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some specific time points.

rational, exponential and cubic splines.

Background: Joint models (JM) have emerged as a promising statistical framework to concurrently analyse survival
data and multiple longitudinal responses. This is particularly relevant in clinical studies where the goal is to estimate
the association between time-to-event data and the biomarkers evolution. In the context of oncological data, JM can
indeed provide interesting prognostic markers for the event under study and thus support clinical decisions and
treatment choices. However, several problems arise when dealing with this type of data, such as the high-dimensionality
of the covariates space, the lack of knowledge about the function structure of the time series and the presence of
missing data, facts that may hamper the accurate estimation of the JM.

Methods: We propose to apply JM for the analysis of bone metastatic patients and infer the association of their
survival with several covariates, in particular the N-Telopeptide of Type | Collagen (NTX) dynamics. This biomarker has
been identified as a relevant prognostic factor in patients with metastatic cancer, but only using static information in

Results: We extended this analysis using the full NTX time series for a larger cohort of patients with bone metastasis,
and compared the results obtained by the JM and the extended Cox regression model. Imputation based on fuzzy
clustering was used to deal with missing values and several functions for NTX evolution were compared, such as

Conclusions: The JM obtained confirm the association between NTX values and patients’ response, attesting the
importance of this time series, and additionally provide a deep understanding of the key survival covariates.

Keywords: Joint models, Cancer studies, Fuzzy clustering, Bone metastasis, Survival analysis, Longitudinal analysis

Background

In medical research, longitudinal studies are often con-
ducted to investigate disease evolution, to assess the
effect of certain interventions (e.g. drugs or surgery),
or to explore the association between certain risk fac-
tors and a clinical outcome. In these studies, patients are
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followed-up during a given period, and data are systemat-
ically collected. The obtained measurements can be static
(time invariant), e.g. patient’s gender, but also time depen-
dent, such as biomarkers evolution related with a given
disease progression.

In these follow-up studies it is also relevant to anal-
yse the time until an event of interest occurs, such as
death or disease relapse, and investigate the association
between patient’s characteristic and the outcome. In this
context, survival analysis provides a statistical framework
to analyse this type of data, through e.g. the estimation
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of Kaplan-Meier curves [1] and Cox proportional hazards
regression models [2].

Although powerful to investigate static features, Cox
models do not explicitly take into account the depen-
dency of time series or repeated measurements data on
the regression. In order to take into consideration time-
variant features, an extended version of the Cox model can
be used instead [3, Chapter 6]. Yet, this extension assumes
that the time-dependent features are known for all time
points and are measured without error. Using features that
do not fulfil both of these requirements usually leads to
bias on the results [4].

As a response to these limitations, joint models (JM) for
longitudinal and survival data [5] are becoming increas-
ingly popular in biostatistical literature to analyse clinical
data with both time-variant and invariant features. The
framework of this approach is to model the time-variant
data with a linear mixed-effect model [6], whereas sur-
vival and time-invariant features are modelled with a Cox
regression [2]. Examples of the application of JM can be
found for various types of clinical data. They have been
applied to HIV/AIDS [7], leukaemia [8], prostate cancer
[9], breast cancer [10, 11] and lung cancer [12], to name
a few.

Although adequate to estimate the association between
the covariates and the times to the event of interest, the
analysis with JM may become challenging due to mainly
two factors: 1) the high variability of patients’ trajectories;
and 2) missing information in the time-varying features.
In an attempt to correctly model the high variability of
patient’s data, cubic splines, that allow high flexibility in
the longitudinal model, can be used [13]. Regarding the
problem of missing values, many techniques have been
proposed, namely, removing patients with missing values
or extrapolating the missing values using previous infor-
mation [14, 15], performing multiple imputation [16] or
using fuzzy clustering-based techniques [17].

The aim of the present study is to extend existing models
for bone metastatic patients disease progression using JM,
by taking into account biomarkers time series.

Bone metastases are a common finding in patients
with metastatic cancer, affecting up to 70% [18] and 90%
[19] of patients with advanced breast and prostate can-
cers, respectively. Bone metastases are clinically relevant
because they increase patients’ morbidity, manifested as
bone pain, bone fractures or other bone complications,
collectively referred to as skeletal related events [20]. The
metastatic spread and subsequent establishment of can-
cer cells in the bone occurs after a complex interplay
between cancer cells and the bone microenvironment
[21]. In this process, cancer cells reorchestrate the fine-
tuned equilibrium between bone-forming (osteoblasts)
and bone-degrading (osteoclasts) cells to activate the bone
metabolism and benefit from growth factors previously
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entrapped in the bone matrix - this process leads to a pos-
itive feedback loop of further tumour growth and added
bone metabolism activation. Bone metabolism, either
physiologic or pathologic (e.g., on the course of bone
metastases), releases several by-products, namely from
collagen breakdown, that are amenable of quantification
in serum and urine. These by-products are collectively
referred to as bone remodelling markers, and one of the
most studied of these fragments is the N-telopeptide of
type I collagen (NTX) [22]. The quantification of NTX
and other bone remodelling markers allows to monitor
overall bone metabolism, and thus to capture the overall
disruptive effect of metastases in bone [23, 24].

In this context, we analyse a clinical dataset of bone
metastatic cancer patients fully described in [24] but now
taking into account the overall NTX evolution and not
only specific time points (e.g. 3 or 12 months after the
beginning of therapy). The application of JM coupled with
fuzzy clustering-based imputation methods illustrates the
advantages of using the full time series and supports
the hypothesis of NTX clinical use as a biomarker for
the disease.

Methods

To understand the relationship between NTX and the
death of bone metastatic cancer patients, a combined
analysis of longitudinal and time-to-event data is per-
formed. For the survival analysis the widely known Cox’s
regression model [2] is briefly described. The linear-mixed
effects (LME) models, [6], are introduced as one of the
techniques used to model longitudinal data. Finally, the
JM [5] and extended Cox [3, Chapter 6] regression, which
combines survival and longitudinal data, are defined.

Survival analysis

Survival analysis is a statistical technique used to study
the time until an event of interest occurs. The event can
be death, the relapse of a disease or the failure of some
electronic component.

An important feature of survival analysis is that the
event of interest may not be observed in all the patients
under study. For example, if the event of interest is death,
some patients can be still alive at the end of the study so
we do not known the exact event time. Such survival times
are named censored, to express that the study ended before
the event of interest occurred.

In order to formalise survival models, we start by intro-
ducing some notation. Let # be the number of patients and
T} arandom variable representing the true event time for
the i patient, with i = 1, .. ., n. The observed event times
are given by T; = min(T}, C;), where C; is the censor-
ing time of patient i. The survival function S;(¢) represents
the probability of patient i surviving beyond time ¢, that
is, Si(t) = P(T; > t), with ¢t > 0. The probability that the
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event is experienced by the i patient, within a small time
interval [ ¢, t+dt), knowing that he has survived up to time
¢, is given by the hazard function 4;(t):
P<Ti<t+dt|T; >t
Bty = lim DUETi=trdiliz b
dt—0t dt

1)

A very popular statistical method used in survival anal-
ysis is the Cox regression model [2], which assumes that
the effect that each feature has on the patient’s survival
function is constant over time and postulates the hazard
function as

h(t; w) = ho(t) exp {yTw} , (2)

where ho(t) is the baseline hazard function, w =

T . e .
(wl,wz,...,wp) is the patient’s time-invariant feature
vector and y are unknown regression coefficients.

Longitudinal data analysis

Longitudinal data, comprising repeated measurements of
patients over time, arise frequently in clinical studies.
The main goal of a longitudinal study is the characteri-
sation of temporal changes of some response of interest,
for example to uncover the predictors of a given medical
condition.

An important class of models that can take into account
the variability among individuals and the average trends
of the populations is the linear mixed-effects models
(LME) [6]. These models comprise two components, a
population-specific component, denoted as fixed effects,
and a patient/group-specific component, describing the
patient’s deviation from the population mean, termed as
random effects.

The LME model for the i patient is given by

yi(t) = x] (OB + z] (O)b; + €(2), (3)

where y;(t) is the observed feature at time ¢ for the ith
patient, x;(¢) is the fixed effects design matrix, § is the
fixed effects vector, z;(¢t) is the random effects design
matrix, b; is the random effects vector, and ¢;(¢) is the ran-
dom observation error. The model assumptions are the
following: b; ~ N(0,D) and €;(¢) ~ N (0,02), where b;
and ¢;(¢) are independent between groups and between
each other, D is the random effects covariance matrix, and
o? is the variance of the error.

In longitudinal analysis, the shape of the patients’ tra-
jectories can be highly non-linear, severely hampering the
accurate estimation using simpler models. One possible
solution is to adopt more complex functions in the LME
models, such as cubic regression splines [13], which pro-
vide good estimators for the mixed and random effects:

NC (t,k, B, b) = (B; + bij) NC;(), withsj < t < sj1, j=0,...,k,
(4)
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where so = tp and s;1 = 7, NCi(?) = ant® + ayt® +
as;t+aa,; is the natural cubic spline function for time point
t, k amounts for the number of knots of the spline with
locations sy, s9, . . ., S, and, £y and ty are the initial and final
points of the time series, respectively.

Longitudinal and time-to-event analysis

The aforementioned Cox regression model [2] is used to
investigate if the features of interest are associated with
the event under study, assuming that the features do not
change over time (are time-invariant). While this restric-
tion can be adequate in some medical studies, the analysis
of time-variant features might be of interest in other appli-
cations. In fact, there are several examples in the literature
confirming these associations, e.g. CD4 counts and the
development of AIDS [25].

Joint models (JM) for longitudinal and time-to-event
data, or, simply joint models, were developed to analyse
both time-invariant and time-variant features and their
relationship with the event process [5]. J]M combine a lon-
gitudinal model, to address time-variant features, with a
survival model that takes into account the time until the
event.

To formalise the model, let m1;(¢) denote the true and
unobserved value of the time-variant feature for patient i
at time . To obtain the association of the features to the
event, the survival sub-model is given by

h; (| M (t), w;) = hy(t) exp {yTwi + ami(t)} , fort > 0,
(5)

where M;(t) = {m;(s),0 < s < t} is the true unobserved
time-variant feature until time ¢ and « denotes the associ-
ation of the time-variant feature to the event.

In the Cox models the baseline hazard is often left
completely unspecified to avoid misspecification of the
distribution of the survival times [5]. However, in JM the
baseline hazard function, /1o (¢), must be specified to avoid
the underestimation of the standard error values [5]. A
standard option is to use a parametric distribution, such
as the Weibull or the log-normal. Alternatively, one can
also specify /() in a more flexible way by using e.g.
stepwise-constant functions or B-splines [5].

JM uses the true and unobserved time-invariant fea-
ture m;(t), while in most cases only specific measure-
ments y;(t) are known. The relationship between m1;(¢)
and the observed values y;(¢) is given by the longitudinal
sub-model, expressed as

yi(t) = m;(t) + €(2)

’ 6
mi(t) = x] ()B + 2! (t)b; ©

with b; ~ N'(0,D) and €;(¢) ~ N (0, 02).
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The estimation of JM usually involves Expectation-
Maximization (EM) and Quasi-Newton algorithms to
minimise the log-likelihood [7] or Bayesian approaches
such as Markov Chain Monte Carlo (MCMC) methods
[8]. Although JM allows the integration of time-variant
and survival data, their inference is more computation-
ally intensive, which can be a disadvantage in studies with
a large number of patients with complex time-variant
features [5].

Extended Cox model

The extended Cox model [3, Chapter 6] is an extension
of Cox regression by introducing time-variant features
directly in the hazard function. In this model, the time-
variant features are considered as step-like functions, with
jumps at each of the measurement times [3, Chapter 4].
Under this assumption, for any given patient with obser-
vations at time points £i,...,fy, the value of the time-
variant feature at time t,, with t, < ¢, < ¢, + 1, is given by
the last registered measurement ¢,. The hazard function
of the extended Cox model is given by

hi(tsw) = ho(t) exp { ¥ Tw(®)} )

where w(t) denotes a vector of both time-variant and
time-invariant patient features. This hazard function is
very similar to Eq. (2) but with w(¢) changing over time.

Even though the extended Cox model can handle time-
variant features, it is not appropriate to deal with patient
biomarkers. This is due to the fact that it assumes that
the time-variant features are predictable processes, mea-
sured without error and that their full path is completely
known [5].

The main difference between the extended Cox model
and the JM is that in the latter the time-variant features
are described by a LME model. More specifically, the
extended Cox model considers that the time-dependent
variables w(¢) are step-like functions with jumps at each of
the measurements. This approach is far from ideal in our
application since the biomarkers in study are continuous
functions that change over time and not only in certain
time-points. This less than ideal modelling of the time-
variants may lead the derived results to be substantially
biased [4]. The JM take a different approach by mod-
elling the time dependent variable with a LME model,
therefore creating a model without the aforementioned
assumptions regarding the shape of the time-variant
features [5].

Missing data imputation

Missing data is a problem that affects almost all clinical
studies [14, 16]. Several methods were developed to cope
with this challenging issue, which includes the following
strategies explored more deeply in the present study: (i)
omitting or ignoring the corresponding missing entries;
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(if) imputation based on the Last Observation Carried
Forward (LOCEF); (iii) imputation based on the Optimal
Completion Strategy (OCS) [26] using Fuzzy Short Time
Series Clustering (FSTS) [27].

The first is the simplest strategy and corresponds to
omitting or ignoring the missing values, which may lead to
a different sampling scheme for each patient of the cohort
but does not constitute a problem for the inference of
LME models [6].

The second approach is based on imputing the missing
value with the last known observation of the same patient,
i.e.,, the Last Observation is Carried Forward (LOCF)
[15, Chapter 13].

Finally, the third method is based on time series cluster-
ing. The rationale of this approach is that if the patients
are previously clustered based on their time-varying char-
acteristics, one can use the group information to impute
missing data. More specifically, if we assume that the
patients in a given cluster are similar under a specific met-
ric, it is reasonable to impute missing values based on
patients that are ‘close’ and for whom complete informa-
tion is available.

Although clustering algorithms abound in the literature,
methods for short time series data are still scarce. We will
focus on Fuzzy Short Time Series Clustering (FSTS) [27]
given its previous successful application in the context of
survival data [17]. The FSTS algorithm treats the time
series as piecewise linear functions and uses the slope in
each of the segments as input for the distance function.

We can then combine FSTS with and Optimal Com-
pletion Strategy (OCS) to perform the imputation of the
missing values, a procedure fully described in [17, 28].

In order to improve the methodology used, a flowchart
(Fig. 1) is presented.

Bone metastatic data

The dataset used in this work is based on a longitudinal
cohort study carried out in Santa Maria Hospital (Lisboa,
Portugal). In this dataset, patients with several types of
primary cancers and bone metastases were followed while
receiving primary cancer treatment plus a bone targeted
agent — bisphosphonates (BPs).

The cohort includes 147 patients and the data comprises
survival status, several time-invariant features, and a time
series concerning N-telopeptide of type I collagen (NTX)
measurements. The measurements of the NTX biomarker
were carried out at the baseline, and at 1, 3, 6, 9 and 12
months (denoted by NTX0, NTX1,..., NTX12) after starting
BPs. For details concerning how NTX was collected and
determined see [24]. In Table 1 a detailed description of
the number of patients per type of cancer is presented.

Baseline time-invariant features included were: Age at
Diagnosis, Sex, Type of Primary Cancer, X-Ray Pattern of
Bone Lesions, Number of Skeletal Related Events (NSRE),
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(JM), thus generating three Extended Cox models and nine JM
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Fig. 1 Global approach flowchart. Representation of the analytical approach followed. The raw data (with missing values) is processed in parallel by
three different imputation techniques: omitting or ignoring the corresponding missing entries (Omit), Last Observation Carried Forward (LOCF) and
Optimal Completion Strategy (OCS). These three imputed datasets are then separately analysed by the Extended Cox Model and the Joint Models

Type of Skeletal Related Event (SRE), Estrogen Receptor,
and if there are any metastasis outside the bone (denoted
by ExtraMets). The time-to-event of interest is the
survival time of the patients.

Results

In this section several modelling strategies are applied
to analyse longitudinal and survival data of the bone
metastatic cohort described. A subset of this dataset con-
taining 71 breast cancer patients was recently analysed

Table 1 Number of patients per type of cancer that have NTX
measurements on month t (NTXt)

Cancertype  Baseline  NTX1 NTX3  NTX6  NTX9  NTX12
Breast 90 67 58 48 32 26
Prostate 26 20 17 15 1 5
Others 31 18 15 9 5 3
Totals 147 87 90 72 48 34

Others include the following types of cancer: lung, kidney, gastric, sarcoma,
hepatobiliary, bladder, endometrium, cervix, neuroendocrine, osteoblastoma and
unknown primary tumor

considering time-independent NTX measurements [24].
In that study, it was considered that a value of NTX3 is
elevated if it is larger than 100 nmol BCE/mmol creati-
nine and of NTX12 if it is larger than 64 nmol BCE/mmol
creatinine.

In the present work, we extend this analysis to all types
of cancer present in the cohort and we will include the
whole NTX time series function, and not only isolated
time points, in order to evaluate the predictive accu-
racy of this biomarker. The goal is to compare extended
Cox regression with JM, identify subsets of features with
prognosis significance and evaluate the impact of distinct
imputation algorithms.

All the analysis were performed using the software R
[29] and the associated libraries survival, nlme and
JM [30-32]. Additional HTML files with the implemented
code are available at http://web.ist.utl.pt/~susanavinga/
JointModels/.

Since we are now considering all types of primary can-
cers, features that are exclusive of a single type, like
Estrogen Receptor, were not included in the analysis. The
time-variant feature, NTX, is taken into account, and the
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Fig. 2 Comparison between NTX and log(NTX) trajectories. Graphical representation of the values of NTX and log(NTX) for all the patients. Panel a
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real values of NTX3 and NTX12, as well as their log-
transform, are analysed. The log-transform was used to
reduce the disparity in NTX values between patients. This
disparity is illustrated in Fig. 2 where the NTX values of
each patient are plotted.

Cox regression analysis

The first step in the analysis was to perform a univari-
ate study similar to that of [24] where we used the Log
Rank test [33] for categorical features and the Wald test to
evaluate the statistical significance of the Cox regression
coefficients [2].

The obtained p-values for each feature are presented
in Table 2, where the age at diagnosis, the sex and extra
metastasis are statistically significant variables in all the
tests preformed.

Regarding the time-variant features, log(NTX3) and
NTX12 >64 obtained significant p-values for at least one
of the tests performed, indicating that the actual measured
NTX value should have prognosis value and not only the
indication that it is high or low. Furthermore, NTX3 >100
appears to only have prognosis value for breast cancer
patients since it did not obtain a significant p-value in
the present analysis combining all the bone metastatic
patients (contrary to the previous study [24]).

To perform the multivariate analysis, we then use the
selected features from the univariate analysis to construct
six multivariate Cox regression models, one for each NTX
feature considered. The values of the regressor coeffi-
cients and their p-values for the multivariate models are
represented in Table 3.

Table 2 Log Rank and Wald tests p-values for each feature

Feature p-value p-value
Log rank Wald test
Baseline Age Diagnosis - 0.0028
Sex 0.0140 0.0148
Primary Cancer 0.0872 -
X-Ray Pattern 0.1264 -
NSRE 0.8027 0.5627
ExtraMets 0.0161 0.0171
Longitudinal NTX3 - 04438
log(NTX3) - 0.0220
NTX3 >100 0.1615 0.1515
NTX12 - 0.0737
log(NTX12) - 0.0533
NTX12 >64 0.0171 0.0200

The features were divided in Baseline (Time-independent) and Longitudinal
(Time-dependent). The values in bold are statistically significant for a significance
level of 5%
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Table 3 Coefficents and p-values for the multivariate Cox regression model

Age diagnosis Sex ExtraMets NTX

Value p-value Value p-value Value p-value Type Value p-value
0.0220 0.0088 0.2485 0.3073 0.7823 0.0017 NTX3 0.0002 0.5875°
0.0209 0.0127 0.2421 0.3155 0.7393 0.0034 log(NTX3) 01211 0.2165°
0.0225 0.0069 02214 03614 0.7752 0.0020 NTX3 >100 0.1448 0.5831°
0.0184 0.1513 0.3709 0.3663 0.6223 0.0775 NTX12 0.0010 0.2225°
0.0177 0.1633 0.3647 03756 0.5563 0.1314 log(NTX12) 0.1638 0.2556°
0.0164 0.1910 0.5141 02312 0.4947 0.1806 NTX12 >64 0.6936 0.0781°

The NTX type column refers to the type of NTX feature used in each model fit. #: Analysis using only patients with NTX3 measurement (106 patients with 86 events).

b: Analysis using only patients with NTX12 measurement (51 patients with 41 events)

In the first three models, the age at diagnosis and
extra metastasis are significant, while sex and the NTX
variables, obtained no significant p-values. The non-
significance of the NTX values is not expected since
NTX3 >100 was known to be significant in previous uni-
variate and multivariate analysis [24]. This fact may be
due to the difference in physiology between the cancer
types, with NTX capturing bone degradation, which is
more commonly observed in breast cancer patients.

Joint models (JM) analysis

In further analyses, we consider the full NTX time series
function in the models. To address the missing values
problem, we apply the three methods described. The first
two are straightforward and do not imply any specific
preprocessing. The third requires two parameters: the
number of clusters ¢ and the partition coefficient m. The
optimisation of these values for this dataset was already

performed under OCS and FSTS [17] and we will use the
same results, namely ¢ = 6 and m = 1.3.

The cluster centroids obtained are represented in Fig. 3,
showing the high variability of NTX trajectories and het-
erogeneity between the clusters. For example, the clusters
with the largest number of patients are 1 and 6 (33 and 24,
respectively), which exhibit distinct NTX evolution. Clus-
ter 1 represents patients where NTXO values significantly
decrease after the first month, remaining approximately
constant afterwards. Cluster 6 represents patients whose
NTX value decreases gradually over time from the base-
line until 3 months, followed by an increase at 9 months.
Based on these clusters, it is then possible to adopt the
third imputation strategy.

These three strategies to treat the missing values may
produce very different trajectories, as illustrated in Fig. 4.
In this figure patients 30 and 115 have similar trajectories.
The OCS algorithm imputes the missing values by

Cluster 1 Cluster 2

33
1500 -

1000 -

500 -

0-
Cluster 4 Cluster 5

18

NTX [nmol BCE/mmol creatinine]

01 38 6

Cluster 3
18

Legend

Cluster 6 —e— Centroid

Trajectories

17 24

9 12

Time [months]

Fig. 3 Centroids obtained in the FSTS clustering algorithm. Graphical representation of the six centroids obtained in the FSTS algorithm and NTX
time series. The number in the top right corner of each plot is the number of patients with partition matrix coefficient of at least 0.75 for that cluster
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Fig. 4 Comparison of the trajectories from different imputation
techniques. Four patients were selected where the differences
between the imputation techniques generate drastically different
trajectories
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increasing the NTX value between 3 and 9 months fol-
lowed by a decrease at 12 months. While LOCF only
extends the value at 3 months forward. For patients 55 and
69, their trajectories are also similar. With OCS generat-
ing trajectories with a maximum NTX value at 1 month
that decays over time. While LOCF extends the max-
imum values onward, creating trajectories similar with
step functions.

After the imputation of missing data, the next step is
to correctly model NTX trajectories to be included in
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the LME model, i.e., determine a function that describes
the longitudinal information given by this biomarker. To
evaluate possible function types, we first represent the
mean NTX trajectory for each of the imputation strate-
gies, see Fig. 5. All three mean plots resemble a decaying
function, similar to an exponential or a rational func-
tion. Since the OCS curve exhibits a slight increase (at 9
months) that cannot be modelled by neither of the afore-
mentioned functions, spline models will also be included
in the analysis.

Despite the mean NTX trajectory resembling a decaying
function, we know that there is a high variability in the
patient’s trajectories. To mitigate this and try to perform
the best fit to all patients, we will specify z;(£) = %;(¢) in
the LME model. This is, we will include in the models the
same number of random effects as of fixed effects, thus
increasing the number of degrees of freedom of the LME
models and allowing for a better fit to each patient.

The expressions of the selected longitudinal models
are represented in Table 4, where § and 5 are used as
tuning parameters. The optimal tuning parameters were
obtained by performing separate Nonlinear LME (NLME)
[6] fits.

The mean NTX and the population fits of the LME
models are presented in Fig. 6. All models correctly fit
NTX mean trajectories, specially splines that are able to
better capture non-linearities of the time series in the case
where missing values are omitted.

Another requirement for the analysis using joint models
is to define the baseline hazard function to avoid under-
estimation of standard error of parameter estimates [5].
In this work we use a piecewise-constant hazard function
[5, Chapter 4].

Next, each of the longitudinal models obtained is used
to generate nine JM, one for each longitudinal model

4.75-

»

o

o
]

4.25-

NTX [log(nmol BCE/
mmol creatinine)]

4.00-

6 9 12

Time [months]

Imputation Type

Measurements —+— LOCF

oCs

Fig. 5 Mean value of NTX for each imputation type. The Measurements curve refers to the omission of the missing values, the LOCF curve to the
values imputed with Last Observation Carried Forward and OCS to the Fuzzy Clustering approach using Optimal Completion Strategy
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Table 4 Longitudinal functions used in the JM
# Model NTX;(t)
Omit 1 (Bo + bo)+(B1 + b1) gy + €D, §>0,n>0
2 Exponential (Bo + boi) +(B1 + b)) exp(=80) + (), § >0
(Bo + bo) +NC(t, 2,(B1, B2, B3)T (bri, bai, b)) +ei(r)

Rational

3 Spline

LOCF 4 Rational (8o + bo)+(B1 + b1) gigs + €0, 8> 0. >0
5 Exponential (Bo + boi)+ (B1 + b17) exp(—8t) + €(t), 8 >0

6 Spline (Bo + ba)) +NC(t, 2.(B1, B2, B3)T (017, by, b3) D) +€i(0)
0CS 7 Rational (o + bo)+(B1 + b1) igyr +€(D), 8 >0, >0

8 Exponential (Bo 4 bo)+(B1 + b1j) exp(—=81) + €(1), 8 >0

9 Spline (Bo+bo) +NC(1,2,(B1, B2, B3)T (b1, b2, b3) ) +e (1)

and imputation type. The values and p-values for each
of these JM are represented in Table 5. From the time-
invariant features, the age at diagnosis and extra metasta-
sis obtained significant p-values for all models. While sex
was never significant. NTX variable was significant under
models 3 and 6 to 9.

The extended Cox model can also integrate longitudinal
features into the hazard function but, contrary to the JM,
does not require the longitudinal feature to be modelled
using LME. In Table 6, the values and p-values of the coef-
ficients for the extended Cox model are presented. The
age at diagnosis and extra metastasis obtained significant
p-values for both extended Cox models, while sex was not
significant for any of the models. This is consistent with
the previous results in both the multivariate Cox analysis
and the analysis via joint models.

(2019) 19:13
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Discussion

From a general point of view, models can aid medical
professionals by unravelling which features are correlated
with the event being studied, thus allowing for the identi-
fication of patients or groups of patients that are recognis-
able by their natural history or response to therapy. Such
groups might impact the design of clinical trials and fur-
ther feed translational research. At the same time, they
can also be used to predict the response of new patients to
the treatment, thus supporting medical research and the
advancement of personalised treatments.

In order to address the importance of personalised
medicine, in this work we analysed data from bone
metastatic patients using different modelling strategies
and missing data imputation techniques.

In the first two types of models, NTX was only anal-
ysed as a time-invariant feature. It obtained significant
p-values for some univariate models, but when other fea-
tures were included in the model, it lost its significance.
The bone-cancer interaction, and ultimately the pattern
of bone remodelling arising from this interaction, differs
between tumours, both at the level of type of primary,
but also at the specific biology of each tumour. In addi-
tion, each bone biomarker reflects different biochemical
processes, with NTX better capturing the resorption part
of bone remodelling and thus informing more accurately
about tumours with predominately lytic or mixed lesions
[22]. This is the case of breast cancer, but not, e.g., prostate
cancer. Our findings using this data modelling approach
support this view, that while NTX measurements might

the imputation types

Omit
4.75- \
> 4.50- \\
bt -
£ pped \\1——’\
= 4.00- .
3 =)
2 LOCF
£
£ 4.8- \
g 46- N
m 4.4- —_—
g 4.2- g
£ OCs
[
‘g. 4.8- q\
X 46- \
Z 44- \\\g\,/ I
0 1 3 6 9 12
Time [months]
Legend -e- Mean Values —e— Rational Exponential Spline

Fig. 6 Population fits for the longitudinal models. The nine longitudinal fits from Table 4 are represented alongside the population mean for each of
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Table 5 Coefficients and p-values of the JM
# Age diagnosis Sex ExtraMets log(NTX)
Value p-value Value p-value Value p-value Value p-value
Omit 1 0.0185 0.0152 03160 0.1499 0.6655 0.0035 0.2093 0.0593
2 0.0184 0.0160 03134 0.1530 0.6649 0.0035 02175 0.0638
0.0184 0.0147 0.2655 02216 0.6051 0.0085 0.1095 0.0442
LOCF 4 0.0186 0.0144 0.3006 0.1672 0.6687 0.0032 0.1674 0.0755
5 0.0186 0.0147 0.3005 0.1672 0.6673 0.0032 0.1692 0.0753
0.0175 0.0242 0.2930 0.1820 0.6322 0.0053 0.1353 0.0289
OCS 7 0.0182 0.0164 0.3048 0.1612 0.6586 0.0036 0.1955 0.0430
8 0.0181 0.0166 0.3046 0.1615 0.6575 0.0037 0.1962 0.0430
9 0.0170 0.0233 03153 0.1496 0.6681 0.0032 0.1966 0.0013

In models 1 to 3 the missing values were omitted, in 4 to 6 LOCF was used to impute the missing values and in 7 to 9 OCS was used

be informative in breast cancer, they do not inform about
all cancer types.

Following the multivariate analysis, nine JM and two
extended Cox models were analysed. In general the joint
and extended Cox models obtained lower p-values for
NTX than the multivariate Cox models. With all three
of the JM with the spline modelling (models 3 and 6
to 9) obtaining a significant p-value for the value of
log-transformed NTX. This result is different from the
previous results, in that it shows that the instantaneous
NTX value has prognostic value[24]. Indeed, even in pre-
dominantly bone forming lesions (as in prostate cancer),
bone resorption is still present. Thus, this more accurate
data modelling technique of NTX seems to be able to
derive prognostic information from NTX variation in the
complete spectrum of types of cancer.

The inclusion of the longitudinal modelling step in the
joint model led to significant p-values for the NTX time
series, which is consistent with the extended Cox regres-
sion model. Further analysis about the intrinsic knowledge
that can be extracted from the estimated parameters will
be addressed in the future.

When taking into account all types of cancers, only
the joint models analysis was able to find a prognostic
association between NTX and survival outcomes. Con-
sequently, this finding suggests that the prognostic value
of NTX is clearer as a time-varying feature, when com-
pared to its modulation only as a time-invariant feature.
Although providing a more accurate description, JM are

Table 6 Coefficients and p-values for extended Cox models

more computational demanding and also require more
parameters, which may make them prone to overfit-
ting and should be taken into account when modeling
clinical data.

Conclusions

In this work we compared several modelling strategies
that couple survival with longitudinal data. In particu-
lar, we analysed the relationship between NTX biomarker
measurments and the survival times of bone metastastic
patients. In previous analysis NTX was converted from
a numerical feature into a categorical one whose values
indicate only if NTX level was high or low [23, 24], in
order to have clear cut-off criteria for direct application
in the clinic. The time-variant nature of NTX was there-
fore ignored, with each measurement being treated as a
different, independent feature. In this study we extend
these models by considering the value of NTX a time-
dependent feature when using survival analysis methods.
A univariate analysis was first performed to evaluate the
statistical significance of features. Based on the features
selected, six multivariate Cox regression models were
analysed, for each NTX. The results show that, for three
of the models sex and NTX features were not statistically
significant. To conduct the JM analysis the full NTX time
series was considered. Different techniques to solve the
problem of missing values were performed. Results exhibit
that the instantaneous NTX value had prognostic value,
contradicting the previous results obtained. Moreover, the

Model Age diagnosis Sex ExtraMets log(NTX)

Value p-value Value p-value Value p-value Value p-value
Omit/LOCF 0.0171 0.0256 0.3049 0.1658 0.6485 0.0047 0.1401 0.0819
OCS 0.0172 0.0232 0.2963 0.1763 0.6458 0.0048 0.1629 0.0496

Since the extended Cox model considers the time-variant feature as a step function, with steps on each measurement, omitting missing values and LOCF generate the same

extended Cox model
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results illustrate the advantages of Joint Models and their
potential to identify relevant biomarkers with application
in oncological studies.
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