number of ensemble
sliding windows could yield a better optimized DRSF
model.

Variable importance
To further show the validity of the model, we presented
the variables selected in the testing data sets at multiple
windows in Fig. 5, demonstrating that different windows
could share a common set of features and meanwhile
own their unique features. Here, we defined two mea-
sures of variable importance based on the DRSF model.
Local variable importance, defined as the importance of
a variable in a single window (equivalently in a single
time period), can be evaluated by the number of times a
variable is selected from multiple ensemble trees in that
single window. For example, a variable chosen 90% of
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the 500 trees is usually considered more important than
a variable chosen 10% of the 500 trees. This practice is
commonly applied with random forest related methods.
On the other hand, we define the global variable import-
ance as the importance of a variable across windows
(equivalently across times), which can be evaluated by
the number of windows where the variable is selected.
For example, in this study, if we set the selection criteria
of a variable from a single window is at least 30% (arbi-
trarily defined by the user) out of the 500 trees and we
saw such a variable was selected 6 out of 8 windows
(given at each window greater than 30% tree vote), we
could infer this variable is important about predicting
the endpoint most of the time in the total time span
covered in this study. This practice is more novel due to
the sliding-window nature of our method, and more
valuable in evaluating whether a variable is all-time im-
portant or “seasonal” important. For instance, previous
utilization such as cardio echo tests and acute inpatient

visits were selected through all the windows, suggesting
that the two features were essentially informative regard-
ing prediction of future CHF inpatient onset all the time.
Similarly, a few prior diagnoses of chronic conditions
and evidence of comorbidities, such as chronic kidney
disease, pulmonary circulation disorders, renal fail-
ure, and valvular disease, are also predictive of future in-
patient onset most of the time (7 out of 8 windows).
Furthermore, taking more types of prescription drugs,
which may reflect the severity of the health condition,
was also associated with future inpatient onset most of
the time (6 out of 8 windows). On the other hand, tumor
history, only selected at the 5th window, could be a triv-
ial signal. With more windows assessed, we could have a
more comprehensive assessment of variable importance.

Dynamic monitoring of the risk of hospitalization
Figure 6 shows the risk stratification for two randomly
chosen subjects based on their (ensembled) hazard
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Fig. 5 Variables selected in different testing windows with the index date ranging from August 1st, 2014 to March 1st, 2015 by the increment of
a month. Highlighted block indicates a specific variable (variable name annotated along the rightmost y-axis) was selected at a specific window
(window index date annotated along the x-axis) by the DRSF model with 3 windows. The leftmost y-axis represents the frequency a variable was
chosen among eight available windows. The description of each variable is listed in the Additional file 1: Table S3
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function at each time point within the prediction win-
dow time period. The individual-level instant risk is also
valuable for dynamic monitoring of the risk of hospita
lization for beneficiaries. Figure 6 exhibits the continu-
ous risk curve from one randomly selected beneficiary
who had hospitalization during the time window (red)
and another beneficiary who did not have such event oc-
curred (grey) during the time window. It demonstrated
that the subject got hospitalization within the time win-
dow had overall higher continuous risk curve than the
other randomly selected subject who did not have
hospitalization. Additionally, the high peak of the red
curve almost coincides with the true event (red solid tri-
angle mark) onset time (the 120th day since Mar 1st,
2015), which shows the effectiveness of using DRSF
model to monitor the health condition of beneficiaries.

Discussion
Clinical practice and research are now faced with the in-
creasing challenges of processing complex data. Machine
learning technique applied to medical data is a recent
area of research that aims to provide better knowledge

extraction and evidence-based clinical decision support.
In this paper, we proposed a novel DRSF model for risk
prediction and classification by taking full advantage of
the monthly-updated claim data. We showed that it had
a clear edge over the existing methods. First, our method
can provide risk classification for every time point in the
defined time intervals and it does not require multiple
model fitting, which makes the computation efficient
and the interpretation consistent. Models without taking
into account the time-to-event information, such as
commonly used PLS, lack such property [16, 19, 20].
Secondly, our model has fewer assumptions than the
parametric or semi-parametric models, such as Cox pro-
portional hazard models, which make it robust to the in-
herent complicated nature of the healthcare data. Our
method enables us to select features automatically from
a large feature pool without concerning much model as-
sumption violation, yet it could provide good prediction
power. Thirdly, our model can use time-varying and
time-sensitive features through sliding-window and win-
dow ensemble approaches to improve prediction power,
as compared to the static RSF model built on all
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horizontal line); the grey solid line represents the instant risk of another randomly selected subject who did not have such an event onset during
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historical endpoints and the baseline features. As shown
in Table 4, updating features with time by ensembling
windows could help build a predictive model with a
higher predictive power. Our model is able to utilize
both the historical data and most recent data to achieve
the optimal prediction power. We used window sizes as
6 months and the number of windows of five to demon-
strate the model performance of the DRSF. Finer tuning
of the two parameters may yield a better optimized
DRSF model. We emphasize the novelty of combining
sliding window with the survival model to deal with
large-scale data. We mainly focused on RSF due to its
robustness in model building, but we also showed the
potential of combining sliding window with penalized
Cox model.
Our DRSF model yielded clinically interpretable re-

sults. In general, we classified all features into ten cat-
egories as reported in Table 2. Figure 5 revealed that the
“Health care service”, “Disease-specific procedure and
service”, “Chronic conditions”, “Medication” and “Socio-
economics” are the most contributing feature categories
across different testing windows. For example, “Health
care service” included the count of past admissions
(count_ad_event) and the count of past CHF-related ad-
missions (count_chfad_event) as the most contributing
features, we interpreted them as acute care utilization
history and could reflect a beneficiary’s future utilization
need; “Disease-specific procedure and service” included
the count of cardio echo tests (count_cardioecho) as the
most contributing feature, which is a typical test for
beneficiaries with CHF comorbidity; “Chronic condi-
tions” included the Chronic Kidney Disease (has_cc
s158), Pulmonary Circulation Disorders (PHTN), etc.,
which were well-known comorbidities accompanying
CHF and increased the clinical complexity of the benefi-
ciary; “Medication” included the count of unique pre-
scriptions given to a beneficiary (count_unique_pres
cription), which could reflect the disease status complex-
ity of a beneficiary; “Socioeconomics” included benefi-
ciary’s Medicare status code (bene_mdcr_stus_cd), which
was typically used as a proxy to reflect beneficiary’s
socioeconomics and functional status. These findings
confirmed the DRSF models’ effectiveness and provided
insights into the mechanism of hospitalization.
We are aware of the limitations of our current model.

First of all, our model did not take into account multiple
admissions (after excluding the 30-day readmission) per
person within the specified time period, i.e., recurrent
events. In our study, the average admission rate is around
5% in all time windows and there are very few beneficiar-
ies with more than one admission. However, for other
studies with a noticeable portion of recurrent events exist-
ing in the time windows, our method could still be useful
by adjusting the window size or using the parametric

recurrent event model. Therefore, Beneficiaries with more
than one admission can be considered as having higher
risks than those with only one admission or with no ad-
mission. Secondly, we could obtain the local and global
variable importance but not the effect size measure for
each variable. In the study, our major interest is to predict
the risk for beneficiaries and monitoring their health con-
ditions. However, if the research purpose is to quantify the
feature effect, our model could not provide the effect size
measure because the model is distribution free. Instead,
we can extend our methodology to parametric or semi-
parametric survival model, which gives the quantification
of effect size measure and embraces even faster comput-
ing speed. However, it has to be used with caution because
the model assumptions for parametric models are less
likely to meet when a large number of parameters are
involved. Thirdly, we did not have enough data (claim
coverage of more months) for fine-tuning the window size
or number of windows used for ensemble combination to
achieve a better performance of the model. For example,
fine-tuning of these parameters could extract the most
relevant historical medical information for prediction
purpose. If the data is too historical to contribute valuable
signal, combining such data in the time window would in-
crease noise and diminish the model performance [21].
On the contrary, skipping useful information in the recent
data will also lead to the reduced model performance. In
our study, the 2nd to 6th most recent windows contained
additional useful information (as in Additional file 1, Fig-
ure S1), which improved the performance of the DRSF
model with greater than one sliding window as compared
to the DRSF model using the most recent window. In the
meanwhile, the usefulness of the historical information
gradually dimed out and the noise dominated the signal
(e.g., the 7th and 8th window). Fourthly, with claim cover-
age of more months, we could apply data-adaptive weights
for different windows rather than taking the average of
hazard functions to combine ensemble windows. Lastly,
we could consider applying the Bayesian framework to the
sliding-window platform. Instead of averaging, we could
take into account prior knowledge when analyzing data
and turn the data analysis into a process of updating
that prior knowledge with biomedical and health-care
evidence [22].

Conclusion
We presented an efficient and flexible model developed
for periodically updated data such as the monthly updated
claim feed data released by the CMS to predict the risk of
hospitalization. By combining sliding window technique
and RSF, our model can achieve good prediction power,
provide measure of variable importance and real-time
monitoring of the health condition of high-risk patients.
Instead of using all historical data, we showed that our
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model only utilizes several most recent windows such that
it can save computational memory and power. In the
meanwhile, the model can be easily extended to handle
other types of outcome of interest such as continuous
variable or count type variable. In the long run, we hope
the successful prevention of adverse events could help re-
duce financial burdens of payers and increase the health
condition of the targeted population.

Additional file

Additional file 1: S1. Evaluation Methods. Figure S1. Confidence
intervals of C-statistics for Random Survival Forest models trained from
different training windows and tested on the same testing window.
Table S1. Chronic Conditions used in CHF Predictive Modeling. Table
S2. Acute Exacerbation Conditions used in CHF Predictive Modeling.
Table S3. Description of Selected Features (DOCX 60 kb)
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