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Abstract

Background: A growing number of clinical trials use various sensors and smartphone applications to collect data
outside of the clinic or hospital, raising the question to what extent patients comply with the unique requirements
of remote study protocols. Compliance is particularly important in conditions where patients are motorically and
cognitively impaired. Here, we sought to understand patient compliance in digital trials of two such pathologies,
Parkinson’s disease (PD) and Huntington disease (HD).

Methods: Patient compliance was assessed in two remote, six-month clinical trials of PD (n = 51, Clinician Input
Study funded by the Michael J. Fox Foundation for Parkinson’s Research) and HD (n = 17, sponsored by Teva
Pharmaceuticals). We monitored four compliance metrics specific to remote studies: smartphone app-based
medication reporting, app-based symptoms reporting, the duration of smartwatch data streaming except while
charging, and the performance of structured motor tasks at home.

Results: While compliance over time differed between the PD and HD studies, both studies maintained high
compliance levels for their entire six month duration. None (− 1%) to a 30% reduction in compliance rate was
registered for HD patients, and a reduction of 34 to 53% was registered for the PD study. Both studies exhibited
marked changes in compliance rates during the initial days of enrollment. Interestingly, daily smartwatch data
streaming patterns were similar, peaking around noon, dropping sharply in the late evening hours around 8 pm,
and having a mean of 8.6 daily streaming hours for the PD study and 10.5 h for the HD study. Individual patients
tended to have either high or low compliance across all compliance metrics as measured by pairwise correlation.
Encouragingly, predefined schedules and app-based reminders fulfilled their intended effect on the timing of
medication intake reporting and performance of structured motor tasks at home.

Conclusions: Our findings suggest that maintaining compliance over long durations is feasible, promote the use of
predefined app-based reminders, and highlight the importance of patient selection as highly compliant patients
typically have a higher adherence rate across the different aspects of the protocol. Overall, these data can serve as a
reference point for the design of upcoming remote digital studies.

Trial registration: Trials described in this study include a sub-study of the Open PRIDE-HD Huntington’s disease
study (TV7820-CNS-20016), which was registered on July 7th, 2015, sponsored by Teva Pharmaceuticals Ltd., and
registered on Clinicaltrials.gov as NCT02494778 and EudraCT as 2015–000904-24.
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Background
The widespread global use of smartphones and connected
sensor devices, in parallel with their continuously increas-
ing capabilities, has begun to impact the clinical trial
ecosystem. Digital wearable and non-wearable devices
containing electronic sensors such as accelerometers, gy-
roscopes, and photosensors can now track diverse bio-
markers including heart rate, blood pressure, heart rate
variability, lung function, and gait to various degrees of
accuracy [1]. Complementarily, smartphone applications
enable frequent and facilitated interaction with patients in
the form of reminders, self-reporting of drug intake, or
acquisition of electronic patient-reported outcomes [2].
Remote data collection via connected devices may pro-

vide added value to clinical trials [3]. Statistically, remote
technologies increase data collection frequency, conse-
quently providing insight on variability, requiring less
extrapolation, and potentially increasing study power.
These insights typically rely on signal processing and
machine learning methods developed using sensor col-
lected (big) data. Additionally, sensors, while not exclu-
sively used in remote settings, are inherently objective
compared to clinician scoring of disease status [4].
Home-based monitoring may also be more objective
from the patient perspective owing to white cloak phe-
nomena, muddying response in the clinic-setting [5].
From the trial management perspective, real-time
monitoring may enable early identification of safety,
operational, and compliance issues. Not surprisingly, ap-
plications for wearable technologies have already been
demonstrated in a wide spectrum of disorders, including
cardiovascular, respiratory, metabolic, psychiatric, and
neurological disease [6]. Eventually, these innovations
have the potential to evolve into regulatory-approved,
clinical trial endpoints [7, 8].
Parkinson’s disease (PD) and Huntington disease (HD)

are both chronic, neurologically-based movement disor-
ders. Motorically, PD is characterized by a diverse set of
symptoms that present at successive stages of the dis-
ease, including slowing of gait, shuffling feet, reduced
arm swing, freeze of gait, asymmetry, tremor, bradykine-
sia, and dyskinesia. In HD, the most notable movement
impairment is chorea, which is often similar to PD dys-
kinesia but is generally stable in contrast to PD symp-
toms that may fluctuate throughout the day. Given their
chronic nature, lack of adequate therapies, and unique
motor aspects, PD and to a lesser extent HD have been
the focus of many wearable studies in disease [7, 9].
Remote trials with smartphones and wearable devices

have been conducted in movement disorders such as
Parkinson’s disease (PD) and Huntington disease (HD).
Beyond a large collection of mostly short-duration studies
aimed at quantifying symptoms [10], several efforts have
examined longer-term, home-based monitoring in PD

[11–16]. Four notable examples of large, multi-month, PD
efforts that assessed aspects of remote compliance are the
Parkinson@Home study which quantified the daily dur-
ation in which a patient-worn smartwatch was streaming
data over a period of up to 13 weeks [13, 17], the mPower
and HopkinsPD studies which published results on smart-
phone app usage and performance of home-based tasks
over six months [14, 15], and the SMART-PD study which
evaluated the impact of a smartphone app on medication
adherence over four months [16]. In contrast, in HD exist-
ing remote studies have primarily focused on feasibility or
symptom quantification over several days [9, 18, 19], as
HD is an orphan disease which is naturally more challen-
ging to recruit.
Despite its inherent advantages, remote patient-based

data collection is prone to unique adoption and compli-
ance issues [6, 20]. Technical factors include the need
for frequent device charging, ease of device operation,
and the simplicity of the user interface. Burden factors
unique to remote study protocols include, for example,
the imposition of recurrent performance of home-based
tasks or requirement for consistent reporting on symp-
toms and drug intake times. These issues are notable, as
often a high number of patients dropout of studies prior
to completion, even in ‘traditional’ trials [3]. Moreover,
the effect of multi-month duration is important as
patient compliance in clinical trials of chronic conditions
is lower than in acute conditions [21]. Collectively, this
highlights the importance of understanding compliance
dynamics and patient preferences with respect to the
requirements of remote digital trials. Motivated by
above, we analyzed two six-month studies of neuro-
logical movement disorders to better understand patient
compliance patterns in remote settings for four digital
study protocol metrics.

Methods
Two independent clinical trials were analyzed: the Clin-
ician Input Study in PD patients (CIS-PD) and the
observational digital health sub-study within Study
TV7820-CNS-20016 in HD patients (Open PRIDE-HD)
(Table 1 and Table 2, respectively). The CIS-PD data
used in the preparation of this article were obtained
from the Michael J. Fox Foundation database. The total
duration of each study was six months, and both studies
used the Intel® Pharma Analytics Platform for data col-
lection, monitoring, and analysis [17, 22]. The mobile
application interface was designed using User Interface/
User Experience (UI/UX) expert input to emphasize ease
of use (Fig. 1).

Parkinson’s disease trial
The CIS-PD trial was an observational study conducted
in 4 US sites: Northwestern University, the University of
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Cincinnati, the University of Rochester, and the Univer-
sity of Alabama [23]. The study recruited 51 participants
between June 2017 and August 2017, with 36 patients
completing the entire study. Eligibility criteria included
diagnosis of idiopathic PD, age 18 years old or older,
Hoehn & Yahr stage 1–3, informed consent, and lack of
cognitive impairment that would preclude study partici-
pation. Study participants used their own iPhone smart-
phone and were provided an Apple Watch smartwatch
containing the Intel® Pharma Analytics Platform applica-
tion. In-clinic visits occurred at baseline, after 2 weeks,

after 1 month, after 3 months, and 6 months after base-
line, during which clinicians performed assessments and
reviewed a dashboard that dynamically displayed data
from the smartwatch and smartphone application. The
study also had a remote component as described below.
We tracked the three protocol-defined metrics related

to remote participation: (1) app-based medication report-
ing, (2) smartwatch data streaming, and (3) app-based
daily symptoms reporting (Fig. 1). We define smartwatch
data streaming as the hours in which the smartwatch was
broadcasting accelerometer data, not including charging

Table 1 Characteristics of the PD and HD studies

Parameter CIS-PD study Open PRIDE-HD sub-study

Patient sample size 51 17

Study duration 6 months 6 months

Remote compliance metrics (1) Medication reporting
(2) Symptoms reporting
(3) Smartwatch data streaming

(1) Medication reporting
(2) Symptoms reporting
(3) Smartwatch data streaming
(4) Structured motor assessments at home

Sites 4 sites in US 11 sites across US, UK, Austria, Germany

Devices Apple Watch, iPhone Pebble watch, iPhone

App-based medication reporting The normal medication regimen
of the patient

Pridopidine (interventional investigational
drug), twice per day per study protocol:
a morning dose between 7:00 and 12:00,
and an evening dose 7 to 10 h later

App-based symptoms reporting Symptom severity three times
per day

Chorea severity during the last five minutes,
once per day

Wearing of smartwatch A minimum of 12 h per day
for 25 days per month

Continuously throughout study duration,
preferably between 9:00–21:00

Performance of structured motor
assessments at home

NA Every other day, alternating mornings and evenings

Table 2 Demographics and disease status of the PD and HD patients. MDS-UPDR: Movement Disorder Society-Unified Parkinson’s
Disease Rating Scale. UHDRS-TMS: Unified Huntington Disease Rating Scale Total Motor Score

Demographics CIS-PD study Open PRIDE-HD sub-study

Total patients 51 17

Gender: males 29 (57%) 9 (53%)

Ethnicity: Caucasian 45 (88%) 16 (94%)

Ethnicity: Hispanic 1 (2%) 1 (16%)

Age (mean ± s.d.) 62 ± 11 51 ± 12

Years since symptom onset (mean ± s.d.) 9 ± 5 NA

Years since diagnosis onset (mean ± s.d.) 7 ± 5 NA

PD: Hoehn & Yahr (mean ± s.d.) 2 ± 0.42 NA

PD: MDS-UPDRS Part 1 at baseline (mean ± s.d.) 10 ± 5 NA

PD: MDS-UPDRS Part 2 at baseline (mean ± s.d.) 10 ± 5 NA

PD: MDS-UPDRS Part 3 at baseline (mean ± s.d.) 24 ± 11 NA

HD: UHDRS-TMS NA 37 ± 14

HD: Number of CAG repeats NA 44 ± 3

HD: Neuroleptic use NA 2 (12%)

HD: UHDRS-Total Functional Capacity NA 8 (2)
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time. Ideally most of this time reflects the hours in which
the watch was worn by the patients, although if the watch
was turned on, was not charging, and was not being worn
those hours would be counted as well. Patients were
instructed to follow their normal medication regimen and
report on all medication intakes via the dedicated smart-
phone application throughout the duration of the study.
Patients were asked to enter their medication schedule,
which was used to prompt daily medication intake re-
minders on the smartphone. In addition, patients were
instructed to wear the smartwatch for a minimum of 12 h
per day for a minimum of 25 days per month. Finally, pa-
tients were asked to report their symptom severity three

times per day in the dedicated smartphone application.
The eight possible symptoms consisted of tremor, dyskin-
esia, rigidity, bradykinesia, gait problems, balance prob-
lems, voice problems, and constipation.
The PD trial incorporated planned support interven-

tion calls and unplanned calls in the case of low compli-
ance. Planned calls were scheduled at time points
between the 1, 4, and 5-month in-clinic visits (±7 days)
to reinforce compliance. Unscheduled telephone calls
were made if patients were less compliant than expected
with regards to smartwatch data streaming. In addition,
the mobile phone application enabled patients to contact
technical support via email or phone if needed.

Fig. 1 The four remote protocol compliance metrics tracked in this report using the Intel® Pharma Analytics Platform with their associated
smartphone application screenshots. a The PD trial tracked three metrics as defined by the study protocol: app-based medication reporting of
the patient’s normal, predefined medication regimen, smartwatch data streaming excluding charging time, and app-based daily symptoms
reporting. b The HD trial tracked four compliance measures as defined by the study protocol: app-based medication reporting of the
investigational drug, daily smartwatch data streaming excluding charging time, app-based daily symptoms reporting, and performance of
structured motor assessments at home. The smartwatch graphic was obtained from Wikimedia Commons
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Huntington disease trial
The HD trial was an observational sub-study within the
larger Open PRIDE-HD open-label, phase 2 trial (Clini-
calTrials.gov NCT02494778), and was conducted in 4
countries: the United States, the United Kingdom,
Austria, and Germany. The primary eligibility criteria
were participation in the larger Open PRIDE-HD study,
informed consent, willingness to comply with study
requirements, and demonstrated capability to use the
smartwatch device and smartphone application. The
study recruited 17 patients (instead of the planned total
of 60 patients due to early termination of the study)
between December 2016 and December 2017, with 9 pa-
tients completing the entire study. Study participants
were provided an iPhone 6 Plus smartphone and a Peb-
ble smartwatch containing the Intel® Pharma Analytics
Platform application. Besides two in-clinic visits, the
study included a remote component as described below.
Within the trial, we tracked the four protocol-defined

metrics related to remote participation: (1) app-based
medication reporting, (2) smartwatch data streaming, (3)
performance of structured motor assessments at home,
and (4) app-based daily symptoms reporting (Fig. 1). In
contrast to the PD trial, the HD trial had a home assess-
ments component which did not exist in the former
trial. First, patients were asked to take the investigational
drug, pridopidine, twice per day per the main study
protocol and report intake times using the dedicated
smartphone application. Specific instructions were to
take the morning dose between 7:00 and 12:00 and the
second dose 7 to 10 h afterwards. Second, patients were
instructed to continuously wear the smartwatch on the
wrist of the chorea dominant upper-limb, preferably be-
tween 9:00 and 21:00. Third, participants were asked to
perform a short, structured motor assessment at home
every other day, alternating mornings and evenings,
comprising two pre-defined tasks: standing still for 30 s
and sitting at rest for 2 min with arms relaxed. Patients
received reminders at the time of assessment (default
settings at 9:00 and 18:00, alternating bi-daily) and were
able to edit the reminder times. Fourth, patients were
asked to report their chorea severity during the last five
minutes once a day at a pre-defined time (default
reminder at 12:00, time could be edited) using the dedi-
cated smartphone application.
A phone call intervention mechanism was used to im-

prove compliance rates. Support personnel performed
monitoring of patient compliance twice a week to ensure
fulfillment of two criteria: (1) performance of three
structured motor assessments at home over the previous
eight days and (2) having a minimal smartwatch data
streaming score of three points over the previous three
days. The score was calculated by defining a compliant
day as having smartwatch data streaming for at least

90% of the waking hours (defined as 9:00 to 21:00), and
then summing the score of the last three compliant days
using the following values for each day: 1 point (for
three days ago), 2 points (two days ago), and 4 points
(one day ago). Non-compliant days were scored as 0.
Support personal contacted the relevant site for patients
that did not fulfill one of the above criteria, which in
turn contacted the patient by phone within a few days.
In addition, the mobile phone application enabled
patients to contact technical support via email or phone
if needed.

Compliance metrics calculations
All metrics were calculated per day and presented
smoothed using a moving average with a seven-day slid-
ing window. The duration of smartwatch data streaming
was defined by hours of streaming accelerometer data
per day, excluding times in which the smartwatch was
being charged. To be considered, each streaming hour
required at least 90% of the expected number of records
according to the accelerometer sampling rate, which was
50 Hz in both studies. Medication reporting rates con-
sidered both “take” or “skip” as a report. In the PD
study, each symptom reporting event could contain
between one and eight different symptoms as described
above but was considered a single event regardless since
it reflected a single interaction with the app.

Results
Longitudinal patterns
We first looked at the aggregated patient compliance
rates throughout both studies (Fig. 2). Three compliance
metrics were tracked in the PD study and four in the
HD study as the latter had an a structured motor assess-
ments at home component which did not exist PD
study. We quantify compliance rates as the extent to
which the remote study protocol requirements were ful-
filled. We observed that compliance rates were markedly
distinct during the first few days as compared to the
remaining duration of the studies. The duration of
smartwatch data streaming was low during the first days
for both studies. Initial app-based daily symptoms
reporting rates were low and structured motor assess-
ments at home compliance rates were high in the HD
study. Given the early study fluctuations, we quantified
longitudinal patterns starting at day 14.
Compliance rates gradually declined in the PD study.

Mean daily app-based medication reporting rates
dropped 34.2% from 5.82 to 3.83 (mean during study of
4.85). Mean daily symptom reporting events dropped
from 1.61 events to 0.91, a 43.5% decline, with the mean
of 1.39 being roughly half of the protocol requirement of
3 daily reports. Finally, the daily smartwatch data
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streaming hours declined 52.7% from 13.32 h to 6.3 h
(mean during study of 8.6 h).
The compliance rates in the HD study varied in their

dynamics. Both daily app-based medication reporting
and symptoms reporting remained relatively constant.
For medication reporting, values decreased only from
1.75 to 1.7 daily reports (2.86% drop). This is close to
the expected 2 daily reports. Mean daily symptoms
reporting slightly increased by 1.39% from 0.72 daily
reports on day 14 to 0.73 on the final day of the study
(study mean of 0.79 daily reports). In contrast, smart-
watch data streaming hours decreased 20.36% from
10.51 h to 8.37 h (mean of 10.45 h for entire study).
Finally, the amount of structured motor assessments at
home performed declined 30.37% from 0.95 every two
days to 0.66 every two days (mean during study of 1.04
every two days) (Fig. 2 shows the daily rather than
bi-daily values for plotting consistency). In both studies,
compliance rates were similar among patients who
completed the study and those who terminated early
(Additional file 1 Figure S1).

Compliance variation per patient
An examination of individual compliance rates showed
that patients generally had either high or low compliance
across all metrics (Fig. 3). This is evident, especially in

the PD study, as the compliance metric pairs had similar
degrees of positive correlations in individual compliance
rate (PD metric pairwise correlations: 0.51, 0.57, and
0.59). The effect is stronger in the PD study, perhaps
due to higher patient sample size.

Daily and hourly preferences
We next studied the impact of daily and hourly prefer-
ences with respect to the remote protocols. We found that
the impact of weekends and holidays on compliance rates
was minimal, with only a slight, statistically nonsignificant,
decrease in smartwatch data streaming observed in both
trials (HD p = 0.50, PD p = 0.71, two-tailed Student’s
T-test) (Fig. 4a). Likewise, there were no differences
among gender in both studies (Additional file 2 Figure
S2), subject age only had a minor correlation with most
compliance metrics (Additional file 3 Figure S3), and base-
line disease status had only a small correlation with most
metrics as well (Additional file 4 Figure S4). The exception
was daily smartwatch data streaming hours in the HD
study which had positive correlation with age (R = 0.46)
and baseline UHDRS-TMS rating (R = 0.49) (Additional
file 4 Figure S4).
In contrast, there was substantial variation in hourly

compliance rates. This was expected given the prede-
fined schedules for medication intake in both studies

Fig. 2 Aggregated compliance rates throughout studies. Mean longitudinal compliance levels for the (a) PD and (b) HD studies are presented.
For the PD study, the three remote protocol metrics that were evaluated are shown: daily app-based medication reporting, daily app-based
symptoms reporting, and daily smartwatch data streaming. The HD study also included bi-daily performance of structured motor assessments at
home beyond the three former metrics. Vertical black lines represent censored data (patients that dropped out of the study), with the number
above indicating the amount of patients remaining in the study. Vertical lines are plotted at select intervals to facilitate plot readability
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and for app-based symptoms reporting and structured
motor assessments at home in the HD study (Fig. 4b).
Beyond predefined times, we observed that PD patients
preferred reporting on symptoms during the morning
hours. Finally, in both studies, smartwatch data stream-
ing rates gradually increased during the morning and
peaked at around noon. The level then remained rela-
tively constant until around 20:00 in the HD study,
whereas in the PD trial there was a decrease during the
afternoon and early evening hours.

Discussion
Remote monitoring is expected to gradually transform
drug development procedures, with assessment of
patient compliance using digital monitoring being in-
creasingly useful for smart trial design. The current
report includes a relatively long-duration follow-up of
movement disorder patients from two unrelated trials

with respect to four compliance measures that are spe-
cific to remote trials.
Several of our findings may assist in the design of

similar clinical trials in the future. First, we observed
that the variability of the compliance rates at the begin-
ning of the trial are non-indicative of compliance pat-
terns for the vast-majority of the remainder of the trial
duration. This is not surprising given the need to adjust
to new technology and may need to be considered dur-
ing trial planning. Second, when given the option, study
participants preferred to report their symptoms during
the morning hours. Third, defining appropriate eligibility
criteria and screening methods appears to be especially
important in remote, technology-based trials given that
compliant patients tend to exhibit high compliance
across the different aspects of the remote trial protocols,
rather than to only to a single protocol metric. This is
likely influenced by factors such as age, technology
savviness, and various additional factors which require
further research.
As expected, there were differences in compliance

rates over time between the two studies. While smart-
phone app-based interactions have been shown to in-
crease compliance [16], the observation of gradually
decreasing engagement in the PD study was not surpris-
ing as decreased compliance over time has been shown
in numerous trials, for instance in a trial in which 50%
of patients stopped taking anti-hypertensive drug within
one year [24]. One potential reason for the observed

Fig. 3 Individual variation in remote study protocol compliance
metrics. Scatter plots depict the pairwise association for all
compliance metric pairs. Each circle represents an individual patient,
specifically the mean compliance rate for that patient. Data shown
for the (a) PD and (b) HD studies. The distribution for individual
metrics can be observed by looking at each individual axis. The R
values in the plot are Spearman’s rank-order correlations. The
positive correlations suggest that individual patients tend to have
either high or low compliance rates across multiple remote study
compliance metrics. Axis labels: Symptoms (mean daily symptom
reporting events per patient), Medication (mean daily medication
reporting events per patient), Hours streaming (mean smartwatch
daily streaming hours per patient), and Assessments (mean daily
structured motor assessments at home reported by patient). Axis
values are counts or hours where appropriate

Fig. 4 Hourly and daily compliance patterns. (a) Hourly and (b) daily
compliance levels are portrayed for all three remote compliance
metrics studied in the PD study and the four metrics studied in the
HD study. The hourly patterns may reflect personal preferences and/
or the impact of predefined schedules, as determined by the study
protocol, or predefined reminders. Med. – app-based medication
reporting, Sym. - app-based symptoms reporting, Data streaming -
smartwatch data streaming, Assess. - performance of structured
motor assessments at home
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difference between the trials may be that the HD trial
was interventional, perhaps increasing the motivation of
patients seeking experimental drug benefits. In addition,
the HD trial implemented a higher level of interven-
tional support calls which may have maintained higher
compliance levels.
In this work we attempted to understand the adher-

ence of HD and PD patients to remote clinical trial pro-
tocols over a multi-month duration. It is important to
note that we defined compliance as patient participation
levels rather than compliance as strictly defined by the
study protocols. While both measures are tightly linked,
participation levels are continuous and are thus better
suited for understanding patient behavior. In contrast,
protocol-defined compliance is often binary due to the
definition of thresholds. For example, the PD study
protocol defined smartwatch data streaming compliance
as streaming data for at least 10 h per day for 25 days
per month.
While HD is an orphan disease with little or perhaps

no precedent of studies examining remote compliance,
our work is not the first to investigate remote compli-
ance in PD. In the large observational Parkinson@Home
study, mean daily smartwatch data streaming durations
of 14.8 h – 16.3 h were observed for two large cohort
studies of 6 weeks (cohort 1, n = 304) and 13 weeks (co-
hort 2, n = 649) [13]. As in our PD trial, the researchers
observed only a mild reduction in smartwatch data
streaming of roughly 25% from start to finish, which
they proposed may be attributed to the passiveness of,
or the lack of interaction needed for, data collection.
Another study, titled mPower, focused on data collection
from thousands of users using home-assessments that
leverage smartphone sensors and a corresponding
mobile app [14]. In a paper describing the first six
months of data collection, the authors observed a rapid,
exponential-like drop in average data contribution per
patient, which could be due to many factors including
the remote recruitment, no interventional treatment,
and no support or trial management intervention. An-
other effort, HopkinsPD collected passive data from the
smartphones of PD patients and control subjects and
asked for performance of two structured motor assess-
ments at home during the morning hours [15]. While
structured assessment compliance relative to protocol
was not reported, the authors showed that the abun-
dance of structured assessments at home as well as pas-
sive usage of the smartphone remained uniform across
all days of the week, similar to our findings.
Patient compliance is a broad topic with many aspects

and research challenges. One major challenge is obtain-
ing large patient samples sizes given costs and recruit-
ment challenges, especially in rare diseases. Our HD
study had 17 patients, whereas a larger number may

potentially impact conclusions. Despite the small sample
size, this study provides an example for monitoring
patient compliance in long-duration remote studies and
can be used in the design, planning and execution of
future studies in this patient population. Additionally,
factors not addressed in this work such as mobile appli-
cation user experience and interface design may influ-
ence compliance rates. Finally, a deeper analysis of
digital trial economics, including device cost, data man-
agement and clinic visit savings, can help illustrate the
financial considerations in such trials.

Conclusions
Understanding patterns of patient compliance in remote,
technology-based clinical trials requires analysis of data
collected using digital technologies. The insights from
our work suggest that such remote trials are feasible,
even when comprising multiple protocol requirements.
Beyond our observations, examination of additional fac-
tors that impact compliance such as the impact of
support, intervention, alternative application design in-
terfaces, and additional covariates can further influence
study design.
In the broader perspective, this report supports the

growing trend of using mobile applications and wearable
technologies to monitor, prompt, and encourage patient
compliance with medication intake and performance of
clinical assessments. This effort strengthens the notion
that these data have the potential to provide further
insight regarding patients’ daily lives outside the clinic
and potentially evolve into novel endpoints for regula-
tory purposes.

Additional files

Additional file 1: Figure S1. Comparison of compliance rates
throughout studies between early dropouts and patients that completed
the study (DOCX 150 kb)

Additional file 2: Figure S2. Compliance patterns by gender for the PD
and HD studies (DOCX 87 kb)

Additional file 3: Figure S3. Compliance patterns by age for the PD
and HD studies (DOCX 109 kb)

Additional file 4: Figure S4. Compliance patterns by baseline disease
status for the PD and HD studies (DOCX 103 kb)
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