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Abstract

Background: Headache disorders are an important health burden, having a large health-economic impact
worldwide. Current treatment & follow-up processes are often archaic, creating opportunities for computer-aided and
decision support systems to increase their efficiency. Existing systems are mostly completely data-driven, and the
underlying models are a black-box, deteriorating interpretability and transparency, which are key factors in order to be
deployed in a clinical setting.

Methods: In this paper, a decision support system is proposed, composed of three components: (i) a cross-platform
mobile application to capture the required data from patients to formulate a diagnosis, (i) an automated diagnosis
support module that generates an interpretable decision tree, based on data semantically annotated with expert
knowledge, in order to support physicians in formulating the correct diagnosis and (iii) a web application such that
the physician can efficiently interpret captured data and learned insights by means of visualizations.

Results: We show that decision tree induction techniques achieve competitive accuracy rates, compared to other
black- and white-box techniques, on a publicly available dataset, referred to as migbase. Migbase contains aggregated
information of headache attacks from 849 patients. Each sample is labeled with one of three possible primary headache
disorders. We demonstrate that we are able to reduce the classification error, statistically significant (o < 0.05), with
more than 10% by balancing the dataset using prior expert knowledge. Furthermore, we achieve high accuracy rates
by using features extracted using the Weisfeiler-Lehman kernel, which is completely unsupervised. This makes it an
ideal approach to solve a potential cold start problem.

Conclusion: Decision trees are the perfect candidate for the automated diagnosis support module. They achieve
predictive performances competitive to other techniques on the migbase dataset and are, foremost, completely
interpretable. Moreover, the incorporation of prior knowledge increases both predictive performance as well as
transparency of the resulting predictive model on the studied dataset.
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Background

Introduction

Headache disorders are an increasingly recognized health
issue in modern society, causing a substantial burden both
at personal and societal level [1, 2]. The fact that headache
disorders have been underestimated and undertreated
globally has been acknowledged by the World Health
Organization [3]. In Europe, more than 50% of the peo-
ple suffer from a headache attack at least once a year [4]
and they are the third most expensive neurological con-
dition, after dementia and stroke [5]. Three main classes
of headache disorders are recognized. The first class are
the primary headache disorders, in which no underlying
pathology can be identified, such as trauma or infection.
The main subdivisions of the primary headaches disorders
are migraine, tension-type headache and trigeminal auto-
nomic cephalalgias (TAC). Of the TACs, cluster headache
is the most prevalent type [6]. Secondly, all headaches
with an underlying pathology or that can be defined
as a symptom of an underlying disease, are called sec-
ondary headaches. Cranial neuralgias and facial pain form
a third class of headaches. Primary headaches, especially
migraine, account for the vast majority of headache bur-
den [7]. According to the 2016 Global Burden of Disease
Study migraine is the second leading cause of Years Lived
with Disability, and ranks 16th on Disability Adjusted Life
Years, which measures health loss due to both fatal and
non-fatal disease burden [8, 9].

Proper management of a primary headache disorder
requires a correct diagnosis. Often, patients keep track
of their attacks in some form of headache journal. A
plethora of variables such as the intensity and duration of
the attack, associated symptoms and whether or not any
triggers are applicable, must all be recorded for a certain
time span. The gold standard for headache classification
is the International Classification of Headache Disorders
(ICHD) [10]. This is a large document containing the dif-
ferent diagnostic criteria for each of the separate headache
disorders. Despite advances in recent years, many patients
still face diagnostic delay as has been shown for both
migraine [11-13] and cluster headache [14—16]. It is only
based on a specific and correct diagnosis that appropriate
management can be initiated which may include trigger
management as well as acute and preventive drug treat-
ment. The patients have to keep track of their headache
attacks/days and use of medication on a paper calendar,
which physicians then use to adjust the drug treatment
accordingly.

Due to aforementioned reasons, a considerable amount
of a neurologist’s time is spent on diagnosing and follow-
ing up headache patients, while especially the latter task
could be performed by first-line health-care providers in
order to reduce health-care costs [17]. Moreover, due to
the nature of the diagnosis process for the more common
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types of headache disorders, i.e. finding the best match
between criteria listed in the ICHD document and data
collected from the patient, a machine learning technique
could offer a significant added value. To increase the
efficiency of both the diagnostic and follow-up phase in
the treatment process of primary headaches, a decision
support system, composed of three components and a
shared back-end, is presented in this paper. A first com-
ponent is a mobile application that replaces the diary
that patients use to keep track of their headache attacks
and medicine consumption. The use of this application
is two-fold: it enables the collection of the required vari-
ables to formulate a diagnosis and it allows the user to
record his headache attacks or medicine consumptions
during the follow-up phase. In the smartphone era, such
a mobile application is more efficient and user-friendly
than the use of a paper calendar [18], since the user can
now register information concerning his/her attacks at
any time and at any place. Furthermore, it could alle-
viate the need to schedule a first appointment where
the calendar system is explained by the physician to the
patient. We present a web application as a second compo-
nent, enabling physicians to consult data corresponding
to a specific patient in the form of different visualiza-
tions, allowing for efficient interpretation. The third and
final component provides clinical decision support by
applying supervised machine learning techniques on data
collected by the mobile application, which is semanti-
cally annotated in the back-end to increase interpretability
and predictive performance. Moreover, expert knowledge,
defined in knowledge bases is incorporated into different
steps of the machine learning algorithm to increase trans-
parency. The resulting model can both guide the physi-
cian or mobile application with the queries they pose to
patients and serve as clinical decision support during the
diagnostic phase.

The contributions of this paper are two-fold. First and
foremost, we present a proof-of-concept of an end-to-
end system which, to our belief, could drastically increase
the efficiency of current treatment processes for pri-
mary headache disorder patients. Second, we demon-
strate the added value of semantically enriching data,
especially in critical domains such as health-care, by
presenting two experiments with positive results. The
remainder of this paper is structured as follows. In the fol-
lowing subsection, related work is discussed concerning
other mobile headache diaries and applications for deci-
sion support in the primary headache disorder domain.
In “Methods” section, the general platform architecture
is presented and each of the components is discussed.
Moreover, we present the setup for three experiments,
discussed in “Results” section. In a first experiment, we
compare different supervised classification techniques on
a publicly available dataset containing information about
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headache disorders and their corresponding classification.
Second, we evaluate several over-sampling techniques,
that generate artificial samples such that the class dis-
tribution becomes more uniform in order to combat
the data imbalance problem, which occurs when a clas-
sifier favors the majority class. Finally, we investigate
different data- and knowledge-driven feature extraction
algorithms, based on similarity metrics to each of the
class concepts. The goal of these feature extraction tech-
niques is to create extra variables that could help the
machine learning classifier in achieving higher predictive
performances. We discuss our results, and their impli-
cations, in “Discussion” section and conclude our paper
in “Conclusion” section.

Related work

It can be hard to get a clear and high-quality clinical
picture of a patient from a consultation alone. There-
fore, some form of self-monitoring is preferred, where the
patient keeps track of his or her headache attacks over
time [19-21]. Clearly, a mobile application is more user-
friendly than a paper calendar [22], since it allows patients
to register information at any time or place, without hav-
ing to worry about losing the calendar or forgetting to
bring it to a consultation. Quite some mobile headache
diary journal applications are already commercially avail-
able [23]. The most popular ones, in terms of number
of downloads and rating in the Android Play and Apple
App Store, include Migraine Buddy [24] and Headache
Diary Lite/Pro [25]. Unfortunately, while many solutions
exists for patients to keep track of all headache infor-
mation, the number of solutions that allow physicians
to efficiently interpret all collected data is very limited.
Most mobile applications provide an export functionality,
which allows users to print out a certain representation
of their data, which can be brought to a consultation.
This is still archaic, and does not solve the problem that
patients can forget to bring this printed version to a
consultation. Moreover, a physician can only analyze the
data, of which the representation is completely deter-
mined by the mobile application developers, when the
data is provided to him by the patient. A custom-made
application that visualizes all collected data allows the
physicians to analyze patient data anytime they want, and
allows them to tailor the data representation to their own
needs [26, 27].

A few researchers have already shown the potential
machine learning techniques can offer in diagnosing a
headache disorder. In Keight et al. [28], nine different
classifiers were compared on a dataset consisting of 836
primary headache cases, each containing 65 different vari-
ables. Each case is labeled as one of five classes (tension-
type, chronic tension-type, migraine with or without aura
and trigeminal autonomic cephalalgia), collected from
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two Turkish medical institutions. They show that a stack-
ing classifier achieves the best predictive performance, at
a cost of having very limited interpretability. The power
of ensembles for headache classification has also been
confirmed by Jackowski et al. [29]. Krawczyk et al. [30]
present a taxonomy of headache disorders, along with
corresponding diagnosis criteria from the ICHD docu-
ment. They compare 6 different classifiers and three fea-
ture selection techniques with each other, and with the
performance of a physician, on a labeled dataset of 579
subjects consisting of three classes (migraine, tension-
type and cluster headache). They show that reducing the
feature set can increase the predictive performance, and
that the automated feature selection techniques selects
a better subset of features than a physician in terms of
resulting predictive performance. Moreover, they show
that the predictive performance of C4.5, a decision tree
induction algorithm, closely matches the performance of
black-box counterparts. Celik et al. [31] introduce an
artificial immune algorithm that achieves high predic-
tive performance on a dataset of 849 samples with three
classes (migraine, tension-type and cluster headache). The
dataset is made publicly available and is used in this
study to allow for comparison with their and possible
future studies. Furthermore, they present a web-based
application that allows for patients to register informa-
tion concerning their headache attacks and for physi-
cians to consult this data. In 2017, an extension was
released, in which they evaluated an ant colony opti-
mization algorithm on their dataset. More importantly,
they give a clear overview of all prior research for pri-
mary headache disorder classification [32]. Yin et al. [33]
propose a rule-based and case-based reasoner, which is
an extension on a former proposed system [34], and
show that these reasoners outperform machine learn-
ing classifiers in terms of both precision and recall on
their dataset. Finally, it is shown by Garcia-Chimeno
et al. that ensemble techniques combined with feature
selection can drastically improve predictive performances
for headache classification [35], confirming the find-
ings of Jackowski et al. and Keight et al. While the dis-
cussed papers provide interesting insights of different
methodologies applied to headache disorder classifica-
tion, none of these, except for research by Celik et al,
uses a publicly available dataset or discusses and end-to-
end application with components for both patient and
physician.

As opposed to Celik et al., we advocate the use of
a white-box approach since interpretability and trans-
parency are important factors to boost the physicians
trust in the decision support system. To stimulate trans-
parency, we incorporate existing expert knowledge of
the headache diagnosis disorder domain into the differ-
ent phases of our machine learning approach. This is in
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contrast with a purely data-driven method, where exist-
ing knowledge is completely neglected. This hybrid mix
of both knowledge-driven and data-driven techniques
has other advantages than better interpretability alone. It
requires a lot less labeled data and is often faster than the
expensive training phase from data-driven methods. On
the downside, the predictive performance of the resulting
model depends entirely on the quality of the incorpo-
rated knowledge [36—38]. Fortunately, expert knowledge
in the headache disorder domain is of high quality and
can easily be encoded in a machine-interpretable for-
mat, as has been shown by Yin et al. The added value
of prior knowledge incorporation in the different steps of
a machine learning pipeline, for medical tasks in differ-
ent domains, has already been demonstrated by multiple
other studies [39—-41].

Methods

General overview

A general overview of the proposed decision support sys-
tem can be found in Fig. 1. As can be seen, the system is
composed out of three main components, with a shared
back-end. First, a cross-platform mobile application that
allows the patients to register all information concerning
their headache attacks in a user-friendly manner. Second,
a web application which enables physicians to efficiently
process all data collected by the mobile application. Third,
we present an automated diagnosis support module to
induce an interpretable predictive model from the col-
lected data in order to support the physician in making the
correct diagnosis.

Cross-platform mobile headache journal

In order for a mobile application to replace the current
paper calendars, it had to fulfill a list of requirements,
which was composed in consultation with neurologists
(authors VK and KP). First, a large number of the patients
in a hospital should be able to use the application. There-
fore, the application has to run on at least Android and
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iOS in order to cover the largest fraction (99.8% worldwide
[42]) of the market share. Furthermore, in order to min-
imize development time and future maintenance time, a
cross-platform solution should be preferred. Second, it
needs to collect all relevant data for the diagnostic phase
and this data has to be exportable in an open format
such that other software tools can access and use this
data. Third, the interface has to be intuitive and take
into account the fact that users are often suffering from
a headache at the time they will be interacting with the
application. As an example, the graphical interface should
not be too bright, since a lot of headache patients have
photophobia. However, none of the available applications
fulfill all the listed requirements. Hence, we developed
our own application, called Chronicals, using PhoneGap
[43], which allows for the application to be deployed on
Android, iOS and Windows Phone. Screenshots of the
application can be found in Fig. 2. Since the application
has been evaluated in the University Hospital of Ghent
(Belgium), all text is in Dutch. The data collected by the
application is stored locally on the phone in an encrypted
manner and securely sent to the server for subsequent
analysis by the physicians, once new data and an Internet
connection are available.

Diagnosis support module

One of the most important modules of the proposed deci-
sion support system is an automated diagnosis support
module. In this module, an interpretable predictive model
is generated from the data collected by our mobile appli-
cation, using supervised classification. Supervised classi-
fication is a sub-domain of machine learning in which
we try to find a hypothesis, or model, which maps an
input vector to one of K discrete classes, by the use of
labeled examples [44]. The entire flow of the automated
diagnosis support module is depicted in Fig. 3. The data
collected from patients, by means of our mobile applica-
tion, is stored in a back-end, which is shared with the web
application for the physicians. Additionally, a knowledge
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base is constructed using expert knowledge, the ICHD
document and ontologies such as SNOMED [45]. Both the
collected data and the prior knowledge is used to gener-
ate feature vectors which are fed to the machine learning
technique. Before feeding them, the class distribution in
the training dataset is balanced in order to make it more
uniform; feature selection is applied using a genetic algo-
rithm [46], which decreases the model complexity and
consequently the generalization capability; and the dif-
ferent hyper-parameters of the decision tree induction
algorithm, such as the split criterion and the maximum
tree depth, are tuned. Each component in the pipeline is
now discussed more in depth subsequently.

Feature extraction, semantic encoding and decoding

In order to generate feature vectors for the machine learn-
ing classification technique, the system first groups and
aggregates all the data per patient to form feature vec-
tors. Examples of values in these vectors could be the
average or maximum intensity of the attacks, the most
occurring locations, a probability of occurring symptoms
and so on. Next, the feature vectors are encoded in the
form of knowledge graphs [47]. Knowledge graphs are
data structures that efficiently and intuitively encode dif-
ferent entities and relationships between them. They can
be represented by a set of (subject, predicate, object)-
triples, where each triple corresponds to two nodes and
a connecting edge in the knowledge graph. The most
well-known standardized syntax for representing these
triples is called Resource Description Framework (RDF).
To transform these numerical feature vectors to knowl-
edge graphs, each (property, value)-pair from the original
feature vector is translated to a corresponding triple. An
example of an annotated sample of our dataset can be
found in Listing 1. All medical concepts, such as the indi-
cated symptoms occurring during the headache attack,
are linked with SNOMED (using the owl : sameAs prop-
erty), which is updated frequently, allowing our knowl-
edge base to be updated if new discoveries are made
within the headache disorder domain. These constructed
knowledge graphs are used in the data balancing and fea-
ture engineering steps of the machine learning pipeline in
our proposed system, which are discussed subsequently.
Since currently existing machine learning techniques can-
not deal directly with semantic data, a method to convert
a knowledge graph back to a numerical feature vector is
required as well.

Listing 1 An example of a semantically annotated sample in our
dataset.

@prefix chron:
< http:// chronicals.ugent.be/>

chron:headache#1 a chron:Headache ;
chron: hasDuration chron:DurationGroupF ;
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chron: hasIntensity chron:Severe ;
chron:hasSymptom chron:Lacrimation,
chron:Eyelid_Oedema,
chron: Conjunctival _Injection,
chron: Photophobia ;
chron:isCharacterizedByPain

chron: Stabbing ;
isLocated chron:Orbital ;
isType chron:Cluster ;
previousAttacks "2—4"

chron:
chron:
chron:

Feature engineering

After translating our numerical vectors to knowledge
graphs, we augment our dataset by engineering extra fea-
tures. One possibility are similarity scores to each class
concept, based on the principle of a K-Nearest Neighbors
(KNN) classifier. The use of such similarity measures is
two-fold. One the one hand, they are generic features that
can be added to each classification dataset in order to pos-
sibly enhance the predictive performance. On the other
hand, when the number of deviations between the char-
acteristics of the headache attacks of a certain patient and
the diagnostic criteria of the ICHD document is rather
high, an alert can be generated to indicate that the physi-
cian should pay special attention to the diagnosis of that
specific patient.

We can define two categories of techniques to calculate
these similarities. First, we can compute these similarities
between the feature vectors and a class concept vector,
using metrics such as Radial Basis Function (RBF) or
cosine similarity. To construct these class vectors, we can
calculate the medoid or centroid of all samples belonging
to that specific class. Second, we can calculate similar-
ities between the knowledge defined for each class in
our knowledge base and each annotated sample within
our dataset. Since both the knowledge and sample are
represented in the form of a graph, we cannot apply
the same metrics as in the aforementioned data-driven
approach. One way to define similarity between graphs
is through applying graph kernels [48]. Unfortunately,
these techniques cannot be applied directly to knowl-
edge graphs encoded in RDF, since these are directed
graphs which possess named edges. Losch et al. intro-
duced graph kernels specifically for RDF data [49]. More-
over, a fast approximation of the Weisfeiler-Lehman (WF)
kernel, which achieves state-of-the-art results, has been
proposed by de Vries et al. [50]. The WF kernel efficiently
counts the equivalent subtrees of depth d, by means of
an iterative relabeling algorithm. This knowledge-driven
approach can be applied in an unsupervised manner,
which is a significant advantage.

Data balancing
The headache disorder domain is very imbalanced.
Migraine headaches are far more common than, for
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example, cluster headaches. This imbalance is reflected in
the migbase dataset as well, which is used in the exper-
iments discussed further, since the fraction of samples
labeled with migraine, tension or cluster is 71.73%, 21.67%
or 6.60% respectively. This imbalance in the dataset can
significantly compromise the predictive performance of
the resulting classifier [51]. One way to combat this
problem is by generating artificial samples, using the
feature distributions of the minority classes reflected in
the data, which is called over-sampling. Two promi-
nent over-sampling techniques are Synthetic Minority
Over-sampling TEchnique (SMOTE) [52] and ADAptive
SYNthetic sampling approach for imbalanced learning
(ADASYN) [53], but these are entirely data-driven. In crit-
ical domains, such as health-care, a lot of prior expert
knowledge about the target domain is often available
which is completely neglected by these data-driven tech-
niques. Therefore, we semantically encoded the ICHD
document into Web Ontology Language (OWL)-files and
generated artificial data that complies to this predefined
knowledge. An example of a fragment of such an OWL-
file can be seen in Listing 2. Generating these samples
is straight-forward: depending on the type of restriction,
we sample from the possible choices (e.g. pick one if the
restriction is owl :oneValueFrom). The advantage of
this knowledge-driven approach is that, as opposed to
SMOTE or ADASYN, no data is required since it only
depends on the knowledge base. Furthermore, the method
is fast, since it just needs to sample values according to the
given knowledge for each of the features. An example of an
artificial sample, in RDF format, can be seen in Listing 1.
These samples can be transformed easily into feature vec-
tors, since the property and object of each triple represent
the feature and value respectively.

Machine learning classification technique

The existing supervised machine learning models can be
divided into two large categories. On the one hand, there
are black-box models, such as (artificial) neural networks
and support vector machines. These often achieve excel-
lent predictive performances but at a cost of having mini-
mal to no interpretability. While techniques exist that are
able to generate dependency plots between small subsets
of variables or an instance-based explanation about why
a certain prediction was made by the black-box model,
such as LIME [54], SHAP [55] and MFI [56], it cannot give
a global model-based explanation. On the other hand,
there are white-box models which achieve predictive per-
formances that tend to be lower than their black-box
counterparts, but posses excellent interpretability since
they are able to give both instance- and model-based
explanations. Moreover, the instance-based explanations
are often more comprehensible and accurate than those
generated by the previously enumerated ‘explanation’
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techniques. In order to lower the threshold of accep-
tance within critical domains, the experts should have
insights into how conclusions are reached by the under-
lying model. Therefore, a white-box model seems ide-
ally suited. Examples of white-box techniques include
Bayesian networks, ordered rule lists and decision trees.
Bayesian networks can be very computationally inten-
sive, making their use impractical in big data settings. An
ordered rule list seems like an ideal fit since they are very
analogue to the ICHD document, which forms the basis of
diagnosing headache disorders. Decision trees are closely
related to ordered rule list, as every path from the root
to a leaf in the decision tree corresponds to a rule. The
advantage of decision trees over ordered rule lists is that
it is easier to grasp the model globally, because of the tree
structure as opposed to a sequential structure. Moreover,
the tree structure provides another advantage: the deci-
sion process of the physician or the questionnaire in the
mobile application can be optimized such that the maxi-
mum number of questions posed to, or tests performed on
the patient is equal to the depth of the tree. Therefore, a
decision tree induction algorithm was chosen to construct
the predictive model for the automated diagnosis support
module.

Feature selection and hyper-parameter tuning
Incorporating uninformative features in the predictive
model both increases the model complexity and can con-
fuse the classifier, leading to a detriment in predictive
performance. Therefore, prior to fitting a model on the
training data, these uninformative features should be dis-
carded. One way to do this, is by applying a genetic
algorithm in which each individual’s genotype is presented
by a binary vector, corresponding to a subset of the total
feature set. The genetic algorithm efficiently tries to fit
instances of the classifier on different combinations of fea-
tures (individuals), measuring the predictive performance
after each fit. After each iteration (or generation), dif-
ferent individuals are merged together (cross-over) based
on their predictive performance (fitness). Moreover, each
individual can be mutated with a certain probability in
each generation, by flipping bits in the binary vector.

Next to the used feature set, the hyper-parameter set-
ting of the machine learning technique has an impact on
the resulting predictive performance of the model as well.
For most decision tree induction algorithms, the number
of hyper-parameters (such as maximum depth and split
criterion) and their corresponding ranges are rather small,
allowing for a grid search where each combination is tried
out exhaustively.

Dashboard for physicians
An important part of the platform is the presentation of
both the collected data and the decision trees, induced
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from this data, towards the physicians. To achieve this,
a responsive web application has been developed which
physicians can use to prepare a consultation with a patient
or as a support while forming a diagnosis. As done for
the mobile application, requirements were constructed in
consultation with neurologists. The dashboard has been
developed within the Java Spring framework [57]. An
example of one of pages displaying the inducted decision
tree to a physician is shown in Fig. 4.

Data store and API

All three components share the same back-end. The data
from both the mobile and web application are stored in
a MongoDB [58] and exposed through a REST API. A
MongoDB was preferred over a SQL database because of
its flexibility since it does not require the database scheme
to be defined prior to storing data in it. This is especially
useful in earlier (research) phases, where many variables
still tend to get introduced.

Evaluation setup

In what now follows, we describe the setup for three
experiments: (i) comparing different supervised classifi-
cation techniques on a publicly available dataset, called
migbase, (ii) investigating several over-sampling tech-
niques to combat data imbalance, and (iii) an evalua-
tion of different feature extraction algorithms, based on
metrics that express the similarity to each class con-
cept. All the code to generate the results was written
in Python 3.
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Data collection and user testing

For a period of four months, every headache patient vis-
iting the neurology department of the University Hospital
of Ghent, and diagnosed with a primary headache disor-
der, was invited to participate in a study wherein both the
current paper calendars as well as our mobile application
had to be used until the next consultation. Prior to this
study, a request (B670201627535, project EC/2016/0172)
was submitted to the ethical committee and approved.
Before participating, an informed consent was signed and
the application was shown and explained to the patient.
The goal of this study was two-fold. On the one hand, we
could collect initial data for further data analysis. On the
other hand, the users could be asked for feedback, such
that we could improve our mobile application in terms of
usability and functionality.

Migbase dataset

Currently, the amount of data collected with our mobile
headache journal is not large enough yet to generate sta-
tistically significant results. Therefore, an already-existing
dataset, called migbase, has been used to generate the
results in subsequent sections [59]. This dataset con-
tains answers to questionnaires of 849 different patients
from three different hospitals in Turkey. Each sample rep-
resents aggregated information from all questionnaires
per patient and consists solely of discrete attributes.
Each sample is labeled with one of the three cate-
gories of primary headache disorders: migraine (71.73%
of all samples), tension-type headache (21.67%) or cluster

Chronicals

Dashboard

Maandoverzicht

Aanvallen

Statistieken

Patiént

characterisation_stabbing <= 0.5-O

characterisation_pulsating <= 0.5 O

nasal_congestion <= 0.5 @

Beslissingsboom

previous_attacks <= 2.5-@

photophobia <= 0.5.O QO tension O migraine

phonophobia <= 0.5-O durationGroup <= 4.5 O
aggravanon <= 05 O O tension

O migraine

O tension

severity <= 150

location_bilateral <= 0.5 @

Fig. 4 Screenshot of the developed dashboard for physicians: inspecting the decision tree
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headache (6.60%). A summary of the variables in the
migbase dataset can be found in Table 1. Some of the vari-
ables, such as the symptoms tinnitus and hypacusia, only
had one unique value for all samples, and could thus be
discarded.

It is important to note that almost all of the variables in
the migbase dataset can also be collected with our mobile
application. The mapping from the migbase variables to
our variables can be found in Table 1 as well.

Compatrison of classifier techniques

While decision trees possess excellent interpretability,
we still need to assess the deficit in terms of predic-
tive performance, specifically in the headache diagnosis
domain. Therefore, we compared five decision tree-based
algorithms with Neural Network (NN) from the Keras
library [60] and Support Vector Machine (SVM), Logis-
tic Regression (LR) and KNN from the scikit-learn library

(2018) 18:98
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[61]. The decision tree-based techniques are: Classifi-
cation And Regression Tree (CART) [62] (scikit-learn),
c4.5 [63] (Orange [64]), GENetic Extraction of a Sin-
gle Interpretable Model (GENESIM) [65], Random Forest
(RF) [66] (scikit-learn) and eXtreme Gradient Boosting
(XGB) [67]. Both CART and C4.5 are naive, top-down
induction algorithms. RF and XGB are ensemble tech-
niques, which construct a collection of different decision
trees and use these to form a final prediction. These
techniques have been shown to outperform their naive
counterparts, both theoretically and empirically [68], but
at a cost of having much lower interpretability. Finally,
the GENESIM technique constructs a large ensemble
(constructed using all aforementioned decision tree tech-
niques) and converts this into one decision tree, retaining
as much of the positive properties of the ensemble as
possible while being fully interpretable. It should also be
noted that the CART algorithm was extended with error-

Table 1 The different variables of the migbase dataset, each of the symptoms is a binary variable

Variable Migbase Chronicals
Disorder Migraine, cluster, tension Migraine with or without aura, cluster, tension
Duration A: 0-4 seconds Continuous value (sec. between start and end time)
B:5-119 seconds
C:120-239 seconds
D: 240-899 seconds
E: 900-1799 seconds
F: 1800-10799 seconds
G: 10800-14399 seconds
H: 14400-259199 seconds
: 259200-604799 seconds
J: 604800+ seconds
Location Unilateral, bilateral, orbital Frontal (right, mid, left), parietal (right, mid, left), tempo-
ral (right, left), occipital (right, mid, left), cervical (right, mid,
left), orbital (right, left), mandibular (right, left), maxillar
(right, left)
Headache days <1;1—14;7 — 365; > 14; > 365, none Number of days a headache was registered
Severity Mild, moderate, severe Scale from 1to 10

Characterization Pressing, pulsating, stabbing

Previous attacks 2—4,5-910— 1920+

Aura duration None, hour, day

Symptoms Nausea, vomiting, photophobia, phonophobia,

aggravation (by movement), conjunctival

injection,

Pressing, pulsating, stabbing
Number of headaches registered
Derived from duration of headaches with aura symptoms

Nausea, vomiting, photophobia, phonophobia,
aggravation (by movement), lack of appetite, conjunctival

Triggers

lacrimation, pericranial, nasal congestion, rhinorrhoea,
eyelid oedema, forehead and facial sweating, miosis,
ptosis, speech disturbance, dysarthria, hemiplegic, visual
symptoms, sensory symptoms, homonymous symptoms,
agitation, motor weakness, vertigo, tinnitus, hypacusia,
diplopia, ataxia, decreased consciousness, nasal
symptoms, paraesthesias, aura development, headache
with aura

n/a

injection, lacrimation, nasal congestion, rhinorrhoea,
eyelid oedema, forehead and facial sweating, miosis,
ptosis, speech disturbance, visual symptoms, sensory
symptoms, motor weakness, facial flushing, aural fulness

Alcohol, sleep deficit, stress, menstruation, fatigue, food,
warmth, noise, light
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based pruning to increase generalization capability [69]. A
genetic feature selection algorithm was applied in order to
discard uninformative features and to enhance generaliza-
tion capability of the predictive model. Hyper-parameters
were tuned using a grid search for all algorithms, except
for XGB, RF and NN as their hyper-parameter space is
too large, making a brute-force search computationally
infeasible. For XGB and RF, Bayesian optimization was
used and the Hyperas [70] library was used to tune the
NN topology and other hyper-parameters. Predictions
were generated by applying 5-fold cross-validation in a
stratified fashion. We report two evaluation metrics. On
the one hand, we report the mean accuracy score across
the five folds and the corresponding standard deviation.
The accuracy score is defined as:

1 X

accuracy = N * 21: 15—y, (1)
with N the dataset size, 1 the identity function, y; the
prediction for sample i and y; the label of sample i. The
main advantage of this metric is that it is interpretable,
since it intuitively depicts the fraction of correctly clas-
sified instances. On the other hand, we also report the
mean unweighted Cohen’s kappa score [71] across the five
folds and its standard deviation, for its ability to give an
objective score, even when the data is imbalanced. The
kappa-score (k-score) is defined as:

= Po — Pe )
1—pe

with p, the empirical probability of agreement between

two annotators on the labels assigned to the sam-

ples, which corresponds to the accuracy (1), and

Pe the expected agreement when labels are assigned

randomly:

C
1 PR
pe =153 D \Gi 15 = cll* i | yi =l (3)

c=1

with C the number of classes and |{y;|y; = c}| or |{3i|; = c}|
the number of samples or predictions labeled with ¢
respectively.

Data balancing with prior knowledge

We compared the knowledge-driven oversampling
method to SMOTE, ADASYN, a baseline where no sam-
pling techniques are applied and using adjusted weights,
where samples from the minority class are given higher
weight in the calculation of the split criterion of the
induction technique. For the over-sampling techniques,
artificial samples were generated such that the number
of samples in each class was equal. We then generated
predictions using the CART algorithm from scikit-learn
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on the transformed data with 5-fold cross-validation.
No feature selection, pruning or hyper-parameter tuning
was applied in order to reduce the required computa-
tional time per run. In total, we ran 100 simulations and
measured the mean and corresponding standard devia-
tion across these simulations of the following metrics:
(i) sensitivity and specificity for each class, (ii) the total
accuracy, and (iii) the unweighted Cohen’s «-score. Then,
bootstrap testing was applied to test whether the results
from two sampling techniques did not stem from the
same underlying distribution.

Knowledge graph kernels

We implemented the fast approximation of WF, pro-
posed by de Vries et al. [50], in Python on top of the
rdflib [72] package. Then, we created a knowledge graph
for each class concept by taking the union of all val-
ues from each restriction, as can be seen in Listing 2,
and removing all triples that contain label information
(such as triples containing the chron:isType prop-
erty) in both the annotated samples and our knowledge
base. An example, again for the cluster headache class, is
depicted in Fig. 5. We compared the WF kernel with a
data-driven RBF kernel by measuring the predictive per-
formance when no machine learning classification tech-
nique is used, by just simply predicting the class with
minimum distance. Moreover, we also compared them to
each other by appending the calculated features to our
feature vectors and fitting a decision tree from scikit-
learn (CART) with no hyper-parameter tuning, pruning
or feature selection (again to reduce the required com-
putational time). We applied the same setup as before:
100 simulations with 5-fold cross-validation where we
calculated the accuracy and «-score. Again, both the
mean and standard deviation, calculated across the dif-
ferent simulations are reported. Afterwards, bootstrap
testing was again applied to test whether the values from
two techniques did not stem from the same underlying
distribution.

Results

Comparison of classifier techniques

The accuracies of the different algorithms can be found
in Table 2. As we can see, all techniques, including
the decision tree induction algorithms, perform very
well on the migbase dataset and are competitive to
each other, both in terms of global accuracy and the
Cohen «-score.

Data balancing with prior knowledge

The sensitivity and specificity scores for each class indi-
vidually and the total accuracy can be found in Table 3.
The mean accuracy and kappa scores can be found in
Table 4. The margin for improvement is rather small,
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Listing 2 An example an OWL-file in the knowledge base. Here, the diagnostic criteria for cluster headache are defined.

@prefix
@prefix
@prefix
@prefix
@prefix
@prefix

chron: < http://chronicals.ugent.be/>

owl: < http://www.w3.0rg/2002/07/owl#>

rdf: < http://www.w3.0rg/1999/02/22 —rdf—syntax—ns#>
rdfs: < http://www.w3.0rg/2000/01/rdf—schema#>

xml: < http://www.w3.org/XML/1998/namespace >

xsd: < http://www.w3.org/2001/XMLSchema#>

chron: Cluster a owl: Class ;
<!—— We define each class as a intersection of Restrictions ——>
rdfs :subClassOf [ owl:intersectionOf
<!—— Cluster headache can be characterized by these symptoms ——>
[ a owl: Restriction ;
owl:onProperty chron:hasSymptom ;
owl:someValuesFrom [ rdf:first chron: Conjunctival_Injection ;
rdf:rest [ rdf:first chron:Lacrimation ;
rdf:rest rdf: first chron:Nasal_Congestion ;
rdf:rest [ rdf:first chron:Rhinorrhoea ;
rdf:rest [ rdf:first chron:Eyelid_Oedema ;
rdf:rest [ rdf:first chron:Sweating ;
rdf:rest rdf: first chron:Miosis ;
rdf:rest [ rdf:first chron:Ptosis ] ] 1 1 1 1 11
<!—— Duration between 15 and 180 minutes (E=900—1799s;
[ a owl: Restriction ;
owl:onProperty chron:hasDuration ;
owl:oneValueFrom [ rdf:first chron:DurationGroupE ;
rdf:rest [ rdf:first chron:DurationGroupF | | ],
<!—— Cluster headache has the highest pain intensity ——>
[ a owl: Restriction ;
owl:onProperty chron:hasIntensity ;
owl:oneValueFrom [ rdf:first chron:Severe ]
<!—— Cluster headache has a unilateral location
[ a owl: Restriction ;
owl:onProperty chron:isLocated ;
owl:oneValueFrom [ rdf:first chron:Unilateral ;
rdf:rest [ rdf:first chron:Orbital ] ] ] ] ;
<!—— Link the class concept to the SNOMED-CT ontology ——>
owl:sameAs < http://purl.bioontology.org/ontology /SNOMEDCTI/193031009 >

F=1800—10799s)——>

1,

(and often orbital) ——>

since the accuracy of the induced decision tree is already
97.85% originally. Still, we can observe that using adjusted
weights or ADASYN deteriorates both the accuracy and
the k-score of the baseline, with statistical significance
(p < 0.05), while using Prior Knowledge improves both

metrics with statistical significance. If we look at the sen-
sitivity and specificity of each class individually, we notice
that using Prior Knowledge improves either the sensitiv-
ity or specificity with statistical significance while having
a similar score for the other metric, compared to the

Cluster headache sample

chron:Orbital

chron:hasSymptom .
chron:isLocated

high
similarity

chron:headache#105

chron:hasIntensity

chron:Severe

Tension headache sample|

chron:Phonophobia
chron:Bilateral

chron:hasSymptom .
chron:isLocated

low
similarity

Prototype graph

chron:Severity

chron:Severe
rdf:type

chron:Orbital

chron:hasintensit
Y chron:isLocated

chron:Cluster chron:Location

chron:isLocated

chron:Unilateral
rdf:type

chron:headache#102

chron:haslIntensity

Fig. 5 The methodology to calculate similarities between semantically annotated samples and class concepts in our knowledge base
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Table 2 The different techniques with their corresponding

accuracy and k-score on the migbase dataset

Algorithm Accuracy Cohen «

GENESIM 0.983510 £ 0.0095 0.958342 £ 0.0237
c4.5 0.981148 £ 0.0087 0.957122 £0.0188
RF 0.981148 £ 0.0087 0.957091 £ 0.0189
LR 0.979992 + 0.0079 0.953758 £ 0.0181
XGB 0.978781 +£ 0.0080 0.951446 £ 0.0180
SVM 0.977556 £ 0.0122 0.948858 £ 0.0273
KNN 0.976463 £ 0.0144 0.945615 £ 0.0333
CART 0.976435 &£ 0.0065 0.946280 £ 0.0141
NN 0.951250 £ 0.0189 0916672 £ 0.1471
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baseline, thus improving the predictive performance for
each class individually.

Knowledge graph kernels

The predictive performance metrics for the different fea-
ture extraction techniques are listed in Table 5. We notice
that applying solely the RBF kernel achieves a better pre-
dictive performance than the original feature set, but with
no statistical significance. On the other hand, if we append
features extracted using this kernel to our original dataset,
we confuse our classifier and get a detriment with statis-
tical significance. This is not the case when we append
the calculated features using the WF kernel, where we
notice a slight improvement, although with no statistical
significance (p > 0.05). Moreover, we are able to achieve
an accuracy rate of 93.39% with the WF kernel, with-
out using a single labeled sample or a machine learning
algorithm.

Discussion

In total, 32 patients, that were diagnosed with a primary
headache disorder by a physician, used the application and
456 headaches were registered in the system. We received
positive feedback from both users and physicians, but
no formal usability study, has been conducted. While a
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mobile application has its advantages over a paper cal-
endar, including being available at any time and place,
and not having to worry about losing it, such a study is
required to further clarify the usability of the application
as compared to the paper diary.

The fact that decision trees are competitive to, and
even outperform some of the other techniques can be
explained by the analogy between decision trees and the
ICHD document, which can both be boiled down to
if-then rules. Because of their excellent interpretability,
they therefore form a perfect match as a decision sup-
port tool. While GENESIM achieves the best accuracy
and Cohen’s k-score, the difference is rather small and the
time needed to train the model is several orders of magni-
tude higher than the other techniques (hours as opposed
to minutes). Therefore, c4.5 or CART are more suited
candidates in practice. One possible improvement would
thus be to reduce the computational complexity of the
GENESIM technique.

Using prior knowledge to balance the class distributions
in the dataset enhances both the predictive performance
for each minority class as the global predictive perfor-
mance as opposed to data-driven techniques. Moreover,
transparency is enhanced since the knowledge base in
our system, which is constructed using knowledge defined
by experts, impacts the resulting predictive model. This
makes it an ideal pre-processing step for medical or other
critical domains. Finally, since the classification which
uses only similarity scores calculated by the WF-kernel, in
an unsupervised fashion, performs not much worse than
when a decision tree is fit on all data, this technique seems
ideally suited to solve a ‘cold start’ problem (when too few
labeled examples are available).

While the migbase dataset provides an opportunity for
us to test the feasibility of the automated diagnosis sup-
port module, the data quality is very high and the dataset
only contains three classes. It is therefore of primal impor-
tance, before deploying the proposed system in a real
clinical setting, to re-evaluate the system on a larger, more
realistic dataset. This dataset should contain a greater
number of different classes (preferably up to the third digit

Table 3 The mean sensitivity and specificity scores with corresponding standard deviations for each class individually on the migbase
dataset for the original training set and the transformed datasets obtained using three over-sampling techniques

Technique Migraine Tension Cluster

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
Prior knowledge 09848 4+ 0.003* 0.9753 £ 0.006 0.9682 £ 0.007 09875 4+ 0.003" 09775+ 0011+ 0.9973 £ 0.002
ADASYN 0.9839 4+ 0.003 09771+ 0.005" 0.9683 4+ 0.007~ 0.9836 4+ 0.003~ 09421 +£0.022~ 0.9969 =+ 0.002
SMOTE 0.9845 40,003 09767 + 0006 0.9721 4+ 0.008" 0.9845 £ 0.003 0.9307 £ 0.024~ 0.9967 £ 0.002
Sample weight 0.9830 4 0.003 0.9742 £ 0.007 0.9696 £ 0.008 0.9827 £ 0.003~ 0.9250 £ 0.024~ 0.9969 £ 0.002
None 0.9834 4+ 0.003 0.9744 £+ 0.006 0.9695 £ 0.008 0.9850 £ 0.003 0.9556 + 0.021 0.9974 + 0.002

Acellis marked as .+ or .~ if the result is a statistically significant (o < 0.05) improvement or detriment respectively compared to the baseline (None), according to a

bootstrap test
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Table 4 The mean accuracies and k-scores on the migbase
dataset for the original training set and the transformed datasets
obtained using three over-sampling techniques

Technique Accuracy Cohen k

Prior knowledge 0.9807 4 0.0025™ 09558 4 0.0057 "
ADASYN 0.9775 £ 0.0026™ 0.9490 £ 0.0058™
SMOTE 0.9782 4+ 0.0034 0.9501 4+ 0.0077
Sample weight 0.9762 £ 0.003~ 0.9457 £ 0.0069~
None 0.9785 £ 0.0029 0.9508 + 0.0066

A cell is marked as .* or .~ if the result is a statistically significant (o < 0.05)
improvement or detriment respectively compared to the baseline (None),
according to a bootstrap test

of the ICHD classification). Moreover, detection of red
flag signs that could indicate a secondary headache should
be built in the system as well [73].

The semantic encoding and decoding phase in the
proposed automated diagnosis module could be made
redundant if we extend machine learning algorithms to
deal directly with semantically annotated data, a research
domain still in its infancy [74, 75].

We could facilitate trigger management by extending
our mobile application in order to automatically detect
possible triggers and motivate users to adjust their lifestyle
to avoid these possible triggers.

Conclusion

In this paper, we presented a proof-of-concept of an end-
to-end decision support system in order to diagnose and
follow-up primary headache patients. We believe that the
deployment of such a system in a neurology department
could significantly increase the efficiency of the different
processes, thus possibly reducing health-care costs. The
decision support system consists of three large compo-
nents and a shared back-end: a mobile application for the
patients, a web application to visualize the collected data
to the physicians and an automated diagnosis module.
For the automated diagnosis module, decision trees are
an ideal candidate as the modeling technique since they

Table 5 The accuracy rates on the public migbase dataset for
the different feature extraction techniques

Technique Accuracy Cohen k

Only RBF 09788 £0.0115 0.9522 £ 0.0251
Original + RBF 0.9692 £+ 0.0167~ 0.9303 + 0.0368~
Only WF 0.9339 £ 0.0384~ 0.8588 4 0.0809~
Original + WF 0.9795 £ 0.0155 0.9534 +0.0342
Original + WF + RBF 0.9692 £+ 0.0150™ 0.9301 £ 0.0323™
Original 0.9784 £ 0.0107 0.9508 + 0.0237

A cellis marked as .* or .~ if the result is a statistically significant improvement or
detriment respectively compared to the baseline (Original), according to a
bootstrap test
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possess excellent comprehensibility and because their pre-
dictive performances are shown to be competitive to and
even outperform other techniques. Moreover, we show
the potential of applying both data-driven as knowledge-
driven techniques in each step of the machine learning
pipeline by presenting: a technique to balance the dataset
which outperforms the current state-of-the-art on the
migbase dataset and an unsupervised feature extraction
technique, based on WF kernels that measure graph sim-
ilarity. Furthermore, on top of the gain in predictive per-
formance, transparency and interpretability are enhanced
since knowledge, provided by experts, is directly incor-
porated in the machine learning algorithm, which can
lower the threshold of adaption by physicians. Future
work includes re-running all experiments on the data col-
lected by our application and with a more fine-grained
classification, once more data is available. Furthermore,
we would like to extend our mobile application with user
behavioral pattern recognition in order to automate event
logging as well as trigger detection for headache disorders.
This way, automated feedback can be given to patients in
order to adjust their lifestyle to try avoiding these triggers
and hence reduce the amount of headache attacks. More-
over, current existing machine learning techniques could
be extended such that they are able to directly deal with
semantically annotated data, alleviating the need for the
semanti ¢ encoding and decoding phase in the automated
diagnosis support module.

Endnotes
Lhttps://github.com/IBCNServices/ GENESIM
2http://www.migbase.com/migbase_dataset.xls
3https://github.com/IBCNServices/HeadacheDSS
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