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Abstract

Background: As of 2014, stroke is the fourth leading cause of death in Japan. Predicting a future diagnosis of stroke
would better enable proactive forms of healthcare measures to be taken. We aim to predict a diagnosis of stroke
within one year of the patient’s last set of exam results or medical diagnoses.

Methods: Around 8000 electronic health records were provided by Tsuyama Jifukai Tsuyama Chuo Hospital in
Japan. These records contained non-homogeneous temporal data which were first transformed into a form usable by
an algorithm. The transformed data were used as input into several neural network architectures designed to evaluate
efficacy of the supplied data and also the networks' capability at exploiting relationships that could underlie the data.
The prevalence of stroke cases resulted in imbalanced class outputs which resulted in trained neural network models
being biased towards negative predictions. To address this issue, we designed and incorporated regularization terms
into the standard cross-entropy loss function. These terms penalized false positive and false negative predictions. We

cross-entropy loss function.

foundation of a national clinical decision support system.

evaluated the performance of our trained models using Receiver Operating Characteristic.

Results: The best neural network incorporated and combined the different sources of temporal data through a
dual-input topology. This network attained area under the Receiver Operating Characteristic curve of 0.669. The
custom regularization terms had a positive effect on the training process when compared against the standard

Conclusions: The techniques we describe in this paper are viable and the developed models form part of the

Keywords: Electronic health record, Health data preprocessing, Recurrent neural network, Stroke prediction

Background

As of 2014, data published by the Statistics Bureau of
Japan showed stroke to be the fourth leading cause of
death in Japan, with cerebral infarction being the leading
cause of stroke [1]. A study on the lifetime risk of stroke
in Japan reported observed probabilities of around 1 in 5
middle aged men and women suffering from stroke [2].
When broken down into cause of stroke subtypes, the
observed probabilities of being at risk of cerebral infarc-
tion are around 1 in 7 for men and 1 in 6 for women.
The other causes of stroke are cerebral hemorrhage and
subarachnoid hemorrhage. The reported probabilities for
cerebral hemorrhage were 1 in 40 for men and 1 in 60 for
women, while for subarachnoid hemorrhage, the reported
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probabilities were 1 in 200 for men and 1 in 50 for women.
The lifetime risks were reported to be similar across the
studied age groups.

In this paper, we present our attempt at predicting
future diagnosis of stroke for patients who have not and
may or may not yet suffer from stroke. Applying compu-
tational techniques on Electronic Health Records (EHRs)
is a common approach for predicting patient outcomes,
which is a strategy we have also chosen. Our contributions
are as follows. We obtain historical patient EHRs sup-
plied by a hospital. These EHRs contain historical medical
diagnoses and exam results. To make use of this data, we
perform empirical testing of several pre-processing strate-
gies to determine the best approach for addressing the
issues of missing data and use of non-homogeneous and
non-numerical data. We then design prediction models
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using neural network architectures in order to both evalu-
ate the efficacy of the supplied EHR data and the network
architecture in our stroke prediction task. Finally, we also
present our modifications to the standard cross-entropy
loss to include regularization terms, which we show to
be useful when training neural networks with imbalanced
output classes.

Related work

Various techniques have been employed to predict the risk
of stroke. Cox proportional hazards regression is one tech-
nique used to develop a statistical model, where the use
of the Framingham Study cohort forms one such appli-
cation [3]. This application, developed on top of data
collected from a sample population over a span of 36
years, described a formula that estimated the probabilities
of stroke based on pre-determined risk factors such as age,
systolic blood pressure, and presence of diabetes mellitus.
Cox proportional hazards regression is commonly used to
develop stroke risk models tailored towards a cohort of
interest [4, 5]. Globorisk [6] was another model developed
with Cox proportional hazards regression, with the aim of
producing a formula that can be recalibrated and updated
for use in different countries.

Bayesian Rule Lists (BRL) were used to develop an inter-
pretable model to predict risk of stroke within a year for
patients diagnosed with atrial fibrillation [7]. BRL pro-
duces a hierarchy of decision lists (chains of if ...then
...rules) ordered by posterior consequent distributions.
The model used drug prescriptions, medical conditions,
age, and gender to form these decision lists.

Support Vector Machines have been used in a study to
predict the occurrence of stroke within five years after a
set of baseline measurements [8]. The study also identi-
fied issues pertaining to missing data and large number
of input features. Missing data was addressed through
median imputation after a comparison with other meth-
ods. A novel feature selection algorithm was used to
reduce the number of input features.

For the diagnosis of other kinds of disorders, or the
development of decision support systems, different tech-
niques have also been used. One of the first diagnosis
systems was developed in 1961 [9]. This system focused
on the diagnosis of congenital heart disease from clini-
cal data, using a diagnostic model derived using Bayes’
theorem. In 1988, the earliest known disease diagnostic
system using a multi-layer neural network was developed
[10]. This system used over 200 questionnaire responses
as inputs and supported 23 diseases as the diagnosis
output.

More recently other types of neural network archi-
tectures have been investigated for creating predictions
from EHRs. Doctor Al [11] employed a Recurrent Neural
Network (RNN) architecture to process patient temporal
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medical events and prescriptions, which were both rep-
resented as categorical features. The model was used to
predict future diagnoses, medication orders and visit time.

ICD-9 label assignments can be used to classify medical
notes using a bag-of-words model combined with RNN
[12]. The methods used to represent medical notes has
a demonstrable effect on performance when evaluated
on event prediction tasks such as patient mortality and
emergency room visits [13].

On the topic of EHR representation, Deepr [14] drew on
natural language processing techniques to represent diag-
noses and treatments as a sequence of tokens. Temporal
features were also discretized and represented as tokens.
These tokens were then transformed into a continuous
vector space through an embedding process. This repre-
sentation was fed into a Convolutional Neural Network
(CNN) architecture and evaluated on its ability to predict
future hospital readmission risk.

Autoencoders can be used to derive compressed rep-
resentations of physiological features as an input pre-
processing step [15]. The word2vec algorithm [16] can be
applied to generate an embedding over patient diagnoses
and medications [17]. The embedded representation was
fed into a CNN, whereby event temporality was han-
dled with 1-dimensional convolutions over the temporal
dimension of the input matrix.

Methods

In this section, we describe our data source, formally
identify and formulate the problem we want to solve,
and describe the machine learning models that we imple-
mented in an attempt to solve the stroke prediction task.

Data source
Our data was supplied by Tsuyama Jifukai Tsuyama Chuo
Hospital in Okayama Prefecture, Japan.

Patient cohort

The patient cohort was divided into two groups: case
patients and control patients. Case patients are patients
who will be diagnosed with stroke. The criteria for deter-
mining case patients were as follows. The initial set of case
patients had a first diagnosis of stroke between January 1,
2001 and January 1, 2015. The specific date range was cho-
sen arbitrarily, with the intention of accounting for latent
variables which could include access to newer drugs,
changes in data recording policies, and even socioeco-
nomic changes. The patient cohort was further filtered
to include only those who received the first diagnosis of
stroke between the ages of 45 and 95. This range was cho-
sen because there were at least 10 incidents of stroke per
age. Case patients were also selected to have at least one
medical diagnosis and at least one exam result at least one
day before the stroke diagnosis.
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To maximize both the number of case and control
patients, only a maximum of two control patients were
able to be selected per case patient. To be selected as a
control patient, the candidate must have the same birth
year and gender as the case patient, at least one medical
diagnosis and one exam result before the date the case
patient was diagnosed with stroke, and at least one med-
ical diagnosis and one exam result after the date the case
patient was diagnosed with stroke. Control patients also
did not have any diagnosis of stroke in their EHR. Case
patients without two control patients were excluded from
the final set of case patients.

After applying these criteria, 2725 case patients and
5450 control patients were identified. These patients
formed the dataset used for training and evaluating our
models.

Patient diagnoses

Each diagnosis was recorded in the EHR as a tuple com-
prising of the diagnosis date and the ICD-10 code [18]
representation of the diagnosis. For this study, codes
longer than four letters were truncated to be four letters
long. The use of codes longer than four letters comprised
around 5% of diagnoses across all patients. In fact, five
letter codes were the longest codes in the hospital's EHR
system. The truncation posed no problem because ICD-
10 codes form a prefix hierarchy. We must also note
that ICD-10 codes were derived through a mapping from
Japanese insurance codes to ICD-10 codes of the year
2013 edition. Our study supported a total of 6905 ICD-10
codes. Stroke cases were identified by the range of codes
spanning 160 to 169.

Patient exam results
We were supplied with blood and biochemical exam
results for each patient. Each exam was comprised of one
or more measured metrics, but an exam did not necessar-
ily contain the same set of measured metrics. For example,
a blood exam could contain results for red blood cell
(RBC) count but not every blood exam was guaranteed
to contain results for RBC count. There can also be two
measurements per metric. The blood exam metrics were:
(a) ALP (b) creatinine (c) Hb (d) hematocrit (¢) MCH (f)
MCHC (g) MCV (h) platelet count (i) RBC and (j) WBC.
The biochemical exam metrics were: (a) GGT (b) GOT
(c) GPT (d) HbAlc JDS (e) HbAlc NGSP (f) HDL-C (g)
LDL-C (h) triglyceride (i) uric acid and (j) blood glucose.
We experimented with a few strategies to account for
missing or optional data. We tried adding a categori-
cal value per metric to indicate if the measurement was
absent, as a means of differentiating zero values from
unrecorded values. Our models did not have any predic-
tive ability when this strategy was used. We tried a roll-
forward strategy, where each missing value was replaced
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with the last known recorded value. Our models also
failed to learn with this strategy. We then tried augment-
ing the roll-forward strategy by replacing missing values
with the mean measured value for the patient’s gender
using data from the training set, and our models were
able to start learning with this strategy. Finally, to address
the differences in the number of exam results between
patients, exam metrics were summarised by age, i.e. keep
only the newest recorded value for each metric at a given
age. We found that our models attained the best results
with this strategy.

Problem description

The purpose of this study was to investigate the possibil-
ity of predicting whether a patient will suffer from stroke
within a year of the last set of exam results or the last set of
medical diagnoses. A period of a year was chosen because
annual health exams are mandatory for full time employ-
ees in Japan [19]. Being able to predict future illness from
aregular exam would enable proactive forms of healthcare
measures to be taken.

We formulated the prediction task as a binary clas-
sification task. The inputs available to this task were a
patient’s historical exam results X,y and medical diag-
noses Xgiagnosis- 1he output y was a yes/no decision to
indicate if the patient would suffer from stroke in the next
365 days. The following models were implemented and
evaluated:

S ©)

y _fd <Xdiagnasis> 1)
y=Je <Xgagam> (2)
5] :fed (Xgi)ﬂgnosis’Xg;“m) ®3)

We wanted our models to be able to parameterize by itself,
the input features which are useful as predictors for the
stroke prediction task. To do this we used all features that
were available in the dataset, and encoded them as follows.
The input matrix X gl.)ﬂgnosis represented a patient’s 4™ up
to the it historical diagnoses:

(@) _ ( (h) (®)

diagnosis — \"diagnosis’ " " * ’xdiagnasis) | h = max(1,i—34),h #i (4)
The maximum number of diagnoses in X jiug0sis Was lim-
ited to 35 because this covered 99% of patients in the
dataset. At least half of the patients had 5 or more diag-
noses. There was a long tail of patients having more than
35 diagnoses.

A patient’s i/ diagnosis was represented by the vector
xgl.)agnosis. The patient’s gender was encoded as g € {0, 1}.
To account for the patient’s age at time of diagnosis, this
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value was included and denoted as as) € R. Each diagno-
sis ICD-10 code was encoded into a dense vector d ¢
R32; details of this encoding process will be described in
the next section. The number of days # since the (i — 1)
diagnosis was converted into a categorical value n, and
then encoded into a one-hot label vector c((;) € {0, 1}l
The categories were:

0 if # is unknown or the first record
00<m<?7

17<n<30

230<n<90 (5)
390<n <180

4 180 < n < 365

5365 <mn

ne =

The complete vector representation of the i diagnosis
was then formulated as %) = ((g), (ag)) c((;), d(i)>.

diagnosis

The input matrix X S;am represented the patient’s first to

j summarized exam results:

)] 1 2
Xexam - (xf(zx)am’xf(zx)um’ o

.,xmm> 10<j<20 (6)

No patient in the dataset had more than 20 years of exam

results, so Xé’}m will contain at most 20 results. At least
half of the patients had 5 years or more of exam results.
The patient’s /™ exam results was represented by the

vector xE,Zm The patient’s gender was encoded as g €
{0,1}. To account for the patient’s age when the exam
was conducted, this value was included and denoted as
ag ' € R. The number of days 7 since the j — 1™ exam
was conducted was converted into a categorical value 7,
as described in Eq. 5 and then encoded into a one-hot

9 ¢ {0, 1}, Each exam metric’s measure-

G

ment m was represented as e

label vector ¢
€ R. All exam metrics

were combined to form the vector e}(fe)mlts = (eij), e eEj))

The complete vector representation of the j&*
formulated as xemm = ((g) ( (’)) cg),e(]) )

exam was

results

ICD-10 encoding

We encoded the ICD-10 codes into the dense vector d.
Generally, N categorical values can be encoded as a one-
hot label vector {0,1}'*N, where a value of 1 in the i
column and zero in every other column is a vector rep-
resenting the /™ category. This encoding scheme works
when the value of N does not cause memory usage issues
during an algorithm’s runtime. For large N, it may be nec-
essary to apply dimensionality reduction techniques to
project the input space into a lower dimensional space. We
used a single hidden layer autoencoder network to project
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from the sparse input vector x;cp € {0, 1}°°% into a dense
vector d € R32. Our autoencoder network was defined as

d = tanh (xITCD Winput + bi,,put> (7)
Vdecoding = softmax (dTWoutput + boutput) (8)

The autoencoder network was then trained to learn
Winputs Binputs Woutpur» and Boygpye such that the cate-
gorical cross-entropy loss between ¥4, and xicp was
minimized. Equation 7 can then be applied to yield our
dense representation d. Our autoencoder network learned
a perfect reconstruction.

Model implementations

All neural network models presented in this paper were
selected through experimentation. These models were
selected by evaluating the F; score achieved on the
validation set. The experimentation (which included
architecture searches and meta-parameter selections) was
non-exhaustive; the models presented here make no
claims of being globally optimal with respect to predictive
power. Our experiments were conducted on a desktop-
class machine with a single Nvidia GTX 1080 video card.
We spent around 3 months conducting experiments, with
the runtime for each experiment ranging from a day up to
a week. We present our model descriptions as Keras 2.0.9
[20] code in the interest of being precise.

Model 1 was implemented as a RNN using a Gated
Recurrent Unit (GRU) module for recurrent connec-
tions. Text translation tasks, such as those described in
[21], have demonstrated the capability of RNNs to learn
from variable-length sequences and model dependencies
within the input sequence. GRU modules were chosen
over Long Short Term Memory modules because empir-
ical evidence have demonstrated it to be faster to train
while achieving comparable performance [22]. Listing 1
shows the model’s code definition.

Listing 1 Model 1 Keras code definition.

input = Input (shape=(3 39))

rnn_output = GRU(7 )(1nput)

dense_ output = Dense (3
activation="relu")\
(rnn_output)

dropout_output = Dropout (0.25)\
(dense_ output)

output = Dense (2,
(dropout_output)

model = Model (inputs=input,
outputs=output)

activation="softmax") \

Model 2 was implemented using a fully connected archi-
tecture. We experimented with CNN and RNN architec-
tures but did not achieve better performance. We handled
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temporal input using Keras’ TimeDistributed wrapper.
The code for this model is in Listing 2.

Listing 2 Model 2 Keras code definition
input = Input (shape=(20, 47))
td = TimeDistributed (Dense (100,
activation="tanh")) (input)
flat _td = Flatten() (td)
hidden 1 = Dense (1000,
activation="tanh") (f£lat_td)
hidden 2 = Dense (200,
activation="tanh") (hidden 1)
output = Dense (output dim,
activation="softmax") (hidden 2)
model = Model (inputs=input,
outputs=output)

Finally, Model 3 was implemented using a dual-input
architecture to handle both diagnoses and exam results
as input data. This model was a fusion of Models 1 and
2. Each type of input was processed by a separate branch
in the network and the outputs were then concatenated
together and processed by the rest of the network. To
speed up the training of this model, we transferred weight
values from the original neural network models of layers
sharing the same configuration. The code for this model
is in Listing 3. For clarity, we have omitted the code for
overriding the initial weights with transferred weights.

Listing 3 Model 3 Keras code definition.

diagnoses_ input = Input (shape=(35, 39))
diagnoses_output = GRU(74)\

(diagnoses_input)

exams_input = Input (shape=(20, 47))
fc_td = TimeDistributed (Dense (100,
activation="tanh")) (exams_input)
flat fc_input = Flatten() (fc_td)
exams_output = Dense (1000,
activation="tanh") (flat_fc_ input)

joint = concatenate([diagnoses_output,
exams_output], axis=-1)

joint dense 1 = Dense (1000,
activation="relu") (joint)

joint dense 2 = Dense (200,
activation="relu") (joint dense 1)

output = Dense (output dim,
activation="softmax") (joint dense 2)

model = Model (inputs=[diagnoses_input,
exams_input], outputs=output)

Our dataset was split into training, validation, and test
sets at a ratio of 70/15/15. The split was performed by first
dividing case patients into the aforementioned subsets. To
ensure that each split has the same ratio of case to control
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patients, control patients who were associated with a case
patient became members of the associated case patient’s
subset split. Keeping the ratios consistent across each split
was crucial when evaluating model performance.

All exam result values were scaled by subtracting the
mean and then dividing by the standard deviation. The
mean and standard deviation values were calculated from
the training set. The prevalence of stroke diagnosis was 1
out of 8 X gi4enosis inputs and 1 out of 9 Xy, inputs.

All models were trained to minimize a customised cat-
egorical cross-entropy loss. Adam optimizer [23] with
default parameters supplied by Keras was used. The ran-
dom seed was fixed for all models. We used mini-batches
of size 32 and trained for 500 epochs. Model 3 was trained
for 100 epochs.

Our loss function enhanced the standard categorical
cross-entropy loss by incorporating penalties for false pos-
itive and false negative predictions. Let Yt be positive
labels and Y~ be negative labels. The total number of false
positives fp and false negatives fu can be stated in the
terms of the zero-one loss

o) =" ta(frx)

ey~

fa(f) =" tor(f, %)
eyt

)

Then, a suitable surrogate for the zero-one loss can be
used to place an upper bound on these quantities and also
to make these quantities optimizable through stochastic
gradient descent methods [24]. We used log loss as the
surrogate since we wanted to incorporate these quantities
into the standard categorical cross-entropy loss. These
quantities satisfied the following inequalities

O E Dl x) = folf)
ieY
D tulf,x) = fa(f)
eyt

Where £;(f,x) = —p(x)logf(x). These quantities
were incorporated into the standard cross-entropy
loss as

(10)

(1>

fr*“(f)

() =a (Zﬂzz(f,xi)) + B () +yfr () (11)
ieY

The terms «, B and y were used to change the influence

of each loss term. Our training hyperparameters used

a=02,=5andy =5.

Results

Model performance

We illustrate the performance of our models using the
Receiver Operating Characteristic (ROC) curve which
displays the trade-off between sensitivity and specificity at
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each threshold. ROC curves are commonly used in medi-
cal decision making [25]. Sensitivity is defined as the sum
of true positive predictions divided by the total population
of positive conditions. Specificity is defined as the sum of
true negative predictions divided by the total population
of negative conditions.

To assist in the comparison of our models, we present
the area under the ROC curve (AUC) value, which is
the probability of ranking a randomly chosen positive
instance higher than a randomly chosen negative instance.
A better-than-random model will have an AUC value
greater than 0.5, while a perfect model will have an AUC
value of 1.0. [25]

Finally, we also include the 95% confidence interval of
the ROC curves calculated through bootstrapping and
stratified sampling. All ROC curves presented in this
paper were generated using pROC [26].

The ROC curves were computed for each model on
the validation and test sets. Model 1's ROC curves are
displayed in Fig. 1. Model 2’s ROC curves are displayed
in Fig. 2. Model 3’s ROC curves are displayed in Fig. 3.
We summarize the performance of each model as being
better-than-random, with Model 3 attaining the best over-
all predictive power when measured by AUC on both the
validation and test sets.

Custom loss function

We conducted an ablation study to determine the effi-
cacy of the custom loss function described in Eq. 11. For
all models, we kept the same neural network architecture
and training methodology but changed the loss function
to the standard cross-entropy loss. Model 1’s ROC curves
are displayed in Fig. 4. Model 2’s ROC curves are displayed
in Fig. 5.
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To evaluate Model 3, we tested two weight transfer con-
figurations. The first configuration tested weights trans-
ferred from models trained with the custom loss function;
the ROC curves are displayed in Fig. 6. The second con-
figuration tested weights transferred from models trained
with the standard loss function; the ROC curves are dis-
played in Fig. 7.

Exam importance

To determine which exams were considered to be impor-
tant by our trained model, we conducted ablation studies
using Model 3. For these studies, we combined the
validation and test sets and calculated the AUC attained
when an exam (comprised of one or more exam metrics)
was excluded from the input to the model. We excluded
the exam by setting the value of associated metrics to zero.
The results are displayed in Table 1.

Discussion

Model performance

The models that were implemented all demonstrate
better-than-random predictive power. This shows the via-
bility of using data already present in EHRs to predict a
future diagnosis of stroke. In this study, we only had diag-
noses and exam results data. To determine which of these
two data types would have more predictive power, we can
compare the performance of Models 1 and 2. On the vali-
dation set, we find that the diagnoses-only model attained
better performance (AUC 0.577 vs 0.553, from Figs. 1 and
2 respectively). On the test set, Model 2 attained bet-
ter performance (AUC 0.596 vs 0.560, from Figs. 2 and 1
respectively). Based on this, we think that the predictive
power of both diagnoses and exam results data are roughly
similar.

AUC: 0.577

Sensitivity

0.4

0.2

T T T T T T
1.0 0.8 06 0.4 0.2 0.0

Specificity

a

AUC: 0.560

Sensitivity

Specificity

Fig. 1 Model 1 ROC curves attained on the validation (a) and test (b) sets. The shaded area displays the 95% confidence interval. The AUC is

calculated from the solid line
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AUC: 0.553

Sensitivity

Specificity

a

calculated from the solid line

Fig. 2 Model 2 ROC curves attained on the validation (a) and test (b) sets. The shaded area displays the 95% confidence interval. The AUC is

AUC: 0.596

Sensitivity

Specificity

b

The performance attained by Model 3 shows the value of
integrating diagnoses and exam results data into a single
model. The result on the test set (AUC 0.669 from Fig. 3)
shows a clear performance improvement over Models 1
and 2. This suggests that the neural network was able to
exploit relationships between diagnoses and exam results
to deliver better predictions. We think that sourcing more
data types, such as qualitative (e.g. smoking habits, sleep
quality) or non health-related (e.g. income) data, to inte-
grate together could deliver even better predictions.

Custom loss function
The results of the custom loss function’s efficacy when
applied to Models 1 and 2 are mixed. For Model 1, the

custom loss function is better on the validation set by
around 0.018 AUC, but worse on the test set by around
0.013 AUC. For Model 2, the reverse is true. The stan-
dard loss function is better on the validation set by
around 0.033 AUC, but worse on the test set by around
0.026 AUC.

For Model 3, the results show the custom loss func-
tion to be better in all cases except for one. The model
initialized with weights transferred from models trained
with the standard cross-entropy loss was better by around
0.01 AUC on the validation set. However, the custom loss
function achieved better performance on the test set by
around 0.06 AUC. When comparing the results for the
standard cross-entropy loss model initialized with weights

Sensitivity

AUC: 0.580

Specificity

a

calculated from the solid line

Sensitivity

AUC: 0.669

Specificity

b

Fig. 3 Model 3 ROC curves attained on the validation (a) and test (b) sets. The shaded area displays the 95% confidence interval. The AUC is
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AUC: 0.559

Sensitivity

Specificity

a

AUC: 0.573

Sensitivity

Specificity

b

Fig. 4 Model 1 ROC curves attained on the validation (a) and test (b) sets, when trained to minimize the standard cross-entropy loss. The shaded
area displays the 95% confidence interval. The AUC is calculated from the solid line

transferred from models trained with the custom loss
function, the custom loss function was better by around
0.019 AUC and 0.048 AUC on the validation and test sets
respectively.

Overall, the custom loss function demonstrated per-
formance improvements in most cases. We think that
the custom loss function has a larger impact when used
with more complex models. We hypothesize that this is
because the weighted surrogate quantities for false posi-
tive and false negative predictions introduced useful regu-
larization terms to the standard cross-entropy loss. These
regularization terms enabled our more complex network
architecture to attain better results by attaching large
penalties to false positive and false negative predictions.

Since the prevalence of negative predictions outweigh
positive predictions, future work could investigate chang-
ing the weights so that false negative predictions are
penalized more than false positive predictions. We can
conclude that the custom loss function is useful when
training neural networks on binary prediction tasks with
imbalanced classes.

Exam importance

From the results displayed in Table 1, the top three
exams or inputs having the most effect on model perfor-
mance are blood count, platelet count, and the diabetes
exam. The inputs for the blood count exam (compris-
ing of Hb, hematocrit, MCH, MCHC, MCV, and RBC)

AUC: 0.586

Sensitivity

Specificity

a

AUC: 0.570

Sensitivity

Specificity

b

Fig. 5 Model 2 ROC curves attained on the validation (a) and test (b) sets, when trained to minimize the standard cross-entropy loss. The shaded
area displays the 95% confidence interval. The AUC is calculated from the solid line
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AUC: 0.561

Sensitivity

04

Specificity

a

calculated from the solid line

Fig. 6 Model 3 ROC attained on the validation (a) and test (b) sets, when initialized with weights transferred from models trained with the custom
loss function, and then trained to minimize the standard cross-entropy loss. The shaded area displays the 95% confidence interval. The AUC is

AUC: 0.621

Sensitivity

04
|

Specificity

b

has the most impact on model performance. When
removed, the model’s AUC dropped from 0.623 to 0.600.
Removing the platelet count input caused the AUC to
drop from 0.623 to 0.607. Removing the diabetes exam
inputs (comprising of HbAlc JDS, HbAlc NGSP, and
blood glucose) caused the AUC to drop from 0.623
to 0.608.

To understand the significance of these findings, we
investigated medical research literature for supporting
evidence. Hb level at time of acute ischemic stroke has
been found to be associated with larger infarcts and
increased infarct growth [27]. Higher red blood cell

distribution width values (calculated from MCV [28]),
was found to have a relation to stroke occurrence and
may be a possible predictor of future cardiovascular mor-
tality among persons with a history of stroke [29]. The
increase in platelet count has been found to be associ-
ated with ischemic stroke, while a decrease in platelet
has been found to be associated with hemorrhagic stroke
[30]. Some studies have found an association between
higher HbAlc levels and increased risk of stroke and
cardiovascular disease [31, 32].

While we have not conducted a thorough review of
medical literature, we think that our trained model has

AUC: 0.590

Sensitivity

Specificity

a

AUC: 0.609

Sensitivity

Specificity

b

Fig. 7 Model 3 ROC attained on the validation (a) and test (b) sets, when initialized with weights transferred from models trained with the standard
cross-entropy loss function, and then trained to minimize the standard cross-entropy loss. The shaded area displays the 95% confidence interval.
The AUC is calculated from the solid line
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Table 1 Impact on predictive performance of exams on Model 3

Model Inputs AUC 95% Cl

with everything 0.623 (0.614,0.632)
w/o Cholesterol Exam 0618 (0.610,0.627)
(HDL-C, LDL-C,

triglyceride)

w/o Diabetes Exam 0.608 (0.600, 0.617)
(HbA1c JDS & NGSP, blood

glucose)

w/o Kidney Exam 0.624 (0.615,0.632)
(creatinine)

w/o Liver Exam (GGT, GOT, 0615 (0.606, 0.623)
GPT)

w/o Platelet count 0.607 (0.599,0.616)
w/o ALP 0616 (0.607,0.625)
w/0 Blood count (Hb, 0.600 (0.591, 0.609)
hematocrit, MCH, MCHC,

MCV, RBC)

w/o Uric acid 0.627 (0.618,0.635)
w/o WBC 0.608 (0.600,0.617)

w/o = without

demonstrated that it is making predictions that has some
foundation in contemporary medical findings.

Limitations

The contents of our dataset did not include all risk factors
for stroke identified by other studies [3, 6]. Some of these
missing risk factors include but are not limited to systolic
blood pressure, smoking habits, treatment for hyperten-
sion, and electrocardiogram data. We could not include
this data because it was either not available, available
but not in sufficient quantities, or available but with-
held from distribution. As a result of not having suitable
data for these risk factors, faithful comparisons against
other published models and results, such as the Cox pro-
portional hazards regression model, were not performed.
A proper comparison necessitates replicating published
models with data available in our study, and then report-
ing on those results. These models are commonly used by
physicians to assess patient risk; without replicating those
baseline models we do not currently make claims of being
better than physicians. On the other hand, our models use
data not considered by those baseline models while deliv-
ering predictive performance. We think that this shows
value in incorporating data not used by standard models.

Conclusion

Accurate stroke prediction remains an unsolved problem.
However, this paper has presented a working neural net-
work model which serves as a starting point in what will
be an ongoing research topic. Along the way we developed
a working regularization technique for dealing with the
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low prevalence of stroke cases when generating predic-
tions for a bounded future timeframe. Low prevalence of
a particular condition or diagnosis is a common attribute
of medical prediction tasks, and the regularization tech-
nique we have presented is easily incorporated to improve
performance.

Future research would begin with an expansion of the
dataset to source more case and control patients, and
to also include the risk factors being evaluated by other
stroke prediction models. Sourcing more patients would
potentially allow the experimental setup of case and con-
trol patients to be closer in form to that of a cohort
study. Finally, the presented models could be further
improved through architectural changes or by incorporat-
ing advances in machine learning research.

The work presented in this paper forms part of the
foundation of a national (and potentially global) clinical
decision support system. A system like this can be applied
in areas such as preventive medicine, insurance forecast-
ing, and personalized healthcare. We think that such a
system will provide a net benefit to society in general.
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