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Abstract

prescribing patterns for major metropolitan areas.

Background: To characterize the regional and national variation in prescribing patterns in the Medicare Part D
program using dimensional reduction visualization methods.

Methods: Using publicly available Medicare Part D claims data, we identified and visualized regional and national
provider prescribing profile variation with unsupervised clustering and t-distributed stochastic neighbor embedding
(t-SNE) dimensional reduction techniques. Additionally, we examined differences between regionally representative

Results: Distributions of prescribing volume and medication diversity were highly skewed among over 800,000
Medicare Part D providers. Medical specialties had characteristic prescribing patterns. Although the number of
Medicare providers in each state was highly correlated with the number of Medicare Part D enrollees, some states
were enriched for providers with > 10,000 prescription claims annually. Dimension-reduction, hierarchical clustering
and t-SNE visualization of drug- or drug-class prescribing patterns revealed that providers cluster strongly based on
specialty and sub-specialty, with large regional variations in prescribing patterns. Major metropolitan areas had
distinct prescribing patterns that tended to group by major geographical divisions.

Conclusions: This work demonstrates that unsupervised clustering, dimension-reduction and t-SNE visualization can
be used to analyze and visualize variation in provider prescribing patterns on a national level across thousands of
medications, revealing substantial prescribing variation both between and within specialties, regionally, and between
major metropolitan areas. These methods offer an alternative system-wide and pattern-centric view of such data for
hypothesis generation, visualization, and pattern identification.
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Background

Pharmaceutical spending accounts for 5-25% of total med-
ical care expenditures in Europe, and 16% of all Medicare
expenditures in the United States. Variation in prescrib-
ing patterns is common, even within groups of providers
with a similar scope of practice and patient mix. Pre-
scribing variation may be due to provider preferences,
patient case-mix, deviation from practice guidelines,
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insurance formulary restrictions, and occasionally fraud
[1-5]. Understanding patterns of prescribing variation
is critical to improving healthcare delivery. Visualizing
prescribing variation in ways that accurately reflect under-
lying data structure can be challenging. Good data visu-
alization can provide a “big picture” of complex data,
especially variation and quantitative changes in large and
complex data sets [6—8]. In this manuscript, we apply non-
linear visualization methods to Medicare Part D provider
prescribing data to evaluate patterns at the level of col-
lections of prescriptions, as opposed to a univariate, per-
medication approach. This reveals substantial provider
variation at the local, regional and national levels, even
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when controlled for provider specialty and medication
volumes.

Prescription claims data capture the volume, diver-
sity and cost of medications prescribed by individual
providers. For example, the 2013 Medicare Part D pre-
scribing pattern data set consists of 1,049,381 providers
and 3449 prescription drugs [9]. Because the claims are
linked to thousands of individual provider treatment deci-
sions, their patterns are an objective measure of how med-
ical care is actually delivered. They quantify a pattern of
medical practice within the population a provider treats.
Lists of medications and associated claim volumes per
provider, termed feature vectors, can be used to cluster
providers with similar prescribing patterns. Cluster mem-
bership can then be compared to independent data such
as geographic location, medical specialty, patient case
mix or outcomes. Unsupervised clustering methods are
very efficient at classifying data with hundreds or thou-
sands of features, particularly when the gold-standard or
ground-truth for cluster membership is unknown (e.g.
how providers should be grouped).

Pattern recognition in high-dimensional data, such as
large prescribing claims data sets, is difficult. Thus, visu-
alizations that accurately reflect feature variation in high
dimensional data are extremely useful for data explo-
ration, inference and decision making [6, 7, 10]. Standard
visualization methods for high dimensional data use clas-
sical multidimensional scaling [11] or Principal Compo-
nents Analysis (PCA) [12]. These methods involve linear
transformations that project multidimensional data into
two or three dimensions, while preserving relative dis-
tances between data points. When applied to very high
dimensional data, however, PCA and other linear trans-
formation methods often result in dense visualizations
that can overwhelm subtle sub-groupings and do little to
highlight patterns in the underlying data.

Recently, van der Maaten and colleagues developed t-
distributed stochastic neighbor embedding (t-SNE) [13],
a non-linear mapping and dimension reduction method
that balances cluster display at the local and global levels.
This makes t-SNE is ideally suited to visualizing medi-
cation prescribing pattern variation for very large data
sets. t-SNE has been used to improve visualization of
patterns in single nucleotide polymorphisms [14], single-
cell RNAseq analysis [15], drug synergy interactions [16],
prognostic tumor markers [17], and electronic medical
record data [18].

Variation of regional prescribing practices has impor-
tant implications for behavioral, economic, and health-
care outcomes [19, 20]. To our knowledge, there are
currently no published analyses that examine and visual-
ize geographic variations in drug co-prescribing patterns
at a national level, based on collections of medications,
at a national level, irrespective of provider specialty.
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Regional variation in health services delivery has been
well described [21-27]. In contrast, little is known about
regional patterns of prescription drug utilization beyond
focused studies of prescribing patterns for antibiotics [1],
chemotherapy [28], cholinesterase therapy [29], psychi-
atric medications [30], and statin cholesterol lowering
agents [31]. In these studies, patterns have been found
to reflect the nature and complexity of health status of
patient populations [32, 33], patient socioeconomic fac-
tors [34-37], provider preferences with self-reinforcing
regional influences [38—40], social network influence (i.e.
“prescriber contagion”) [41], and composition of special-
ties and Medicare formulary [40].

The focus of this work is twofold. First, t-SNE is used
to visualize the prescribing patterns of Medicare Part D
providers based on the volumes and types of medica-
tion claims, and unsupervised agglomerative clustering
is used to validate groupings of providers identified by
t-SNE. Second, we identify and visualize regional prescrib-
ing pattern differences among Medicare Part D providers
across specialties, and variations in the prescribing pat-
terns across medical specialties, states, and geographic
regions in the United States. That such variations exist
is not surprising. The innovation here is that an entire
national healthcare data set with hundreds of thousands
of providers, millions of patients, and thousands of drugs,
can be visualized in a way that identifies prescribing
patterns linked to practitioner specialty and regional
variation.

Methods

Medicare Part D data

Medicare Part D 2013 provider prescribing data were
downloaded directly from the Center for Medicare Ser-
vices (CMS) [9]. A provider refers to any individual who
is licensed to prescribe medications and appears in the
data set. The data were packaged as three files: 1) a table
of providers and their associated annotations, including
their unique national provider identifier (NPI), address,
summary statistics on numbers of claims, costs, etc.; 2)
a table of drugs and their associated annotations includ-
ing flags for whether they are narcotics, DEA schedule II
or III, or categorized as Beers (medications to avoid in
older adults [42]), as well as summary statistics (e.g. num-
bers of claims, costs, etc.); and 3) a table of NPI, drug
(both brand and generic names, which taken together are
unique) and the number of claims, duration of prescrip-
tion, and cost for each provider-drug combination. This
third file represents a bipartite graph specifying connec-
tions between disjoint sets of nodes (i.e. providers and
drugs) that are linked by a corresponding measure (e.g.
number of claims). To comply with data privacy require-
ments, values in the provider-by-drug matrix less than
11 were set to 0 by CMS prior to data release [43].
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All formatted data were imported into Matlab R2016a
(Mathworks, Natick MA) or Mathematica 11.1 (Wolfram,
Champaign IL) for further analysis and visualization.

Feature vector construction

For analysis, a feature vector was created for each provider
Q; = {aj1,®2...0;;,} where i is the provider number
and «; is the number of Medicare outpatient prescription
claims for drug o; attributed to provider i. The total num-
ber of providers is designated by #, and the total number of
individual drugs by m. A restriction of the data set, imple-
mented by CMS to ensure non-identifiability of Medicare
recipients, is that if o;; < 11, then «;; = 0. With this con-
straint, the summary number of claims associated with
a particular provider (or drug) in the CMS data set may
not be exactly equivalent to the sum of the provider-by-
drug matrix. Thus, while there were 1,049,381 providers
and 3449 drugs in the data set, there were only 808,020
providers with > 11 claims for at least one drug. Similarly,
there were 2892 drugs with > 11 claims from at least one
provider.

Supporting data sources

Additional file 1: Figure S1 shows a schema of the data
sets used for this study, which are all publicly available.
The number of Medicare Part D participants by state were
obtained from CMS public use files (boxes 1, 2, and 3) [44].
To collapse individual drugs into categories, we used the
National Drug File from the Veterans Administration [45],
followed by further, minor manual aggregation to result in
198 drug categories (Additional file 1: Figure S1, box 4).
For some analyses, we consider providers practicing in 52
metropolitan areas with a population > 1,000,000 by the
July 2012 Core-Based Statistical Areas (CBSAs) estimate
[46]. We link CBSAs to county and Federal Information
Processing Standards (FIPS) codes using a look-up table
from the National Bureau of Economic Research (box 8)
[47]. We linked providers to their FIPS county codes using
a table from the U.S. Department of Housing and Urban
Development website (box 5) [48]. Finally, we obtained
population estimates of Medicare Part D enrollees by
county from the Kaiser Family Foundation website [49],
where we consider both Medicare Advantage and the
Prescription Drug Plan (box 7) enrollees.

Visualization, clustering, and statistical methods

Providers with similar prescribing patterns were iden-
tified by agglomerative clustering implemented in Wol-
fram Mathematica. Ward’s minimum variance criteria,
which minimizes the total within-cluster variance [50],
was used to determine cluster membership and num-
ber. Clusters were also grouped by provider geograph-
ical region, state, and medical specialty. Visualization
of providers based on their prescribing patterns, we
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used the fast t-distributed stochastic neighbor embed-
ding (t-SNE) dimension reduction method of van der
Maaten and Hinton [13]. Given the size of the data
set, with > 10° providers, we used the fast Barnes-Hut
implementation of t-SNE in Matlab [51] with 50 initial
dimensions based on principal component analysis pre-
processing to improve computational efficiency. Unlike
with clustering methods, there are no accepted stan-
dards for selecting t-SNE visualization hyperparameters,
although such guidelines have been suggested [13, 51, 52].
We selected hyperparameter values within the range sug-
gested by van der Maatan et al. [13, 51, 52] based on
the data set size and parameter numbers, computational
efficiency, t-SNE algorithm convergence, and final embed-
dings that minimized the cost-function. Reproducibility of
the t-SNE visualization results was accomplished by fixing
the pseudo-random number generator seed parameter.

Sensitivity analysis and dimensional reduction

We performed sensitivity analysis by varying initial PCA
dimensions as well as perplexity and selected parameters
that both minimized t-SNE cost and resulted in visual
clarity of the embedding. For the visualizations used in
this manuscript, we used a perplexity of 40, and theta =
0.5. The algorithm performed 300-1500 iterations per run
and we selected the result with the minimum t-SNE cost
function (error rate) [13]. Dimensional reduction to visu-
alize the CBSA groupings CBSAs was accomplished using
classical multidimensional scaling [11] implemented in
Matlab using a CBSA-CBSA distance matrix with one
minus correlation as the metric. Comparisons of the dif-
ferences in proportion of provider fractions between geo-
graphic regions was performed using the Mann-Whitney
U test.

Measures of skewness
We used the bootstrap implementation of the Gini index
[53-55], to quantify skewness of the claims distributions.
The Gini index was calculated using the formula:
Y (2i—n— 1

nu

G =

where # is the number of observations (e.g. providers,
drugs), «; is the ith value (e.g. number of prescriptions
with > 11 claims), with ordering such that x; < x;11. G
normally varies {0,1}. When G = 0, all providers would
have the same number of medication claims, while the
closer we get to G = 1, the more skewed the distribution.

Results

Volume and diversity of medicare prescriptions

As a prelude to dimension reduction and visualization, we
first examined the overall univariate statistical distribu-
tions of prescribing volume and diversity among medica-
tion classes and providers (Fig. 1). This step allowed us
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Fig. 1 Overall features of 2013 Medicare Part D prescribing patterns data set. a. Distribution of percentage of providers prescribing each of 2892
unique drugs, sorted by percentage of providers prescribing. b. Same as A except for 197 unique drug classes. €. Distribution of number of claims for
each of 2892 unique drugs, sorted by number of claims. Note that the unique drug order is not necessarily the same as in a. d. Same as b except for
197 unique drug classes. e. Distribution of drug prescription diversity across all providers sorted by number of unique claims. Numbers of providers
prescribing more than 100 and 300 unique drugs are annotated on plot. f. Distribution of number of claims across all providers sorted by claims per
provider. Number of providers making more than 10,000 and 25,000 claims are annotated on plot. G = Gini index

to assess the utility of dimension reduction visualization
methods, which would be best suited to data with high
variation and skewed distributions of medication volumes
and prescribing diversity.

We found that small fraction of the unique Medicare
Part D outpatient medications were prescribed by > 5% of
providers (Figs. 1a and 1c ). Only 165 unique drugs (5.7%)
were prescribed by > 5% of providers (Fig. 1a). Similarly,
only 197 unique drugs (6.8%) had more than one million
claims across all providers (Fig. 1c). To reduce the effect
of formulary and brand name versus generic medication
restrictions, we mapped unique drugs onto 197 categories
(Fig. 1b and 1d). Distribution skewness was assessed by
the Gini index (G), which has the property of GI = 0
if all providers prescribed the same number of medica-
tions or all drug types were prescribed at the same volume,
and approaches G = 1 with increasing skew of the dis-
tribution [53]. Drug class distributions were less skewed;
for all drugs G = 0.759 versus for classes G = 0.301,

with 72 drug classes (36.5%) prescribed by >5% of the
providers, and 83 classes (42.1%) surpassing one million
claims across all providers.

We next examined provider prescription diversity,
defined as the number of different drugs prescribed by
each provider (Fig. 1e). The majority (70.3%) of providers
prescribe <25 unique drugs reimbursed by Medicare
(Fig. 1f), with 71,506 providers prescribing > 100, and 631
providers > 300 unique drugs. We hypothesized that high
volume prescribers were more likely to be general prac-
titioners (i.e. general medicine, internal medicine, fam-
ily medicine). There were 2062 high-volume prescribing
providers (HV) with > 25,000 claims, utilizing 1954 of
the 2892 available drugs. This group of 0.2% of providers
were responsible for 3.59% Medicare Part D drug costs
in 2013. Compared with the standard volume prescrib-
ing providers (SV; n = 805,958), this small subset
of HV (n = 2062) was heavily skewed towards gen-
eral practice (p < 0.001): 89% of HV providers were
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categorized as either internal medicine, family medicine
or general practice (SV = 25.8%), and 3% were geriatric
medicine (SV = 0.2%).

We further examined the differences in the patient pop-
ulations cared for between, and Medicare costs, between
the low volume (> 1000 prescriptions) and high volume
(>25,000 prescriptions) prescribers (Additional file 2:
Table S2). High volume prescribers had higher num-
bers of unique beneficiaries and Medicare payments per
provider (p < 0.0001). They also had higher percent-
ages of beneficiaries Hispanic and Asian Pacific Islander
patients (p < 0.0001), with both Medicare and Medicaid
entitlement reimbursement (p < 0.0001), with dementia
(p < 0.0001), chronic kidney disease (p < 0.0001), dia-
betes (p < 0.0001), heart failure (p < 0.0001), ischemic
heart disease (p < 0.0001) and rheumatoid arthritis
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(p < 0.0001). Thus, high volume providers appeared
to have Medicare patient panels skewed towards chronic
conditions, many of which require multiple medications
for ongoing treatment.

Regional prescribing volumes and drug diversity

Prescribing volumes may be related to population density,
and thus examined the degree to which they correlated
with the regional distribution of Medicare Part D pre-
scription benefit enrollees. We therefore examined the
relationship between prescribing volumes (overall ver-
sus HV providers), density of Medicare Part D enrollees,
and prescription volumes. The number of Medicare Part
D providers in each state was highly correlated with
the corresponding number of Medicare Part D enrollees
(Fig. 2a, R? = 0.950), but not (R> = 0.697) for

Share of Providers by State (%) D
=

o all providers
high-claims providers (> 25k)

All Providers

the two join corresponding states

Share of Medicare Part D Enrollees by State (%)

[ increased
I decreased

Fig. 2 Distribution of Medicare Part D providers across states. a. Share of providers by state (as a percentage of the total number of providers)
plotted against share of Medicare Part D enrollees by state (as a percentage of the total number of enrollees nationwide) are shown by black circles
and fit to a line (gray dashed line); green line is slope of one. A similar plot based on a data subset of high-claims providers (> 25,000 claims resulting
in 2062 providers) is shown superimposed as open triangles colored by their relation to the corresponding data from the full data set. Some states
are annotated. b. Comparison of the provider composition by state for the full data set (left) and the high-claims data set (right). Ribbons connecting
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High-Claims o
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providers with > 25,000 claims. There were substantial
deviations for several states. For Florida and New York,
these deviations may be due to differences in the ratios of
providers to enrollees, such that Medicare drug prescrib-
ing was more/less concentrated among those providers.
In contrast, several states with a proportional number of
providers and enrollees had more high-claims providers
(e.g. Georgia).

Figure 2b compares the ranking of all providers versus
high-claims providers, with ribbons joining correspond-
ing states. In contrast to the relatively similar ratios of
Medicare providers per enrollee across states, the dis-
tribution of high-prescribing providers varies regionally
(Additional file 3: Table S1). In general, high volume
providers also had high prescribing diversity (Additional
file 4: Figure S3). This distribution can be used to iden-
tify outliers in terms of prescribing diversity and volume.
For example, only 10 Medicare providers accounted for
approximately 12% of all 2013 Medicare Part D zoster vac-
cine claims, each with > 10,000 claims accounting for over
$30 million in claims. Such univariate outlier analyses are
increasingly used to screen for activity defined as inap-
propriate or fraudulant (e.g. excessive opioid prescribing,
prescription fraud). In this case, the data did not contain
sufficient information to discriminate between potential
explanations (e.g. fraud, contractual agreements with out-
patient pharmacy chains, medical directorship of a large
nursing home or eldercare facility).

High dimensional provider prescribing patterns highly
correlate with provider specialty

While univariate prescribing volumes and diversity mea-
surements are useful for describing aggregate patterns,
they do not provide information about how closely
related entire prescribing patterns are between individ-
ual providers. Specifically, we were most interested in
how well PCA visualization performed against t-SNE
with respect to visual clarity and the ability to visual-
ize different clusters of providers by prescribing pattern
and specialty. PCA uses orthogonal transformation to
map a data set of potentially correlated variables into a
new set of linearly uncorrelated variables (principal com-
ponents). It is often used to visualize the relationship
between high dimensional data elements and highlight the
axes of greatest variation. In contrast, t-SNE maps data
onto a non-linear projection designed to highlight dif-
ferences between high dimensional feature distributions.
t-SNE has an advantage over PCA for visualizing pre-
scribing data because the embedding is not biased by a
the skewed distribution of a few features, and t-SNE can
reveal more subtleties in the differences between provider
groups [13]. Thus, we hypothesized that t-SNE would
allow greater visualization and discrimination between
clusters of providers with different prescribing patterns.
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Figure 3 shows the projection of provider densities
resulting from t-SNE and PCA applied to providers with
> 1000 claims (n = 227,573) and using a feature vector
of corresponding drugs (n = 2791; Fig. 3a) or drug classes
(n = 195; Fig. 3b), where claim volumes in 2; were initially
normalized by total claims per provider. Note the areas
of very high density within the PCA projection obscur-
ing finer variations in prescribing patterns. In contrast,
t-SNE projections contain numerous spatially resolved
groupings with fine detail visible, as well as one domi-
nant grouping of Internal, Family, Geriatric, and General
Medicine providers with areas of higher density reflect-
ing subgroupings of providers with similar prescribing
patterns.

The t-SNE groupings are highly correlated with provider
specialty and subspecialty (Fig. 4). These plots, based
on the provider-by-drug matrix and cross-referenced
with provider specialty from the National Plan and
Provider Enumeration System (NPPES) database, high-
light that some specialties have single dominant clusters
(e.g. Dermatology, Endocrinology, Nephrology) whereas
others have multiple clusters or sub-clusters that reflect
groupings of sub-specialty practice within a specialty (e.g.

Provider x Drug Provider x Class
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Fig. 3 Low-dimension embedding of providers using t-SNE and PCA.
2-D density plots in low dimensional space created using t-SNE
(upper) or PCA (lower) of 227,573 Medicare Part D providers, each
with > 1000 prescription claims in 2013 organized by a the

227,573 x 2791 drug claims matrix or b the 227,573 x 195 drug class
claims matrix. Number-of-claims data per provider by drug or drug
class is scaled by the total claims per provider to express the
prescribing pattern as a composition prior to t-SNE
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Fig. 4 Array of t-SNE plots each highlighting providers of a specific specialty. Each 2-D density plot (grey) is the same as shown in Additional file 5:
Figure S4A, and represents the set of 227,573 Medicare Part D providers x 2791 drug claims. Included providers had > 1000 prescription claims in
2013.The plot is a heatmap, with densities representing increased numbers of providers. Provider specialties are shown in red to emphasize their
collocation by prescribing pattern, and are labeled by NPPES self-reported specialty designation. Note the separation of provider clusters, even to
the extent that subspecialties (annotated in blue) are distinguishable within the specialty cluster (e.g. Cardiology and Cardiac Electrophysiology

Gastroenterology, Urology). Furthermore, when com-
pared to PCA, t-SNE clearly provides better visual res-
olution of related medical specialties and sub-specialties
within the projection (e.g. Cardiology and Cardiac Elec-
trophysiology).

Visualizing details of provider prescribing patterns

We next used t-SNE to visualize prescribing diversity
across many different provider cluster regions (Fig. 5)
using the full provider-drug matrix. Ten random providers
were chosen from 20 regions of the low-dimensional

t-SNE visualization (Fig. 5, labeled A-T), which mapped
to 47 different agglomerative clusters. Location within
the embedding clearly maps different prescribing pat-
terns. For example, regions E and P both are domi-
nated by Urology (see Fig. 4), but E is characterized
by large proportions of claims for tamsulosin and finas-
teride, whereas P is mainly tamsulosin. Cluster L is
largely Ophthalmologists, consistent with high propor-
tions of latanoprost and to a lesser extent, timolol maleate,
Lumigan (bimatoprost), Alphagan(brimonidine tartrate)
and similar drugs. Area K is enriched for Allergists
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Fig. 5 Representative prescribing patterns corresponding to different regions of t-SNE plot. Left: t-SNE plot as shown in Additional file 5: Figure S4A
with 20 different regions labeled as A through T. Right: Heat map showing prescribing patterns. Columns are individual providers, 10 randomly
selected from each of the 20 regions. Each row represents a drug. The drugs shown are the union of the top eight most frequently prescribed in
each region. Increasing gray density corresponds to the percent of claims for a particular drug made by a provider relative to their total claims, with
white denoting no claims. Prescribing volume (total claims) and diversity (number of unique drugs prescribed) are shown above the heat map as
bar graphs. Note region N, which is enriched for providers with a high volume of opioid analgesic claims

that prescribe high proportions of fluticasone propri-
onate and montelukast sodium. Cluster N is enriched
for providers with a high incidence of opioid analgesic
prescriptions.

The t-SNE visualizations allow visualization of prescrib-
ing patterns likely associated with treating different patient
populations, even within the same specialty. For exam-
ple, groups G and S are dominated by Neurologists, but
with substantially different prescribing patterns. Providers

in cluster S prescribe large amounts of Parkinson’s
disease medications (i.e. carbidopa-levodopa, ropini-
role, amantidine, azilect), whereas those in cluster G
are biased towards medications used to treat epilepsy
and Alzheimer’s disease (i.e. levetiracetam, lamotrigine,
lacosamide, topiramate, namenda and donepezil). In other
cases, regional variation may strongly influence prescrib-
ing patterns. For example, cluster A is dominated by
providers from Puerto Rico. These results demonstrate
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the utility of using t-SNE to visualize variation of prescrib-
ing patterns that highly correlate with formal provider
clusters.

Visualizing prescribing volume and medication
distribution patterns

t-SNE plots can also be annotated by the prescribing pro-
portions for individual drugs (Fig. 6). Here, for eight drugs
typically prescribed for cardiovascular-related conditions,
the percentage of claims for individual providers relative
to their total number of claims are coded by color. Note
that these are visible as high proportions within the region
corresponding to Cardiology (see Fig. 4). Even within the
Cardiology region, high prescription rates of these drugs
are associated with different provider groupings (see for
example, atorvastatin, clopidogrel, and warfarin). These
groupings may reflect differences in provider scope of
practice, patient populations, Medicare formularies, or
provider prescribing preferences.

In a similar fashion, the dimension-reduced space can
be annotated by claim volume as shown in Additional
file 5: Figure S4. In this figure, each point is color
coded by claim volume. There is slight gradient of claim
volume in the large, central General Medicine/Internal
Medicine/Family Practice region with several small den-
sities of extremely high prescribing volume providers
(e.g. > 10,000 claims). Claim volume also correlated with
drug diversity (see Additional file 4: Figure S3), so vol-
ume will be somewhat conflated with prescribing pat-
tern and will affect position in the low-dimensional
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embedding. However, plots highlighting single drugs sug-
gest that the variation across the large t-SNE region
correlate well with the prescribing patterns of individual
providers (Fig. 6). Finally, it is important to recognize that
such visualizations allow comparison of high-dimensional
co-prescribing variation across thousands of individual
provider patterns, in contrast to bar graphs showing
the top 10 medications proportionally prescribed within
a self-identified specialty class (see Additional file 6:
Figure S6).

Figure 7 shows the specialist-annotated embeddings
based on medication class (see Fig. 3b). As with the
embeddings based on individual medications, special-
ists are enriched in the smaller clusters surrounding the
main cluster. Figure 8 shows this embedding annotated
for prescription proportion of six cardiology-related drug
classes (similar to Fig. 6). Even when considering classes
instead of individual drugs, which eliminates clustering
differences due to separately considering different formu-
lations of the same drug (i.e. generic and brand name),
there are clearly large variations in prescription patterns
within the cardiology cluster (see for example, anticoagu-
lants, calcium channel blockers, and platelet aggregation
inhibitors).

Hierarchical clustering of provider prescribing patters

To more rigorously identify provider subspecialty asso-
ciation within t-SNE heatmap regions, we performed
unsupervised hierarchical cluster analysis. We identified
605 provider clusters using agglomerative clustering with

Atorvastatin Calcium

Amlopidine Besylate

Metoprolol Succinate

o

0 5
|

Percent of Provider’s Total Claims

Clopidogrel Furosemide

Warfarin Sodium

218

10 15%
]

Fig. 6 Array of t-SNE plots of providers annotated for fraction of claims for each of eight heart/circulation related drugs. The t-SNE plots were
created from the set of 227,573 Medicare Part D providers x2791 drug claims. Included providers had > 1000 prescription claims in 2013. The color
for each provider corresponds to the percentage of claims for the indicated drug relative to the provider's total claims. Gray is 0%, the maximum
scale (red) is 15% of total claims. Note the high volume of prescriptions within within both the cardiology and internal medicine areas
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Fig. 7 Array of t-SNE plots each highlighting providers of a specific specialty. These t-SNE plots are derived from the dataset of 227,573 Medicare
Part D providers x 195 drug classes. Even with dimension reduction from 2791 individual medications to 195 medication classes, t-SNE plots
produced clear groupings of specialties and subspecialties. This plot removes potential bias introduced by prescribing of generic versus brand
name medications, and thus is a better representation of prescribing variation across specialties due to patient populations and practice patterns

Ward’s minimum intercluster variance linkage minimiza-
tion (Additional file 7: Figure S5, and Fig. 9a). The dom-
inant provider subspecialty classification within a cluster,
taken from the NPPES data, was used to map each of the
605 sub-clusters to provider sub-specialties. Ninety one
percent of the clusters had one provider specialty account-
ing for > 30% of the providers (Fig. 9b). Of those clusters
with > 2 specialties (n = 595), 34.5% of the second
most frequent specialties were either nurse practitioner or
physician assistant, roles rather than disease-based identi-
fication. Inclusion within these clusters suggested practice
scope within the dominant specialty. When mapped to US
Federal Regions (Fig. 9¢c), clusters also reflected regional

variation in prescribing patterns. For example, within the
t-SNE projection, we highlighted sub-clusters of providers
identified as Family Medicine and then divided by Federal
Region. This combination of clustering and t-SNE visual-
ization made visible large regional variations in regional
medication prescribing volumes and patterns within
Family Practice.

Regional variation in prescribing patterns

Given the variation in regional prescribing patterns
observed within the Internal Medicine-Family Practice-
General Medicine cluster, we hypothesized that such vari-
ation was present across all Medicare Part D program
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using the dataset of 227,573 Medicare Part D providers x 195 drug classes. The 195 drug classes include all medications (generic and brand name)
collapsed into the the indicated class. The color for each provider corresponds to the percentage of claims for the indicated drug relative to the
provider's total claims. Gray is 0%, the maximum scale (red) is 15%. This dimension reduction and visual representation eliminates differences due to
formulary, or generic versus brand name medication prescribing patterns. Note, for example, the high percentage (red areas) of beta blockers
prescribed in cardiology and nephrology (oral preparations) and opthomology (eye drops)
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providers. To test this hypothesis, we next performed
an in-depth characterization of regional differences in
prescribing patterns over all sub-specialties by census
region (Additional file 8: Figure S2).

Figure 10 shows how the prescribing patterns of
providers with > 1000 Medicare Part D claims are clus-
tered within each census region, as compared to a non-
overlapping random sample from the entire data set.
For these visualizations, we used heat maps of provider
density within the t-SNE embedding. This type of visu-
alization accounts for equivalent sample sizes, but not
variation in the proportion of Medicare Part D provider
types (e.g. Family Practice versus Nephrology) between
the random and regional samples. For example, the East
North Central region has a much higher percentage
of Neurologists compared with the East South Central
region. Differences in provider and population density,
and thus prescribing patterns and volumes, may also con-
tribute to regional variations in Medicare part D prescrip-
tion costs. The utility of the t-SNE visualization can be
seen by comparison with traditional univariate bar graphs
6, which only shows differences in the univariate pre-
scribing percentages for single medications, and provides
no information about variation of co-prescribing patterns
among individual providers.

Urban prescribing pattern variation
The results from dimensional reduction visualization with
t-SNE were again hypothesis generating, and suggested

that regional prescribing patterns could be due to urban
location, variation in income, or population density. To
further explore regional variations in prescribing pat-
terns, while diminishing the impact of these variables,
we selected 52 metropolitan areas (core-based statistical
areas, CBSA) with populations greater than one million
(Additional file 9: Figure S7). Among the large metropoli-
tan areas, there were large regional differences in terms
of proportion of Medicare Part D enrollees of the total
population, as shown in Additional file 9: Figure S7, rang-
ing from 4.6% (Washington DC) to just under 15.7%
(Pittsburgh). These results were not statistically correlated
to overall population of the respective CBSAs.
Dimension-reduction with t-SNE visualizations also
revealed regional variation in prescribing patterns across
CBSAs. To characterize prescribing profiles within
CBSAs, we selected 532 drugs with over 100,000 claims
for all states. A 52 CBSA by 532 drug number-of-claims
matrix was computed and each row was divided by
the number of Medicare Part D enrollees in the corre-
sponding CBSA, expressing the normalized data as drug
claims per enrollee. Figure 11a shows the first two coor-
dinates of the resulting multidimensional scaling based
on pairwise CBSA-CBSA distances d;; = 1 — r;j, where
rij is the Pearson product-moment correlation coeffi-
cient for the CBSA pair i and j feature vectors. The red
dots near the center of the plot are the result of multi-
dimensional scaling following random permutation of
the CBSA provider memberships (preserving the relative
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numbers of providers per CBSA) used as a reference
against which to interpret the dispersion of the real data.
Although the data do not segregate into distinct clusters
in this dimension, there are apparent regional variations,
notably, that most of the southern CBSAs appear on the
left half of the plot, reflecting similar regional prescribing
profiles within the southern CBSAs.

Further visualizations highlight the substantial varia-
tion in provider prescribing patterns between CBSAJs.
Figure 11b shows an example of claims-per-enrollee of
the 532 drugs for two geographically distant but simi-
larly sized CBSAs: Rochester, NY (ROC) and Oklahoma

City, OK (OKC). Although their populations are simi-
lar, they have different median household incomes and
percent Medicare Part D enrollees (see Additional file 5:
Figure S4): $43,955 and 14.1%, respectively for ROC,
and $36,797 and 7.8% for OKC. The dashed lines rep-
resent 5-fold differences in claims-per-enrollee for spe-
cific drugs, with those outside the range annotated. The
selected CBSAs are annotated in t-SNE density plots
shown in Additional file 10: Figure S8A. For compari-
son, Fig. 10c shows another pairwise visual comparison
between two geographically proximate and similarly sized
CBSAs: Dallas-Fort Worth, TX (DFW) and Houston, TX
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Fig. 10 Distribution of provider prescribing patterns by census region. Providers with > 1000 claims (n = 227,573) were divided into subsets by
census region (lower figures within regional pairs). For comparison, a random sample of equivalent size was taken from the entire data set such that
the providers in each random sub-sample did not overlap with any of the others (upper figures). This allows visual comparison of regional provider
distributions with a random national sample of equivalent size

(IAH). If prescribing patterns reflect regional prescrib-
ing homophily or state-specific Medicare Part D approved
medication formularies, such pairs would be expected
to have similar prescribing profiles and could be con-
sidered an internal control. In this example, the claims
per enrollee are more similar between the two CBSAs.
The median household incomes and percent enrolled are
$47,418 and 6.6% for Dallas Fort Worth (DFW), and
$44,714 and 6.3% for Houston (IAH). These results pro-
vide further support for the hypothesis that regional vari-
ation in prescribing patterns increases with geographic
distance.

t-SNE identifies regional variation in prescribing patterns

Medicare formulary composition varies by state and
region. Such variation may lead to prescribing pattern dif-
ferences between providers based on drug formulations,
rather than the use of similar drugs of the same class.
To control for this effect, we next examined the results
obtained by dimension reduction and visualization with t-
SNE based on drug classes, rather than individual medica-
tions. Figures 11d-f show results based on profiles of 195

drug categories, which still show substantial differences
prescribing profiles between CBSAs. Figure 11e compares
the Boston, MA (BOS) and Miami, FL (MIA) CBSAs
(also see t-SNE plots in Additional file 10: Figure S8B),
with 5- to 10-fold differences the claims-per-enrollee
for some categories. While these are sized metropoli-
tan areas, there are almost twice as many enrollees per
provider in MIA than in BOS (see Additional file 9:
Figure S7 and Fig. 2). As an example, “Amphetamines and
Amphetamine-Like Stimulants” generate almost 6-fold
more claims per 1000 Boston enrollees as compared to
claims per 1000 Miami enrollees (126.4 vs. 21.7). In con-
trast, “Genito-Urinary Agents, Other” generate almost 10-
fold more claims per 1000 enrollees in MIA as compared
to BOS (28.9 vs. 2.9). Figure 11f shows that the Dallas-Fort
Worth vs. Houston profiles are substantially more simi-
lar, with the largest differences for rarely prescribed drug
categories.

One possible cause for regional variation in prescrib-
ing patterns could be differences in disease prevalence
between regions. We used Medicare data on the dis-
ease prevalence for 13 conditions (see Additional file 11:
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Figure S9 for a detailed list and explanation) to construct
a feature vector D = {81,8,,..5,}, where Medicare
providers with > 1000 Medicare prescriptions in 2013
(n = 207,158) and complete data were grouped by state
(50 US states, the District of Columbia, and Puerto Rico).
We then calculated the mean feature vector prescrib-

ing pattern and provider patient-specific disease preva-
lence values for each state’s providers. To test whether
the multi-dimensional drug prescribing pattern differ-
ences were correlated with multi-dimensional disease
prevalence, we calculated the Euclidean n-dimensional
matrix of distances between each pair of states for
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both prescribing pattern distances and disease preva-
lence distances. Thus, that states with similar Medicare
prescribing patterns should have have small multi-
dimensional Euclidean feature distances, while those that
differ would have large feature distances. A similar rela-
tionship would exist for n-dimensional feature distances
calculated using the disease prevalence feature vector;
pairs of states with similar prevalence of diseases would
have small n-dimensional Euclidean feature distances. We
found the correlation between disease prevalence and pre-
scribing pattern distances to be R? = 0.22185, indicating
that variation in multi-dimensional prescribing patterns
between states cannot be explained simply by variance in
multi-dimensional disease prevalence.

Discussion

Our results demonstrate that t-SNE dimensional reduc-
tion can be used to visualize prescribing pattern variation
in very large administrative data sets, and reveal patterns
not otherwiseapparent.

Previously, a number of focused studies have exam-
ined prescription diversity, mostly with respect to opi-
oid analgesics [56—62], antibiotics [1, 63—67], psychiatric
medications [68-71], and among general practitioners
[37, 72-76]. One web site has made the Medicare Part
D prescribing data searchable with various filters for
provider, charges, and medications [77-79]. As far as we
are aware, however, this is the first high level, aggregate
analysis of provider prescribing diversity and patterns on
a national scale (40 million patients and over 800,000
providers) across multiple specialties, medication classes
and practitioner types. This type of analysis may be used
as a starting point for future work comparing national pre-
scribing patterns, especially in countries where regional
formulary composition is centrally tracked. Thus, this
multivariate approach has value in establishing an atlas
of prescription pattern diversity, and can be a means for
deeper, more targeted queries about groupings or sub-
groupings of providers.

Provider prescribing volume and diversity pat-
terns could be a powerful proxy for organizing how
practitioners actually provide care, as opposed to self-
or board- identified medical specialty. For example,
providers with a “mixed practice” (e.g. adult internal
medicine and endocrinology) will have prescribing pat-
terns that differ from those practicing solely within one
specialty. There are currently no data sets, survey results
or accepted methods to identify such mixed-practice
providers. Thus, our results are hypothesis generating
and suggest that such practice mixes can be identified by
unsupervised clustering of prescribing patterns, and visu-
alized with t-SNE. Further work will need to be done to
test this hypothesis, and could involve comparing survey
data about self-identified practice mix with prescribing
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patterns. The current study provides the motivating
hypothesis and groundwork for such investigations.

Additionally, our approach enhances hypothesis gen-
eration and testing regarding root causes of prescrib-
ing variation. For example, correlating provider clusters
with clinical outcomes data may improve comparative
effectiveness studies of prescribing patterns for spe-
cific diagnoses (e.g. effect of anti-hypertensive regimens
with and without diuretics on blood pressure control
and mortality) [80]. Similar approaches have recently
been used to conduct “virtual clinical trials’, replicat-
ing the results of randomized prospective clinical tri-
als [81, 82], but lack a visualization component. Our
results demonstrate that these methods can be used
to identify and visualize complex, multi-dimensional,
prescribing behaviors of interest (e.g. opioid prescrib-
ing) in geographically comprehensive data sets. In the
future, studies coupling prescribing patterns, patient out-
comes, and genomic data may aid in identification of
genotype-phenotype associations and facilitate precision
targeting of effective therapies to specific individual
genotypes [83].

Our analysis and t-SNE visualizations also highlight pre-
scribing variation in groups of metropolitan providers
with similar Medicare claims patterns. These findings
complement reports showing considerable geographic
variation in both claims volume [84] and cost [4] across
the United States. Potential contributing factors to such
variation [35, 85-87], include suboptimal care or health
services delivery inefficiencies [88, 89], and regional dif-
ferences in prescriptions for branded drugs compared to
generic counterparts [90—93]. The analysis of metropoli-
tan areas, adjusted for population density, revealed con-
siderable residual variation in prescribing patterns, with
up to ten-fold variations for both individual drugs and
drug classes.

Further work, incorporating more detailed data (e.g.
regional Medicare formularies, provider-health system
associations), are needed to determine the factors asso-
ciated with such variation. Interestingly, we found that
prescribing pattern differences increase with geographic
differences. However, our results showed only modest
correlation between n-dimensional prescribing patterns
and n-dimensional disease prevalence among states.
Regional prescribing patterns may be shaped by local factors
(e.g. economic, social, state-specific Medicare formula-
ries, local and regional provider practice patterns) Further
work will need to be done to better elucidate sources
of such regional variation. Nevertheless, these findings
are a significant advance over single-specialty or disease-
based variation studies, providing a method to compare
comprehensive medication co-prescribing patterns.

Several caveats apply to this analysis. First, we recognize
that most Medicare providers have a patient population
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with a mix of prescription plans, and our results may
not be applicable beyond the Medicare population demo-
graphics [94]. For example, only 15.5% of Medicare Part
D enrollees were < 65 years of age. Thus, the prescribing
profiles and provider cluster memberships described here
cannot be generalized to younger individuals. Approxi-
mately 50% of individuals enrolled in Medicare Part D
also have private or supplemental insurance for medica-
tion coverage, and prescription claims captured by Medi-
care Part D may differ from overall claims. This bias is
somewhat mitigated by our selection of 227,000 providers
with > 1000 claims. Unfortunately, there is currently no
available data set for the United States integrating the
medication formularies of all the Medicare plans. Thus,
we are unable to judge to what extent prescribing vari-
ation is dependent on Medicare Part D plan formulary
differences. Future work might explore these issues with
more comprehensive US data sets, or data sets from coun-
tries with national healthcare systems where formulary
information is available.

Conclusions

In conclusion, we have presented a pattern-based
approach for visualizing prescribing variation in a national
administrative data set. The analysis highlighted regional
variations in prescribing practices in the United States
Medicare Part D program and captured this diversity
based on overall prescribing patterns as opposed to single
medications. The use of the t-SNE visualization algorithm
enhances the analysis and visualization of variation in
high-dimensional co-prescribing data, and can be used as
a hypothesis generating method.
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Additional file 1: Figure S1. Data sources used for this study. This
schema depicts various sources of data and how they are related. Red font
indicates a data column with unique values. (EPS 332 kb)

Additional file 2: Table S2. Differences between providers by services,
patient beneficiary demographics, and payments. Comparison between
low volume (< 25,000 prescriptions over 12 months) and high volume

(> 25,000 prescriptions over 12 months) provider patient populations. In
general, high volume prescribers had a higher proportion of patients with
more complex medical conditions (e.g. cancer, Alzheimer's disease, heart
failure), more elderly patients, and much higher use of Medicare services.
(PDF 123 kb)

Additional file 3: Table S1. Differences in high-prescribing provider
fractions by geographic region. Table quantifies the fraction of high
prescribing Medicare prescribers by United States Administrative Region
(see Additional file 1: Figure S1 for region definitions). (PDF 60.6 kb)

Additional file 4: Figure S3. Comparison of prescribing diversity and
prescribing volume. Density/scatter plot indicating the number of unique
drugs (top) drug classes (bottom) prescribed (diversity; y-axis), number of
claims (volume; x-axis) and number of providers bin height coded as color.
Bins that have a single provider are indicated by a blue dot. (EPS 1751 kb)

Additional file 5: Figure S4. t-SNE plot showing distribution of claim
volume per provider. This t-SNE plot is based on the provider by drug
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matrix, as shown in Fig. 3a. Color corresponds to the Logso of claims per
provider (each represented by a dot). (PDF 899 kb)

Additional file 6: Figure S6. Unidimensional bar graphs of medication
class prescribing frequency by region. Bar graphs of each of the top 10
medication classes prescribed (by percentage of individual prescriber
prescriptions) for each of 24 medical specialty groupings, plotted for each
of 10 Federal Regions. Note that drug class prescribing percentages are
mean levels, and truncated at 21% to make the visualizations informative.
(ZIP 5280 kb)

Additional file 7: Figure S5. Hierarchical clustering. Plots of the 605
clusters identified by hierarchical clustering with linkage using Ward’s
minimization criteria. The background is the full t-SNE projection, while
each cluster is in red. This 19 page figure is available for download from
https:/figshare.com/account/projects/24664/articles/5388157. (PDF
19 MB)

Additional file 8: Figure S2. United States Census Regions. Map of
United States Census Regions used for geographic data comparisons.
Adapted from the United States Census Bureau. (PDF 249 kb)

Additional file 9: Figure S7. Characteristics of core-based statistical areas
(CBSA). 52 CBSAs are listed that have July 2012 population estimates greater
than 1,000,000 residents. See Methods for data sources. (PDF 24.2 kb)

Additional file 10: Figure S8. t-SNE plots with particular CBSAs
highlighted. A. t-SNE plot based on provider by drug matrix (as in Fig. 3a)
with providers in Rochester and Oklahoma City annotated (see Fig. 10b). B.
t-SNE plot based on drug class by provider matrix (as in 3b) with providers
in Miami and Boston annotated (see Fig. 10e). (PDF 1010 kb)

Additional file 11: Figure S9. Comparison of between state
mutidimensional distance matrices for prescribing pattern versus disease
prevalence. Provider specific data for drug class prescribing patterns

(n = 68 drug classes) and provider-specific patient disease prevalence

(n = 13 diseases) were obtained from Medicare public use files. Disease
prevalence figures included dementia, asthma, atrial fibrillation, cancer,
depression, diabetes, chronic obstructive pulmonary disease, chronic
kidney disease, heart failure, hyperlipidemia, hypertension, ischemic heart
disease, and stroke. Medicare providers with > 1000 Medicare
prescriptions in 2013 (n = 207, 158) and complete data were grouped by
state (50 US states, the District of Columbia, and Puerto Rico). We then
calculated the mean feature vector prescribing pattern and provider
patient-specific disease prevalence values for each state’s providers. To test
whether the multi-dimensional drug prescribing pattern differences were
correlated with multi-dimensional disease prevelence, we calculated the
Euclidean n-dimensional matrix of distances between each pair of states
for both prescribing pattern distances and disease prevalence distances.
Thus, that states with similar Medicare prescribing patterns should have
have small multi-dimensional Euclidean distances, while those that differ
would have large distances. A similar relationship would exist for
n-dimensional distances calculated using the disease prevalence feature
vector; pairs of states with similar prevalence of diseases would have small
n-dimensional Euclidean distances. We then tested the correlation
between disease prevalence and prescribing pattern distances by analysis
of variance, finding an R? = 0.22185, indicating that variation in prescribing
patterns between states cannot be explained simply by variance in disease
prevalence. (PDF 1370 kb)
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Drug enforcement agency; FIPS: Federal information processing standards; G:
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