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Abstract

Background: Main adverse cardiac events (MACE) are essentially composite endpoints for assessing safety and

efficacy of treatment processes of acute coronary syndrome (ACS) patients. Timely prediction of MACE is highly
valuable for improving the effects of ACS treatments. Most existing tools are specific to predict MACE by mainly
using static patient features and neglecting dynamic treatment information during learning.

Methods: We address this challenge by developing a deep learning-based approach to utilize a large volume of
heterogeneous electronic health record (EHR) for predicting MACE after ACS. Specifically, we obtain the deep
representation of dynamic treatment features from EHR data, using the bidirectional recurrent neural network. And
then, the extracted latent representation of treatment features can be utilized to predict whether a patient occurs
MACE in his or her hospitalization.

Results: We validate the effectiveness of our approach on a clinical dataset containing 2930 ACS patient samples with
232 static feature types and 2194 dynamic feature types. The performance of our best model for predicting MACE after
ACS remains robust and reaches 0.713 and 0.764 in terms of AUC and Accuracy, respectively, and has over 11.9% (1.2%)

Electronic health record

and 1.9% (7.5%) performance gain of AUC (Accuracy) in comparison with both logistic regression and a boosted
resampling model presented in our previous work, respectively. The results are statistically significant.

Conclusions: We hypothesize that our proposed model adapted to leverage dynamic treatment information in EHR
data appears to boost the performance of MACE prediction for ACS, and can readily meet the demand clinical
prediction of other diseases, from a large volume of EHR in an open-ended fashion.
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Background

Acute coronary syndrome (ACS) is a term used to de-
scribe a range of conditions associated with sudden,
reduced blood flow to the heart, including ST-elevation
myocardial infarction (STEMI), non- ST-elevation myo-
cardial infarction (NSTEMI), and unstable angina (UA)
[1]. ACS is the most common type of coronary artery
disease (CVD) [2—-4]. Every year, CVD and ACS together
account for approximately 7 million deaths [5, 6], ac-
counting for around half of the global burden [7], and
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about 30% people are at risk of having ACS during their
lifetime [8].

Main adverse cardiac event (MACE) refers to a type of
composite end-event point event that contains unstable
angina, myocardial infarction, death, and revasculariza-
tion during hospitalization. As a vital composite end-
point, MACE has been frequently used in assessing
safety and efficacy of treatment processes of ACS patients
[9-12]. MACE prediction can be used to anticipate
whether an individual is likely to experience unexpected
adverse cardiac events during his or her hospitalization
and after discharge [5, 13, 14]. Traditionally, cohort-based
studies are conducted to develop MACE prediction tools.
Recently, with the increasing availability of a large volume
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of electronic health record (EHR) data, there is a gradual
attention to use data-driven approaches to construct effi-
cient tools for MACE prediction [12, 15-17]. Theoretic-
ally speaking, the two types of studies have different
concerns. Cohort-based studies are usually based on a
small set of handpicked patient features which are col-
lected in costly trials, and the generated tools are relatively
simple to use in clinical practice. On the contrary, EHR
data-driven models can remedy the limitations of cohort-
based studies, but are usually complex and difficult to in-
terpret. Although valuable, most existing models proposed
by both types of studies have a common serious limitation,
i.e., they are built on static patient features and neglect the
influence of dynamic treatment information on MACE
prediction. Since there have been considerable evidence
that clinical conditions of patients are dynamically chan-
ged when treatments are performed, dynamic treatment
information has the potential to boost the performance of
MACE prediction.

To this end, this study proposes a data-driven model
that leverages recurrent neural networks (RNN) to learn
the deep feature representation of dynamic features which
are extracted from EHR [18-20]. In comparison with trad-
itional temporal analysis methods, such as the Cox pro-
portional hazard model [21], RNN provides a substantial
nonlinear improvement in model generalization and is
more scalable [7]. RNN has proven effective in many
difficult machine learning tasks, such as image processing
[18] and language translation [19]. To fully utilize the
dynamic information and avoid the influence of gradient
vanishing, we adopt a specific type of RNN structure,
i.e., bi-directional RNN with long-short time memory
(Bi-LSTM) [20, 22], to extract dynamic features from
EHR data to predict MACE. To our best knowledge,
this is the first work for MACE prediction by taking
into account not only the static patient features but
also dynamic treatment information into a deep
neural network model.

The contributions of this paper can be summarized as
follows:

e We present a deep learning model to utilize
dynamic treatment information for predicting
MACE after ACS, and the incorporation of dynamic
treatment information into learning boosts the
performance of MACE prediction.

e The proposed model extracts the latent
representation of dynamic treatment features via
Bi-LSTM, which can be used to predict whether
a patient occurs MACE in his or her
hospitalization.

e Extensive experiments are conducted on a real EHR
dataset, which consists of 2930 ACS patient
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samples collected from a Chinese hospital, to
demonstrate the effectiveness of our proposed
model for MACE prediction.

The remainder of this paper is organized as follows.
The related work is introduced in Section 2. In Section
3, we present our proposed model of utilizing dynamic
treatment information for predicting MACE after ACS,
via a typical deep neural network architecture, ie.,
Bi-LSTM. In Section 4, we present experimental results
and evaluate the performance of our method in com-
parison with the state-of-the-art models. The merits and
limitations of our proposed model are discussed in
Section 5. Finally, Section 6 concludes our work and dis-
cusses future directions.

Related work

From the technique perspective, the work on MACE
prediction can be categorized as cohort-based studies
and data-driven studies, respectively.

As a traditional approach of medical research,
cohort-based studies have been widely adopted to inves-
tigate specific clinical hypothesis questions, e.g., the
relationship between potential risk factors and MACE
[23, 24]. In general, a hypothetical question is firstly
proposed by clinical researchers, and then a group of
subjects are recruited into the cohort and observed over
a period, to collect data that may be relevant to the
hypothesis. The prediction models can be furtherly
developed based on the collected cohort data, via univar-
iate, multivariate logistic regression or Cox proportional
hazards regression model, etc. The most famous cohort-
based models for MACE prediction include the Global
Registry of Acute Coronary Events (GRACE) [2], the
Thrombolysis in Myocardial Infarction (TIMI) [3], and
the Platelet Glycoprotein IIb/IIla Unstable Angina:
Receptor Suppression Using Integrilin Therapy (PUR-
SUIT) [5], etc.

Although useful, there is a serious flaw of cohort-based
studies: they usually select a small set of patient variables,
to simplify the model and facility its use in clinical practice
[25]. However, the inclusion of fewer risk factors into the
model learning may lead to the degradation of the model’s
predictive performance. On the contrary, more potential
risk factors (e.g., Cystain C, homocysteine in MACE pre-
diction) are recently identified in the literature [26], but
are not included in the existing cohort-based models, and
therefore eventually limits the value of the cohort-based
models.

Recently, with the widely application of EHR in health-
care facilities, thousands of data-driven models have
been developed by exploring the huge potential of EHR
data in various clinical applications, e.g., screening,
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diagnosis, treatment, prognosis and monitoring [27].
Compared with the traditional cohort-based studies,
EHR data-driven models can well address the limitations
of cohort-based studies [25].

Early work on data-driven prediction has been per-
formed based on conventional machine learning and
data mining methods. For example, Hu et al. proposed a
hybrid model that combines both random forest and
support vector machine to predict the risk of MACE
[11]. Bandyopadhyay et al. proposed a Bayesian network
to predict cardiovascular risk [28]. In [29], a vector
spline multinomial logistic regression model was pre-
sented to predict risks of patients with ovarian tumors.
These works show the usefulness of utilizing medical
data for clinical risk prediction. Recently, many deep
learning models, e.g., Stacked Denoising Auto-encoder
(SDAE), and Convolutional Neural Network (CNN), etc.,
have been adopted for the prediction/detection task in
medical domain and achieved a promising perform-
ance. For example, Raghavendra et al. proposed a
CNN-based model to diagnosis the glaucoma using
digital fundus images [15], and afterwards they ap-
plied CNN to detect the myocardial infarction and
ventricular arrhythmias in ECG singles [16, 17].
Huang et al. proposed a regularized SDAE to predict
the risk of ACS patients [30]. Li et al. developed a
deep belief network based model to predict the risk
factors of bone disease progression [31].

Although successful, not the full potential of EHR data
has been explored. To the best of our knowledge, most of
existing data-driven models were trained based on static
patient features, and lack the ability to model time-
dependent co-variates in the observation window such
that an individual’s disease progression mediated by dy-
namic treatment information cannot be reliably measured,
which limits the performance of predictive models.
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Methods

Figure 1 illustrates our idea of utilizing temporal treat-
ment information for MACE prediction of ACS patients
during their hospitalizations. More details of our ap-
proach are presented as follows:

Patient feature processing and embedding

Clinical information is regularly observed/recorded in
EHR data. From the temporal perspective, clinical data
of a patient’s EHR d = (x;, X4) can be categorized as both
static features x; and dynamic features Xy. As shown in
Fig. 2, our encoders firstly map the dynamic part of an
input to a sequence of K-dimensional embeddings Xg4
=@M, &%, .., xD), using a lookup table with one
vector for each time epoch (e.g., one hospitalization day
in this study), where 9 =[xy, %0, xx] (1<t<T) is the
encoded vector, K is the cardinal number of dynamic
features, and T is the length of stay (LOS) of that pa-
tient. The dimensions of dynamic features observed in
that time epoch are set to 1 and the rest are 0.

The aim of this study is to utilize dynamic treatment
information to boost the performance of MACE predic-
tion for ACS patients. To this end, we need to deal with
information that may cause MACE, i.e., the record hap-
pened before MACE. To this end, we need to truncate
our data to eliminate the influence of clinical informa-
tion that would not cause MACE. Specifically, if an
adverse cardiac event is observed at time stamp ¢ for a
particular patient sample (x;, D, 22, &9 & D))
with LOS 7, the prefix of the original input sequence,
ie., (x (D, %2, ... ,x(t))>, is selected as a training sam-
ple  ((x, ™, x®, ..., 2?)),c), where ce{0:none,1:
MACE } denotes the MACE label at time stamp ¢ If
multiple MACEs are observed in one patient’s
hospitalization, the firstly happened MACE and its’
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Fig. 1 Utilizing EHR data to support MACE prediction during ACS patients’ hospitalization
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Fig. 2 Representing dynamic features found on each hospitalization day as a specific vector

previous observed treatment information are selected to
be the MACE label and the training sample, respectively.

Note that, (@, 22, ...,xD) isa sequence of dynamic fea-
tures observed during a patient’s hospitalization. Intuitively,
we initialize the representation for these dynamic features of
each individual patient. A widely adopted strategy is to rep-
resent each word (ak.a. dynamic feature) by using one-hot
vector. However, these dynamic features observed on a spe-
cific time-period (i.e., one day, etc.) and thus may have no
strict order. In fact, these dynamic features are treatment
interventions, which can be performed on the patient in a
loosely-structure manner [32]. Therefore, as depicted
in Fig. 2, we embed the set of dynamic features ob-
served on each hospitalization day to a vector, and
then apply the standard Bi-LSTM to encode context-
ual semantic representations for dynamic features.

Using Bi-LSTM to generate deep representations of
treatment information

Our method assumes use of both RNN and logistic
regression to predict MACEs of ACS patients during
their hospitalizations. The simplified layer architecture
that generates deep representation of our mix model is
presented in Fig. 3.

Original RNN is a neural network architecture de-
signed to handle sequential input data, but it lacks the
ability to model long-term dependencies. A LSTM is a
type of RNN cell that addresses this issue by keeping a
memory cell to serve as a summary of the preceding
elements of an input sequence. In this study, we adopt
Bi-LSTM to extract deep features from dynamic treat-
ment information in EHR data. As can be seen in Fig. 3,
it has four kinds of layers: input layer, dynamic
feature-embedding layer, forward hidden layer, and

backward hidden layer. The input layer encodes tem-
poral treatment information extracted from raw EHR
data. Then the dynamic feature-embedding layer con-
verts the treatment information to an embedding vec-
tor, whose details are explained above. After dynamic
feature-embedding layer, there are two parallel LSTM
layers: forward hidden layer and backward hidden
layer. At each time-step ¢, the forward hidden layer

will compute a hidden representation (71, ~~,7t) of
the sub-sequence that contains treatment information
from x; to x;. For the backward LSTM, it processes
each treatment sequence in its reverse order, and forms a

sequence of hidden representation (/k1,---,h;) of the
sub-sentence that contains treatment information from x;,

to x;. We calculate the hidden states ﬁt by the following
equations:

it = O'(Wl'xt + U,»Z)H + bl> (1)
o —

Ct = tanh(cht + Uc h -1+ bc> (2)

—

ft=U<fot+Ufht,1+bf> (3)
Ct:i['ét+ft'ct,1 (4)
0, = a(Woxt YUK+ bo) (5)
.= o0, tanh(C,) (6)

where o represents the sigmoid activation function, W,
is the input-to-hidden weight matrix, U, is the state-to-
state recurrent weight matrix, and b, is the bias vector.
The hidden state of LSTM is the concatenation of
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Fig. 3 The framework of bi-directional LSTM used in this proposed MACE prediction model

(e, ﬁt) The long-term memory is saved in ¢; and the
forget gate and input gate are used to control the updat-
ing of C,, and the output gate is used to control the up-
dating of ﬁt.

To make full use of information hidden in Bi-LSTM,
we merge the hidden representations of forward and

— “
backward layers by concatenating k. and h;., ie., the
last states of both layers, Hence, the output representa-

tion of Bi-LSTM layer can be denoted as h. = [Zh 71}
The output hidden layer A&, of input sequence x. is then
incorporated with static patient features x;, which is
already compressed, to represent the final state of the
patient sample z = [x,, h.].

MACE prediction

To predict a distribution P(y;) over MACE outcome y; €
C, the outputs z are passed through a logistic regres-
sion layer §, = o(W,z")+b,), where W, and b, are
learned parameters for logistic regression.

To learn the parameters of the proposed model, we
set the cross-entropy of y as the loss function and
minimize it in terms of W,W,W;W,W, and b,. As
our model is a supervised method, each patient
sample ¥ has its golden MACE outcome y©. The
following loss function is used:

Loss = - ﬁ S2 (9 togy + (1-¢9) 1og(1-59))
(7)

where |D| is the total number of training samples, ¢
is the MACE indicator for the i-th patient where 1 indi-
cates the occurrence of MACE and 0 control, and y is
the output of the proposed model for an input . The
weights are updated during the training phase. Dynamic
feature embeddings are fine-tuned as well. Optimization

is performed using the back-propagation and the mini-
batch stochastic gradient descent strategy.

Results

Data collection

This is a retrospective study assessing the performance
of MACE prediction. The experimental dataset was ex-
tracted from the cardiology department of Chinese PLA
General Hospital. Patients with ACS who admitted to
the hospital between 2012 and 2016 were randomly se-
lected in the experimental dataset. Three experienced
clinicians were employed to ascertain MACE by
reviewing medical records with a majority voting
strategy. The experimental EHR dataset contains data
for 2930 ACS patients. The dataset documented 233
static patient features including demographics, smok-
ing status, alcohol consumption, laboratory values and
diagnosis captured at the admission stage, etc. The
dynamic data, including temporal treatment and care
activities delivered during patients’ hospitalization,
with 2194 features, is documented in EHR as well as
static ones.

To be more specific, static patient features including
demographic variables (e.g., age and gender), physical
examination variables (e.g., blood pressure, heart rate
and BMI), comorbidities, laboratory results, and disease/
treatment history (e.g., Post-PCI, Post-CABG) were col-
lected at the admission stage. All static features are
time-invariant in a single hospitalization visit. Comor-
bidities were categorized as present or absent at the ad-
mission stage of patients’ hospitalizations. Variables with
more than 30% missing values were not included in the
analysis while the missing data belong to variables with
less than 30% missing values is set by the median of that
variable. Table 1 shows details of some critical static pa-
tient features.

Dynamic features refer to medical interventions and
their occurring time-stamps. Figure 4 plots both names
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Table 1 Baseline characteristics of the experimental dataset

Characteristics No. of participants

(n=2930)

Demographics
6227 £12.11 [28-91]
2079/851

Age, (mean + sdv.) [min-max]

Gender, Male/Female
Physical examination, (mean + sdv.) [min-max]
132.10£17.64 [11-240]
77.59+10.17 [35-120]
167.01 £8.15 [56-188]
71.81 + 1242 [32-200]
59.51+7.82 [17-78]

Systolic BP, mm Hg

Diastolic BP, mm Hg

Height, cm

Weight, kg

Ejection Fraction, (mean + sdv.) [min-max]
Comorbid conditions (%)

Diabetes 803 (27.4%)

Hypertension 1981 (67.6%)

Heart Failure 165 (5.6%)
arteriosclerosis 2267 (77 4%)
History of current or previous smoking 1113 (38.0%)

Laboratory data, (mean + sdv.) [min-max]

7872 +38.18 [29.5-739.4]
86.11+112.02 [6.2-4651.1]
26.02 +27.66 [1.7-593]
21.70£19.53 [5.8-5894]
0.029 + 0.084 [0.002-0.886]
6.16 + 2.26 [2.69-28.62]

Creatinine, umol/L

Creatinine kinase, umol/L

Alanine aminotransferase, umol/L

Aspartate aminotransferase, umol/L

Troponin T, ng/ml

Glucose, umol/L
Disease/Treatment history (%)

Post-PCl (patient who has taken PCl
surgery in the past and was admitted
into the hospital at this time)

816 (27.8%)

Post-CABG (patient who has taken 46 (1.6%)

CABG surgery in the past and was
admitted into the hospital at this time)

9.12+7.05 [1-54]
752 (22.4%)

Length of Stay, (mean + sdv.) [min-max]
MACE (%)

and occurring time-stamps of top 30 most used treat-
ment interventions contained in the experimental
dataset. These 30 interventions occupy almost 50%
treatment behaviors for ACS patients, while the other
2194 interventions occupy the left 50%, indicating
that they are infrequently adopted in ACS patients’
treatment processes such that our dataset is very
sparse.

Approval by the Data Protection Committee at the
Chinese PLA General Hospital was obtained prior to
initiation of the study. Informed consent was waived
because of the presence of de-identified data and lack
of feasibility of obtaining informed consent from all
participants in the experimental dataset. A local ethics
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committee ruled that no formal ethics approval was
required in this particular case.

Experiment settings and baseline models
We present the following four learning strategies for
MACE prediction:

1) Logistic regression based on static patient features,
named LR. We build a LR classifier solely based on
static patient features to construct a MACE
prediction model. This model does not use dynamic
treatment information into learning.

2) A boosted resampling model presented in our
previous work [12], named Boosted-RMTM. This
model was built based on static patient feature and
dynamic treatment information was not used during
learning, neither.

3) The proposed model was built based on both static
patient features and dynamic treatment
information, named mix model.

4) The proposed model was built based on dynamic
treatment information, named dynamic model. This
model does not use static patient features into
learning.

We employ the four models to verify that if the
utilization of dynamic treatment information can boost
the performance of MACE prediction for ACS patients.
The accuracy and AUC are selected as evaluation met-
rics in the experiments. These measure criterions are
widely used in the evaluation of classification and pre-
diction tasks in clinical applications.

All four models were trained using the experimental
dataset. We iteratively divided the data into the train
and test set with a ratio of 4:1, and reported the model
performance on the test set. Specifically, we took four
folds of data as the training set and the remaining
one-fold as the test set. We conducted this for five dif-
ferent folds and calculated the average performance.
Both the dynamic and mix models were trained ten
times because of the non-convex character of the neural
network. The results obtained by both dynamic and mix
model are the average performances of 10 results. The
performance of both Boosted-RMTM and LR was de-
rived from our previous work [12].

As to the hyper-parameter setting of the proposed
models, the learning rate is 0.01, the L2 coefficient is
0.01, the epoch is 200, the hidden state of Bi-LSTM is
256, and the static data is transformed into a
128-dimensional vector. To avoid overfitting, we used
early stop and weight decay as regularization tricks. The
proposed models were implemented by Python 3.5 in
the Tensor flow framework. The source code is available
in https://github.com/ZJU-BMI/mace_prediction.
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Fig. 4 Number and frequency of top 30 treatment interventions in the collected EHR dataset

Data analysis

In the experiments, we used two metrics, i.e, AUC
and accuracy, to evaluate the performance of MACE
prediction. The value of AUC is invariant to the cali-
bration [33]. Regarding the accuracy, different models
have their specific optimal thresholds, which derives
different calibration strategies [34]. However, it would
be inappropriate to compare the performance between
models if these models are calibrated with different
strategies. To this end, we selected 0.5, which is the
widely used threshold in literature, in our experi-
ments for measuring the performance of MACE
prediction.

Table 2 shows the evaluation results on both accuracy
and AUC. Specifically, the proposed dynamic model ob-
tains the best result in terms of both AUC and accuracy
for MACE prediction. It indicates that the utilization of
dynamic treatment information can improve the predic-
tion performance for ACS. As can be seen in Table 2,
the proposed mix model does not achieve expected per-
formance for MACE prediction. The performance of the
mix model is even worse than that of Boosted-RMTM.
It is possible that the static data is sparser than that of
dynamic data, and thus deteriorates the performance for
MACE prediction.

Note that there are just 22.5% patient samples who
have MACE during their length of stay (as shown in
Table 1), indicating that our dataset is typically imbal-
anced. To enhance the generalize ability of our model,

Table 2 Experimental results with 7 days’ dynamic information

AUC Accuracy
LR 0637 +0.010 0.752 + 0.007
Mix 0.681 + 0.006 0.746 + 0.005
Dynamic 0.713 + 0.005 0.764 + 0.004
Boosted-RMTM 0.700 + 0.003 0.689 + 0.004

some sampling tricks, such as over-sampling or
under-sampling, can be imposed to address the data im-
balance problem. We are sure that incorporating the
proposed RNN-based learning strategy into the boosted
resampling framework can further improve the perform-
ance of MACE prediction. However, it is beyond the
scope of this study, and we plan to implement it in our
future work.

Effect of length of stay

The longer one patient stays in a hospital, the more
EHR data are accumulated. Intuitively, we hold the idea
that the learning model will perform better if more data
are integrated into learning. To validate this assumption,
we explore the tendency of performance with the differ-
ent length of stay.

As can be seen in Fig. 5, we notice that both the AUC
and accuracy curves dramatically increases with the
increase of LOS. It indicates that incorporating more dy-
namic treatment information into learning can boost the
prediction performance. Also, we can see from Fig. 5,
that the dynamic model significantly performs better
than the mix model regardless of the increase in LOS.
This phenomenon, which is similar to the result listed in
Table 2, proves the static features indeed deteriorate the
performance.

Effect of training set size

Next, we study how the proposed approach performs
with the increasing size of experimental data. As pre-
sented in Fig. 6a, the proposed dynamic model con-
verges using only about 30% of data in terms of AUC,
while the curve of the mix model increases consistently
with the increase in the ratio of size. Figure 6b shows
similar trends in terms of accuracy. The curve of the
dynamic model increases slowly with the increase in the
ratio of data and significantly outperforms the mix
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model. It suggests that the dramatic robustness of the
dynamic model. As well, it can be anticipated that the
prediction performance of the mix model can be im-
proved when to learn with more data.

Statistical test

We perform a paired comparison t-test to verify if the
performance improvement of the proposed approach
over benchmark models is statistically significant. The
paired sample t-test is a statistical procedure used to
determine whether the mean difference between the two
sets of observations is zero. Shifting to our problem,
MACE of all patient samples was predicted using both
our proposed models and baseline models, resulting in
pairs of observations between each pair of models.

The performance of our approach showed consider-
able improvements regarding AUC in predicting MACE
of ACS patients and the ¢-test showed in Table 3 demon-
strated that there are indeed statistically significant
differences between our model and benchmark models.
As can be seen in Table 3, each model we implemented
has a substantial difference compared to the others. All
model pairs have a p-value< 0.05, which suggests that
the proposed deep learning approach, especially the
dynamic model, obtains a competitive and statistically
significant performance in MACE prediction in compari-
son with the benchmark models.

Discussions
With these experimental results, we summarize several
interesting findings as follows:

e In most cases, our proposed dynamic model
outperforms benchmark models for predicting MACE
after ACS. The p-values between the proposed model
and benchmark models show that there is a significant
difference between the performances obtained by the
employed models. Our proposed dynamic model has
an average AUC of 0.713 and is thus the best MACE
predictor. These findings confirm our assumption that
leveraging dynamic treatment information contained
in a large volume of heterogeneous EHR appears to
boost the performance of MACE prediction, and has
significant potential to meet the demand clinical
prediction of other diseases, from a large volume of
EHR in an open-ended fashion.

o With the gradual inclusion of more treatment
information into learning for individuals, the prediction
performance dramatically increases. The tendency of
the curve in Fig. 5 arises as the hospitalization day per
patient increases. As well, it is clearly to see that the
curve surpasses 0.7 in terms of AUC after the number
of hospitalization days is larger than five. It indicates
that we need at least 5 days’ treatment information per
patient to obtain the stable prediction results.
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Table 3 Statistical AUC differences in MACE prediction between

models

Model Boosted-RMTM LR Dynamic Mix
Boosted-RMTM ~ / 598E-5**  546E-11**  0018*

LR / / 4.68E-7** 1.17E-3%*
Dynamic / / / 1.16E-9%*
Mix / / / /

**: p-value < 0.01; *: p-value < 0.05

e It is not surprising to see from Fig. 6 that with
sufficient training data samples, the proposed
model can achieve a better prediction
performance since deep learning method can
achieve accurate representations from the big
data. Due to the large amount of EHR data
generated over time, we plan to investigate the
suitability of deep neural networks for discovering
nontrivial knowledge that best describe the
inpatient treatment journeys and then improve
the performance of MACE prediction.

Overall, compared with benchmark models, our model
improves the performance of MACE prediction of ACS.
Theoretically, many state-of-the-art machine learning al-
gorithms, such as logistic regression, rely on aggregate fea-
tures to produce a MACE prediction model based on
static patient features and are not suitable for coping with
the dynamic nature of treatment information during the
hospitalization of ACS patients [35]. As a result, they lack
the ability to model time-dependent co-variates in the ob-
servation window such that an individual’s progression
mediated by dynamic treatment information cannot be
reliably measured to improve the performance of predict-
ive models in a continuous manner. To address this
challenge, we utilize deep learning tacit to generate latent
representations of dynamic treatment information for
ACS patients from their heterogeneous EHRSs. It provides
a possible avenue to predict MACE in a real-time manner.

The experimental results were evaluated by clinical
experts from Chinese PLA General hospital. In general,
physicians from the hospital are satisfied with the pre-
diction performance, and they indicate that the proposed
model can provide a continuous MACE prediction
service to monitor treatment processes of ACS patients
predictively. It is also applicable to clinical decision sup-
port systems that recommend proper treatment inter-
ventions for physicians, which can significantly minimize
the possibility of MACE occurrences.

Limitations

Although our study reveals that the proposed model is
useful in predicting MACE after ACS, there are complex
and critical tasks that need to be further considered.

(2019) 19:5
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e For one thing, the dynamic nature of patient status
is often essential/critical to the selection of
treatment interventions. To address this challenge,
we expect that our proposed model can incorporate
richer execution information, e.g., vital signs,
symptoms, and clinical observations on patient
status, etc., into learning, which would make our
proposed model more intelligent in the treatment
adoption and MACE prevention.

e For the other thing, our proposed model neglects
the causal relations between treatment interventions
and effects. Note that causal effect analysis is useful
to find out unexpected changes in treatment
interventions and explain why scheduled treatment
plans are changed to obtain the optimal treatment
effects. As an open medical problem, the causal
effect analysis can be benefited in mining a large
scale of EHR data in a maximum-informative
manner.

Conclusion

This paper proposes a novel deep learning based approach
to address the MACE prediction problem for ACS pa-
tients during their hospitalization. In comparison with
existing ACS risk scoring models that can only rely on a
small set of patient features, our proposed model can pre-
dict the occurrence probabilities well of MACE by utiliz-
ing a large volume of longitudinal and heterogeneous
EHR data, especially the dynamic treatment information.
The proposed model relies on a Bi-LSTM-based deep
learning structure to aggregate dynamic treatment infor-
mation in patients’ hospitalization. Then, the extracted
latent dynamic treatment features are concatenated with
static patient features to induce a regression layer for
MACE prediction. Experiments conducted on a real clin-
ical dataset illustrate that our proposed model can reach a
highly competitive performance in predicting MACE for
ACS patients, compared to state-of-the-art machine learn-
ing models, e.g., logistic regression, and the boosted-
RMTM model proposed in our previous work.

We plan to carry out our future work along two direc-
tions. First, we intend to conduct a large scale of experi-
ments and evaluate the performance of our proposed
model on a larger scale of EHRs with more complex
diseases. In addition, we plan to develop and deploy a
dynamic MACE prediction service in treatment pro-
cesses of ACS patients. As advocated by our clinical
collaborators, the dynamic MACE prediction service can
support healthcare professionals for estimating clinical
risks of ACS patients nearly real-time and therefore
adjusting/scheduling appropriate treatment interventions
to reduce the occurrences of MACE in a continuous and
predictive manner.
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