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Abstract

Background: Technological support may be crucial in optimizing healthcare professional practice and improving
patient outcomes. A focus on electronic health records has left other technological supports relatively neglected.
Additionally, there has been no comparison between different types of technology-based interventions, and the
importance of delivery setting on the implementation of technology-based interventions to change professional
practice. Consequently, there is a need to synthesise and examine intervention characteristics using a methodology
suited to identifying important features of effective interventions, and the barriers and facilitators to implementation.
Three aims were addressed: to identify interventions with a technological component that are successful at changing
professional practice, to determine if and how such interventions are theory-based, and to examine barriers and
facilitators to successful implementation.

Methods: A literature review informed by realist review methods was conducted involving a systematic search of
studies reporting either: (1) behavior change interventions that included technology to support professional practice
change; or (2) barriers and facilitators to implementation of technological interventions. Extracted data was quantitative
and qualitative, and included setting, target professionals, and use of Behaviour Change Techniques (BCTs). The primary
outcome was a change in professional practice. A thematic analysis was conducted on studies reporting barriers and
facilitators of implementation.

Results: Sixty-nine studies met the inclusion criteria; 48 (27 randomized controlled trials) reported behavior change
interventions and 21 reported practicalities of implementation. The most successful technological intervention was
decision support providing healthcare professionals with knowledge and/or person-specific information to assist with
patient management. Successful technologies were more likely to operationalise BCTs, particularly “instruction on how
to perform the behavior”. Facilitators of implementation included aligning studies with organisational initiatives,
ensuring senior peer endorsement, and integration into clinical workload. Barriers included organisational challenges,
and design, content and technical issues of technology-based interventions.
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Conclusions: Technological interventions must focus on providing decision support for clinical practice using
recognized behavior change techniques. Interventions must consider organizational context, clinical workload, and
have clearly defined benefits for improving practice and patient outcomes.

Keywords: Healthcare professional behaviour change, Technology, Realist review, Intervention, eHealth

Background

Changing healthcare professional practice is fundamental
to the implementation of any health policy, intervention or
safety measure intended to deliver best patient care. This
is particularly important given the responsibilities that
healthcare professionals have with respect to patient man-
agement and improving health outcomes [1]. Previously
targeted behaviors include prescribing medication [2], con-
ducting screening and health checks [3, 4], providing sup-
port and making appropriate referrals [5], and making
diagnoses [6]. Optimizing performance of these target be-
haviors provides an opportunity to influence directly the
clinical management of patients and hence accelerate im-
provement in patient care and/or patient outcomes.

Technology-based interventions can address known bar-
riers in the work environment such as time and workload
pressure [7] and provide an opportunity to exert greater
impact on patient outcomes by changing professional
practice rather than changing the behavior of patients
one-by-one. Interventions with a technological component
include automated prompts and reminders to support
clinical management of patients [8], computer-based skills
training [9], and IT-based healthcare professional decision
support for clinical decision making [10].

Previous reviews have examined the use of technolo-
gies to support healthcare professional practice, such as
email to support clinical communication between pro-
fessionals [11], electronic health information to improve
clinical practice (professional behaviors or adherence to
clinical practice guidelines) [12], on-screen reminders
(such as prompts to conduct a clinical test), and
computer-generated reminders delivered on paper [13].
The majority of the preceding literature has tended to
focus on effectiveness only, and includes specific inter-
ventions, within specific settings, such as electronic
health records [14] and computerised provider order
entry [15] only. This limits the generalisability of find-
ings to other settings in relation to developing interven-
tions to be delivered at scale.

In addition, it is widely recognized that interventions
are most effective when based on behavior change theory
and techniques [16, 17]. The use of theory is necessary for
explaining and identifying target beliefs involved in clinical
practice, and offers a framework for designing and con-
ducting interventions [18, 19]. An important omission
from previous reviews is whether technology-based

interventions aimed at healthcare professional behaviour
change include recognised behaviour change techniques
(BCTs), and an understanding of whether such interven-
tions are more or less effective with the inclusion of BCTs.
Consequently, there is a need to examine whether inter-
ventions with a technological component aimed at chan-
ging  healthcare  professional  practice  include
recognized BCTs, and whether those interventions includ-
ing BCTs are more effective than interventions without.

There are examples of reviews that focus on imple-
mentation of e-health interventions within healthcare
settings generally; Ross et al. provide a series of recom-
mendations for implementing e-health interventions
across a range of settings [20], however measures of be-
haviour are not included. Consequently, to build on the
previous literature, there is a need to consider the im-
portance of changing healthcare professional practice
alongside understanding issues in relation to the imple-
mentation of technological interventions. Simply provid-
ing healthcare professionals with new technology is
unlikely to lead to the transformation in health care that
such new technology is proposed to deliver. Specifically,
there is a need to conduct an overarching synthesis of
diverse technology-based interventions that aim to
change healthcare professional behaviour which focuses
on three key areas: (1) identifying specific features asso-
ciated with intervention effectiveness (i.e. what works,
for whom interventions for, and under what circum-
stances interventions work), (2) the BCTs associated
with successful interventions, and (3) the barriers and fa-
cilitators associated with successful implementation of
technology-based interventions. Consequently, there is a
need to synthesise and examine intervention characteris-
tics using a methodology suited to identifying important
features of effective interventions, and the barriers and
facilitators to implementation.

Traditional systematic reviews focus on effectiveness
of interventions only. Realist review methods, on the
other hand, provide a means of evidence synthesis fo-
cused on providing explanations for sow and why inter-
ventions may or may not work, and aims to identify
features of successful interventions [21]. The advantage
of using realist methods over more traditional systematic
review methods, is the ability to search for specific ex-
planations regarding implementation of interventions,
with no limitations on study design [22—26]. Intervention
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characteristics (such as study setting, population, and
intervention category), as well as the barriers and facilita-
tors of implementation, can be examined using realist
review methods to provide a detailed picture of interven-
tion characteristics above and beyond traditional review
methods. A realist approach is particularly suited to
synthesising evidence about complex interventions [21,
27], including technology-based interventions [28]. This
approach determines which interventions work (e.g.
computer-based training versus automated reminders), for
whom they work (e.g. general practitioners versus nurses),
and under what circumstances (e.g. study setting such as
primary versus secondary care) they are most effective
[29, 30]. This provides rich, detailed and a highly practical
understanding of interventions, which is particularly im-
portant when planning and implementing interventions
on a wider scale [30].
Three specific research questions were addressed:

1. What are the key features of interventions with a
technological component that are successful at
changing healthcare professional practice?

2. Ifand how do such interventions include Behaviour
Change Techniques (BCTs) [17] and does the
inclusion of BCTs make a difference to practice
change?

3. What are the barriers and facilitators to successful
implementation of technology-based interventions in
practice?

Methods

A literature review informed by realist review methods
was conducted using the five-stage approach [21]: (1) es-
tablishing the focus of the review; (2) using a purposive
and theoretically driven search strategy and appraisal of
literature; (3) searching for multiple types of evidence;
(4) using an iterative process throughout; and (5) ensur-
ing the findings explain why (or why not) interventions
work and how they work, and provide suggestions for
future research and practical application of successful
interventions.

Inclusion criteria

There were no limitations on study design. Interventions
targeting any healthcare profession were included. Tech-
nology was defined as any aspect of an intervention that
involves information technology used as part of patient
management strategies (such as computer-generated re-
minders or alerts).

Studies must have reported: (a) interventions with at
least one healthcare professional outcome relating to a
change in behavior/practice. For example, changes in pro-
fessional behavior, action or performance (such as appro-
priate prescribing or adherence to clinical guidelines); or
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(b) the practicalities of delivering such interventions using
technological supports.

Search strategy

Systematic searches were conducted in the following elec-
tronic databases (up to December 2016): Medline,
Embase, Cumulative Index to Nursing and Allied Health
Literature (CINAHL), PsycINFO, ISI Web of Science, and
Cochrane Library. The reference lists of key systematic re-
view papers were also included in the hand search of all
relevant papers. Conference abstracts/reports identified
through the database search were only included if they
provided sufficient outcome data relating to changes in
healthcare professional practice.

A broad search strategy (Additional file 1) was used to
capture the widest possible numbers of studies from a
range of categories, which included both intervention
studies and studies reporting the practicalities of deliver-
ing interventions. Medical Subject Headings (MeSH)
terms and key words relating to healthcare professional
behavior change and technological supports were used.

Screening

After the initial literature search, two authors (CK
and MPT) screened titles and abstracts according to
the inclusion criteria. Where abstracts provided insuf-
ficient information, full-text review was carried out.
Papers meeting the final inclusion criteria were then
categorised into two groups; those reporting the
results of behavior change interventions aimed at
healthcare professionals, and those reporting the prac-
ticalities (barriers and facilitators) of delivering such
interventions (Additional file 2).

Data extraction and analysis

Data analysis focused on three phases: (1) a quantitative
descriptive analysis to identify and evaluate the charac-
teristics of interventions, (2) coding interventions for rec-
ognized behavior change techniques (BCTS), and (3) a
thematic analysis of the practicalities of designing and
implementing technological interventions.

(1) Characteristics of interventions

Key study characteristics were tabulated using an Excel
spreadsheet (including study year, country and health-
care setting). Particular emphasis was given to principles
consistent with realist review methodology: the type of
intervention used, at whom the intervention was tar-
geted, and the circumstances under which the interven-
tion was described as being effective (target behavior
and setting). Specific elements of the intervention were
categorised to provide explanations of their effectiveness
(a positive change in healthcare professional practice,
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where p < .05, or ineffectiveness, to determine which in-
terventions work) [21]. Study effect sizes were calculated
where possible. This included contacting study authors
to obtain any missing information. The primary outcome
was whether the intervention resulted in a change to
healthcare professional clinical practice (both objective
and self-reported).

(2) Coding interventions for BCT's

A coding frame was informed by a recognized tax-
onomy of BCTs [17]. Whilst analysis of behavior change
interventions aimed at healthcare professionals has not
previously been conducted in the context of techno-
logical supports, coding of a similar nature has been
conducted in other contexts [31].

Coding was conducted by authors with previous ex-
perience of using the BCT taxonomy. One of the study
authors (CK) coded the interventions for evidence of
BCTs according to the standardised definitions [17], and
included both implicit and explicit use of BCTs. A sec-
ond coder (JH) independently screened a sample se-
lected at random. Disagreements were resolved after
discussion, and a third coder (MT) was consulted if
agreement could not be reached. An Excel spreadsheet
was used to create the coding frame and record inter-
vention descriptions and frequencies of BCTs.

(3) Thematic analysis of the practicalities of designing
and implementing technological interventions.

The qualitative software data management tool NVivo
was used to sort and categorise the data. Analysis involved
coding each study in terms of capturing key ideas and un-
derstandings and linking this with the emerging theoretical
framework [32]. Thematic analysis was used to provide the
best approach to evidence synthesis according to the
pre-defined research questions. Findings were summarised
under key thematic headings, according to the main find-
ings of each paper, which were used to inform the overall
description of the key points [33]. Codes from all identified
studies were then compared and cross-referenced, and
organised into recurring/higher order themes.

Results

A total of 69 papers were included in the final analysis;
48 studies (of which 27 were randomized controlled tri-
als) were identified in which there was a technological
component used to support healthcare professional
practice change, and 21 papers reported the practicalities
associated with the design and implementation of
technology-based interventions (Fig. 1). One paper [34]
was included in both parts of the analysis.
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Characteristics of interventions

Forty-eight studies (Table 1) met the inclusion criteria to
answer review questions 1 (features of effective behavior
change interventions with a technological component),
and 2 (if and how behavior change theory was used in
the interventions). These were conducted in the USA
(n =25), United Kingdom (# = 7), The Netherlands (n = 4),
Australia (n=4) or elsewhere (7 =8). One study did not
report the country in which the study was conducted.

Types of intervention

Results are presented in Table 2. The use of healthcare
professional decision supports, defined as a decision
support system providing healthcare professionals with
knowledge and/or person-specific information to assist
with patient management [35], was the most commonly
used technological intervention (7 =19 studies); 15 of
the 19 (79%) interventions were effective. We were able
to extract effect sizes for 12 studies relating to 29 out-
comes (small; #=19, medium; n=; 3, large; n=7) ac-
cording to definitions provided by Cohen [36].

The second most commonly used intervention group
was reminders and alerts (z =11 studies), and this also
had the second highest percentage of effective interven-
tions (7 of 11 effective; 64%). We were able to extract ef-
fect sizes for 3 studies relating to 4 outcomes (small; n =2,
medium; 7 = 1, large; n=1).

There were several groups of less frequently used inter-
ventions, but that were shown to be effective. One study
examined computer-generated feedback, showing positive
effects. We were able to extract effect sizes relating to
three outcomes (small; # = 3). Relating to use of email, 3
of 3 studies showed positive effects. Effect size was calcu-
lated for one study relating to one outcome (large; 7 =1).
In the category electronic feedback system, one study
showed positive effects, with an effect size relating to six
outcomes (small; n = 1, medium; # = 4, large; n = 1).

Due to the heterogeneity of the studies it was not ap-
propriate to compute summary statistics. In addition
due to the varied reporting of study results, we were
only able to calculate effect sizes for a sub-sample of pa-
pers (n=27), of which there was considerable variation
in the size of the effect of reported outcomes (small; # =
31, medium; n = 10, large; n =12). A forest plot illustrat-
ing the range of effect sizes for each outcome of interest
is presented in Additional file 3.

Setting of intervention

Whilst the most common intervention setting for
technological interventions was primary care (n=23;
48%), studies conducted in hospitals (n = 14; 28%) had a
higher success rate (12 of 14 described as effective; 86%).
Other less frequent settings included interventions
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Fig. 1 Flow diagram of search strategy

conducted within both primary and secondary care (1 of
2 effective; 50%).

Target healthcare professional for intervention

Half of the interventions were targeted at General Prac-
titioners (n = 24; 50%), with this group also having the
highest success rate (18 of 24 studies [75%] resulting in
professional behavior change). The second largest group
were interventions targeted at two or more types of
healthcare professional (1 =16; 33%), over half of which
resulted in practice change (10 of 19; 61%). There were
several other groups of less frequently targeted health-
care professionals among whom technology-based inter-
ventions had been tested. These included interventions
targeted at mental health therapists (2 of 2 effective;
100%) and pharmacists (1 of 2 effective; 50%).

Target behavior of intervention

Interventions according to target behavior are presented
in Table 2. The most common behavior targeted by
technological interventions was adherence to clinical
guidelines for patient management (n=17; 35%), over
half of which were effective in changing practice (10 of
17 studies; 61%).

The second most commonly targeted behavior was
prescribing behaviors (n=15; 31%); half of the studies
resulted in practice change (9 of the 15 studies; 60%).
There were other less frequently targeted behaviors that
demonstrated high success rates, including studies
targeting increased knowledge or self-efficacy/confidence
(4 out of 4 [100%)] effective), increasing screening/testing
rates (7 out of 8 [88%] effective), and clinical interven-
tion/management (5 out of 6 [83%] effective) all were
described as showing positive effects.

Coding interventions for specific BCTs

Of the 48 studies included in the final analysis, 26 (54%)
contained evidence of BCTs relating to use of technol-
ogy or the target behavior (Fig. 2). Seven different BCTs
were identified across the 26 studies. The BCT code ac-
cording to Michie et al. [17] is presented in parentheses,
followed by the number of studies using each technique.
The most commonly used BCT was instruction on how
to perform the behavior (BCTTvl 4.1; n = 22). This tech-
nique was mostly used in the context of healthcare pro-
fessional decision support interventions (n=9), and
reminders and alerts (n=9). Other techniques included
feedback on behavior (BCTTv1 2.2; n = 3), prompts/cues
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Table 2 Details of success of interventions based on type of intervention and target behavior

Domain

Number of interventions
in each category

Number of effective (%) of effective studies

interventions®

Intervention type
Computer-generated feedback 1
Email feedback 3

Electronic feedback system 1

Computer-based training 4
Reminder system within patient electronic health records 2
Healthcare professional decision support 19
Hyperlinks 2

Reminders/alerts 11
Personal digital assistant 2
Diagnostic/risk assessment tool 2
Faxed alerts 1
Text message 1
Target behavior
Adherence to clinical patient management guidelines 17
Prescribing behaviors 15
Increasing screening/testing rates

Clinical intervention/management

A~ O o0

Increasing knowledge, or self-efficacy/confidence

Increasing appropriate referrals 2

1 100
3 100
1 100
50
100
15 79
1 50
7 64
1 50
1 33

60
88
83
100
1 50

A 00 N O

?A statistically significant change in healthcare professional practice, as described by the authors of each study included in this review

(BCTTIvl 7.1; n=2), demonstration of the behavior
(BCTTv1 6.1; n =2), reducing negative emotions (BCTTv1l
11.2; n=1), social comparison (BCTTvl 6.2; n=1), and
problem solving (BCTTvl 1.2; n =1).

Of the 26 studies containing evidence of BCTs, 16
studies (62%) resulted in practice change (Fig. 2). Of
these, five different BCTs were used across the 16

studies. The largest group was instruction on how to per-
form the behavior (BCTTv1 4.1; n = 15), such as instruct-
ing healthcare professionals which medicines to
prescribe [37] or requesting an appropriate clinical test
[38]. This second largest group was demonstration of the
behavior (BCTTvl 6.1; n = 2), such as demonstrating ef-
fective clinician practice [39].

25
?
& 20
=]
o
@ Studies with a change in behaviour
(%3
Q
.§ ¥ Studies with no change in behaviour
‘s 10
S
3
£
3 5
=z

0 I I I
Instruction on Feedback on Prompts/cues Demonstration  Reduce Social Problem
how to behaviour (7.1) of the negative comparison  solving (1.2)
perform the (2.2) behaviour emotions (6.2)
behaviour (6.1) (11.2)
(4.1)
BCT identified
Fig. 2 Behavior change techniques identified across 26 studies according to Michie et al. [17]
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Thematic analysis

To answer review question 3 (What are the barriers and
facilitators to successful implementation of such
technology-based interventions in practice?), a thematic
analysis was conducted to address the practicalities of
implementing technology in practice. Characteristics of
the 21 qualitative (n = 19) and quantitative (n = 2) studies
are presented in Table 3.

Themes identified address the barriers and facilitators
of implementing and delivering technology-based inter-
ventions aimed at supporting professional practice
change. Four major themes were identified (summarised
in Fig. 3): (1) Practice and workload issues, (2) Design,
content and technical issues, (3) Role of the healthcare
professional, and (4) Usability and impact on the patient
care process. The numbers of papers reporting each find-
ing are reported in parentheses, out of a possible 21
papers.

(1) Practice and workload issues

A number of contextual features (the setting in which
the intervention was delivered) were highlighted; prac-
tice and workload considerations were perceived as im-
portant in the implementation of technology-based
interventions. Increased workload was an issue as a

Table 3 Details of practicalities papers (n=21)

(2018) 18:93

Page 14 of 21

result of using technology as part of everyday practice,
which may disrupt the workflow of healthcare profes-
sionals (1n=4; 19%). Time taken to use the system was
cited as a barrier to likelihood of healthcare profes-
sionals using technology (n = 5; 24%), suggesting a need
for a more user-friendly design of technology-based in-
terventions. However, technology was seen as a way of
improving communication between healthcare profes-
sionals (n=3; 14%) and improving the delivery of
healthcare in practice (n = 3; 14%).

A key factor for the successful implementation of tech-
nology into the healthcare environment was whether the
intervention met the practice/organizational goals and
objectives (n =11; 52%). More specifically, whether the
addition of technology met current practice initiatives
and could be easily integrated into existing clinical
practice, and targeted organizational incentives includ-
ing patient management approaches and financial
incentives.

(2) Design, content and technical issues,

Features of the technology itself were also highlighted.
Studies emphasised the importance of pilot testing before
wide-scale usage and in particular the need to take an it-
erative modification approach, such as customising tools

Lead author Year Country Data collection method

Ackerman [43] 2013 USA Qualitative structured telephone surveys
Barnett [92] 2015 UK Think-aloud and semi-structured interviews
Bokhour [93] 2015 USA Qualitative semi-structured interviews

Burns [94] 2007 Australia Semi-structured interviews

Doerr [95] 2014 USA Semi-structured interviews

Dowding [96] 2009 UK In-depth semi-structured interviews

Dryden [97] 2012 USA Qualitative, in-depth semi-structured telephone interviews
Edelman [34] 2014 USA Semi-structured interviews and quantitative survey data
Guldberg [98] 2010 Denmark Group and individual semi-structured interviews
Hains [99] 2009 Australia Semi-structured interviews

Litvin [100] 2012 USA Semi-structured group interviews

Maguire [101] 2008 UK Questionnaires and semi-structured interviews
Mandt [102] 2010 Norway Focus groups

Patterson [42] 2004 USA Semi-structured interviews

Power [103] 2014 Canada Surveys

Randell [104] 2010 UK In-depth semi-structured interviews

Rousseau [105] 2003 UK Semi-structured interviews

Saleem [106] 2005 USA Qualitative field observations

Vishwanath [107] 2009 USA Surveys

Weir [108] 2011 USA Formative interviews

Zhu [109] 2015 USA Qualitative Survey
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Practice and workload

* Increased workload

A4

issues

Design, content and

A

« Time taken to use the system
» Integrate into existing clinical practice

A 4

» Pilot testing
»| * Ensuring sufficient IT resources

technical issues

Role of the clinician

v

« Links to additional (external) resources

« Importance of attitudes and perceptions
towards the intervention

Implementation of interventions

Usability and impact on the

A 4

« Clinical engagement and endorsement

« Must improve the clinical encounter and
be patient-tailored

A4

patient care process

Fig. 3 Barriers and facilitators of implementing technological support interventions aimed at supporting

A 4

« Ensure appropriate training to use the
system/resource

J

to the needs of the staff (1 = 5; 24%). Piloting may identify
important technical issues acting as barriers to usage, such
as insufficient access to IT resources, software updates
and limitations in computer performance (n=9; 43%).
Where interventions included patient management guide-
lines, the need for consistency and reliability was
highlighted. Links to external resources such as forums,
risk assessment tools or patient information sources, must
be used appropriately and in a way to improve the delivery
of patient care (n = 8; 38%). Guidelines in particular must
be relevant to patient management (n = 4; 19%).

(3) Usability and benefit for patient care.

Additional important features of the technology in-
cluded accessibility to important information relevant to
the clinical encounter for example medication informa-
tion, hence making it an important educational resource
(n =45 19%). Technology was also seen as a way of im-
proving other aspects of the clinical encounter such as
medication reviews or stimulating provider-patient dis-
cussions (1 = 5; 24%).

An important feature was the ease of use of the tech-
nology (n=9; 43%); barriers included system navigation
and poor interface issues. A major factor in the uptake
and acceptability of technology-based interventions was
appropriate training and IT skills (= 18; 86%). Specific
considerations include implementing an initial learning/
familiarisation period to use the system and providing
technical training for users.

(4) Role of the healthcare professional

Technology-based interventions increase healthcare
professional confidence in decision making in situations
of uncertainty around patient management (n = 3; 14%).
Attitudes and perceptions of healthcare professionals to-
wards technologies were seen as important in terms of

its usage; positive attitudes were more commonly associ-
ated with uptake (n=6; 29%). Two studies emphasised
the importance of senior professionals endorsing and
driving the use of technology as being key to its success.
In particular, healthcare professional engagement with
technologies was reported as being key to its implemen-
tation, such as assigning one or more groups of health-
care professionals with sole responsibility of using the
system, such as practice nurses (1 = 6; 29%).

Discussion

This review has identified key features of successful in-
terventions with a technological component aimed to
improve healthcare professional practice. Results provide
insights into the characteristics of successful interven-
tions and provide recommendations for the design and
implementation of technologies based on the barriers
and facilitators identified.

A summary of the key findings from the present re-
view is presented in Table 4, which outlines successful
intervention features and components, effective BCTs
used in interventions, and the barriers and facilitators in
relation to implementing interventions. The most suc-
cessful technological intervention was healthcare profes-
sional decision support, suggesting this may have an
important role to play in clinical practice. The most
common intervention setting was within primary care;
however more practice change occurred in hospitals.
This suggests two areas for future research. First, it is
necessary to understand how the hospital setting, a key
place in which deliver behavior change interventions
aimed at supporting healthcare professional practice,
such as prescribing practices [40] or screening of health
conditions [41] can be utilised to facilitate delivery of
technological interventions. Second, research is needed
to find ways of overcoming the barriers that exist within
primary care settings, particularly those identified by our
thematic analysis. For example, organizational/structural
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professional practice
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Construct Topic Specific features / recommendations References Barrier /
facilitator
What works Type of intervention  Healthcare professional decision support [10, 34, 38,41, 57, 62, 65, 67,
69, 73, 74, 78, 80, 84, 88]
Reminders and alerts [4, 8, 37,47, 58, 64, 71]
BCTs Instruction on how to perform the behaviour [8, 10, 37-40, 47, 50, 57, 58,
(BCTTv1 4.1) 64, 74, 78, 86]
For whom interventions Target healthcare Adherence to clinical guidelines for patient [38, 57, 58, 62, 64, 74, 78, 79, 88]
work for professional behaviour management
Prescribing behaviours [10, 37, 40, 65-67, 73, 80, 81]
Increasing knowledge or self-efficacy / confidence  [34, 39, 86, 61]
Increasing screening / testing rates [4,8,41,47,69, 71, 76]
Clinical intervention / management [68, 80, 83, 84, 86]
Target healthcare GPs [4, 8,10, 34, 37, 39, 40, 47, 64-68,
professional 71,73, 74, 84-86]
Multiple healthcare professionals (more than two [37,41,47,57,62,73,74,76, 79,
different types of healthcare professional) 81]
Under what Role of the healthcare Increases confidence in decision making [43, 96, 103] Facilitator
circumstances professional
Attitudes and perceptions towards technology [43, 99-102, 107] Facilitator
important in terms of uptake and usage
Importance of endorsement from senior peers [99, 104] Facilitator
Engagement important factor for implementation [95, 100, 104] Facilitator
Assigning responsibility to using the system (34, 100, 106] Facilitator
Facilitator
Design, contentand  Pilot testing - iterative modification to meet staff [100, 101,104, 106, 108] Facilitator
technical issues needs
Insufficient access to IT resources [34, 92, 99, 104] Barrier
Physical location of computer (94, 100, 106] Barrier
Technical issues such as computer performance and [94, 95, 98, 100, 102, 104, 105, Barrier
software updates 108]
Links to external patient information resources important  [92, 95, 99] Facilitator
Links to patient guidelines must be readily available, [43, 97-100] Facilitator
consistent and relevant
Usability and benefit  Provides access to important information relevant [98, 99, 103, 109] Facilitator
for patient care to the clinical encounter
Technology / interface must not be difficult to use  [43, 93, 96, 97, 99, 104-106, 109]  Barrier
Technical training for staff [34,42,99-101, 103-105, 107, 108]  Facilitator
Importance of a learning period / time for [95-98, 108] Facilitator
familiarisation of the technology
Considers complexities of individual patients [42, 43, 97, 105] Facilitator
(for example patients with specific conditions,
or comorbidities)
Helps facilitate discussions with patients (100, 102] Facilitator
Practice and Use of technology increases workload and may [34, 42, 97, 106] Barrier
workload issues cause disruption
Time taken to use the system / requirement of [34, 93, 98-100] Barrier

additional staff members
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Table 4 Summary of findings of the important factors of implementation of technological interventions aimed at improving

professional practice (Continued)

Construct Topic Specific features / recommendations References Barrier /
facilitator
Improves communication between healthcare (92, 98, 103] Facilitator
professionals
Must be easily integrated into day-to-day workload  [34, 43, 97, 106] Facilitator
Technology aligns with current practice initiatives,  [43, 92, 95, 98, 105, 108] Facilitator

and wider organisational context

and logistical barriers such as workload and time pres-
sures are often cited as challenges in primary care set-
tings [42, 43], which may consequently influence the
effectiveness of interventions. Our review also suggests
financial incentives may be a way of engaging healthcare
professionals with interventions. Whilst recent evidence
suggests financial incentives may not influence
long-term practice habits [44], our findings suggest this
may be used to engage clinicians in technology-based in-
terventions and therefore focusing on improving uptake.

The barriers and facilitators identified in this review
are consistent with theoretical approaches to under-
standing implementation of interventions. Normalisation
Process Theory [45, 46] can be used to understand how
technological interventions become embedded in clinical
practice. BCTs can be applied to demonstrate how inter-
ventions can be delivered in practice to facilitate imple-
mentation of technological interventions. Thus, four key
recommendations can be made. First, it is necessary to
understand how healthcare professionals make sense of
the intervention in question. Consequently, techno-
logical interventions must have a clear function and
meet organizational initiatives (coherence domain; e.g.
instruction on how to perform the behaviour [BCTTvl
4.1]). Second, healthcare professionals must be actively
engaged with technological interventions, which must be
endorsed by key professionals within organisations, (cog-
nitive participation domain; e.g. social support [BCTTv1
3.1]). Third, interventions must be easily integrated into
clinical practice by: (a) complementing existing work-
loads of healthcare professionals; and (b) considering the
diversity in terms of the setting in which they are deliv-
ered, the recipient of the intervention, and the target be-
haviour (collective action domain; e.g. action planning
[BCTTvl 1.4]). Fourth, ensure that interventions are ap-
praised by the recipients as having a benefit in terms of
improving the patient encounter (reflexive monitoring
domain; e.g. self-monitoring of outcome(s) of behaviour
[BCTTv1 2.4]).

Our review shows that General Practitioners (GPs) are
the most commonly targeted healthcare professional
for technology-based interventions, and such interven-
tions demonstrate the highest proportion of success in
achieving behavior change. The role of the GP may be

particularly important in understanding how techno-
logical approaches can be used to support professional
practice. Of the 24 studies aimed at GPs, eight studies
used computerised decision support and a further eight
used reminders and alerts. The second largest group in-
volved targeting multiple healthcare professionals, how-
ever only half of the studies resulted in behavior change.
This is particularly important as part of the healthcare
professional role involves referral and signposting to
other healthcare professionals, where appropriate, and is
recognized in primary care training strategies [5, 6]. One
possible application of technological support, suggested
by our thematic analysis, is to use technology to improve
the communication between multiple healthcare profes-
sionals regarding patient management [11].

Use of behaviour change techniques in interventions

Use of recognized behavior change techniques [17] was
identified in a number of studies. The most commonly
used BCT was instruction on how to perform the behav-
ior in the context of instructions from decision support
systems, reminders and alerts. This technique may be
particularly important for supporting healthcare profes-
sional clinical practice in the context of a technological
intervention, which often involves tasks related to clin-
ical decision making, such as making referrals and con-
ducting health checks [5, 38, 47, 48].

When using BCTs, there were more studies resulting
in healthcare professional behavior change than those
showing no change. Given that the BCT framework is
still in its infancy, interventions must apply the tech-
niques to important areas of clinical practice (such as in-
creasing appropriate screening and more appropriate
medicine prescribing practices). The use of theory offers
valuable insights both in terms of understanding and sup-
porting practice change [19, 49], and as a framework to
guide interventions. Our review has provided encouraging
findings supporting the use of BCTs as part of
technology-based interventions supporting healthcare
professional practice change. Findings suggest that BCTs
can be effective across a range of diverse interventions,
target behaviours, and healthcare professionals groups.
The BCT instruction on how to perform the behaviour, ef-
fective in 15 studies, was implemented across prescribing
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behaviours (e.g.), adherence to patient management guide-
lines (e.g. [50]), and increasing screening rates (e.g.), and
found to be effective when delivered to doctors, therapists
[50], nurses, and surgeons. Identifying effective BCTs in
this way allows the opportunity to deliver interventions
aiming to change healthcare professional practice shown
to be effective across a range of diverse contexts. Given
that 22 of the 48 studies included in this review did not
contain any evidence of BCTs, there is considerable scope
for future research to develop interventions that include
BCTs. This may involve targeting known psychological
constructs involved in behavior change, using established
as well as emerging frameworks specifically relating to im-
plementation of interventions [51-53].

Strengths and limitations of this review

Although there are a number of systematic reviews [11-
15, 54] that examine the effectiveness of individual types
of technology-based interventions aimed at healthcare
professionals, this is the first attempt to synthesise evi-
dence across all interventions that include a techno-
logical component, and the factors involved in
implementation of interventions. We have synthesised
the findings from across a diverse range of intervention
contexts and settings, and presented a series of barriers
and facilitators that are shared across healthcare behav-
iours and diverse professional groups. The advantage of
this approach is this provides a series of recommenda-
tions concerning implementation of interventions, and
an opportunity for behaviour change interventions to be
delivered at scale, targeting multiple healthcare profes-
sional groups working in different healthcare settings.
This is also an attempt to move beyond the most com-
monly researched interventions and provide a wider un-
derstanding of both intervention function and content.
The current review extends the findings of previous re-
views by: (1) identifying specific features associated with
successful interventions, (2) highlighting opportunities
to improve the design of technologies by incorporating
known BCTs; and (3) identifying the barriers and facili-
tators to successful implementation. Future reviews
would benefit from including an analysis of patient out-
comes, particularly whether changes in healthcare pro-
fessional practice as a consequence of implementing
technological interventions translates into positive pa-
tient outcomes.

The realist method of literature review was chosen to
guide the present review in order to understand a large
and complex literature, with the qualitative findings ad-
vancing our quantitative findings by providing an explana-
tory framework about why and how technological
interventions work. This level of detail would not have
been possible to identify using the Cochrane style of sys-
tematic review methods. Whilst we sought to extract
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effect sizes for included studies, due to the varied report-
ing of study results, and in the absence of the relevant
statistical information such as p values and sample sizes, it
was only possible to calculate effect sizes for a small num-
ber of papers. Further, due to the range of outcomes ob-
tained, and often multiple outcomes from individual
studies, a direct comparison between groups was not
possible.

Conclusions

Technological approaches to improving healthcare profes-
sional practice provide opportunities to address challenges
in multiple areas of clinical practice [55]. Healthcare pro-
fessional decision support interventions, when developed
using recognized psychological theory such as providing
instruction on how to implement interventions, show
considerable promise. Interventions must also address
known organizational challenges associated with specific
settings, as well as focusing on efficiency and user-friendly
design content, whilst ensuring interventions complement
the day-to-day workload and current knowledge and skill-
set of the target healthcare professional. Understanding
the most important contextual features, and how to apply
theoretical insights known to change behavior can all con-
tribute to the design and successful implementation of
technologies aiming to directly influence the clinical man-
agement of patients.
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