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Abstract

Background: With connected medical devices fast becoming ubiquitous in healthcare monitoring there is a deluge
of data coming from multiple body-attached sensors. Transforming this flood of data into effective and efficient
diagnosis is a major challenge.

Methods: To address this challenge, we present a 3P approach: personalized patient monitoring, precision diagnostics,
and preventive criticality alerts. In a collaborative work with doctors, we present the design, development, and testing
of a healthcare data analytics and communication framework that we call RASPRO (Rapid Active Summarization for
effective PROgnosis). The heart of RASPRO is Physician Assist Filters (PAF) that transform unwieldy multi-sensor time
series data into summarized patient/disease specific trends in steps of progressive precision as demanded by the
doctor for patient’s personalized condition at hand and help in identifying and subsequently predictively alerting the
onset of critical conditions. The output of PAFs is a clinically useful, yet extremely succinct summary of a patient’s
medical condition, represented as a motif, which could be sent to remote doctors even over SMS, reducing the need
for data bandwidths. We evaluate the clinical validity of these techniques using SYM machine learning models
measuring both the predictive power and its ability to classify disease condition. We used more than 16,000 min of
patient data (N=70) from the openly available MIMIC Il database for conducting these experiments. Furthermore, we
also report the clinical utility of the system through doctor feedback from a large super-speciality hospital in India.

Results: The results show that the RASPRO motifs perform as well as (and in many cases better than) raw time series
data. In addition, we also see improvement in diagnostic performance using optimized sensor severity threshold
ranges set using the personalization PAF severity quantizer.

Conclusion: The RASPRO-PAF system and the associated techniques are found to be useful in many healthcare
applications, especially in remote patient monitoring. The personalization, precision, and prevention PAFs presented
in the paper successfully shows remarkable performance in satisfying the goals of 3Ps, thereby providing the advantages

of three A’s: availability, affordability, and accessibility in the global health scenario.

Keywords: Precision medicine, Medical informatics, Personalized healthcare, Motif summarization

Background

Precision medicine and personalized healthcare are fast
gaining wide research interest as well as initial accep-
tance among the medical community. This is facilitated by
the availability of ubiquitous data sources such as wear-
able sensors, smartphones, and IoT (Internet of Things),
along with machine learning and large-scale data analyt-
ics tools, resulting in promising outcomes in some of the
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niche medical domains. Our research particularly focuses
on introducing the 3 Ps: precision, personalization, and
preventive diagnosis in remote healthcare monitoring of
patients, especially in a global health scenario. In our
system, patients in remote areas use wearable devices
to capture their vital parameters such as blood pressure
(BP), blood glucose, oxygen saturation (SpO2), electro car-
diographs (ECG) etc., and transmit them to doctors in
tertiary care hospitals, who in turn are expected to suggest
suitably needed timely interventions. While deploying our
system in the highly populous region of southern India,
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we found that, although this promises to provide hith-
erto unavailable healthcare services to critically ill and
aging population particularly in the developing world,
there are significant roadblocks in our expectation that
doctors embrace this new paradigm in handling patients.
The doctors, who are already overloaded, feel even more
overwhelmed by the voluminous data being flooded from
remote patients’ sensors. Furthermore, interpreting such
multi-parameter data pouring in simultaneously from a
multitude of remote patients is time-consuming and soon
transforms into an unmanageable deluge.

Approach

In this paper, we propose novel approaches to transform
data into diagnosis. As a collaborative work between our
researchers and clinicians in one of the largest super-
specialty hospitals in India (Amrita Institute of Medical
Sciences - AIMS), we developed physician assist filters
(PAFs) that are designed to transform unwieldy time
series sensor data into summarized patient/disease spe-
cific trends in steps of progressive precision as demanded
by the doctor for patient’s personalized condition at
hand, and help in identifying and subsequently predic-
tively alerting the onset of critical conditions. Together
with the communication network and data transmission
architecture, this new framework that we have designed,
developed, and successfully deployed is called RASPRO
(Rapid Active Summarization for effective PROgnosis).
The RASPRO framework was first introduced in [1].

Related work

We begin by analyzing the existing systems that sim-
ply generate alerts every time one or more sensors cross
the abnormality thresholds. Due to the humongous vol-
ume of such alerts, they are difficult to manage even
in the case of hospital in-patient settings, let alone for
a much larger number of remotely monitored patients.
Starting from some of the initial attempts reported in
[2], to more recent works such as [3-5], and [6], the
severity detection and alert generation is typically based
either on predefined thresholds, or based on training
of thresholds using machine learning followed by online
classification of multi-sensor data. Very similar tech-
niques of machine learning have also been used in fall
detection [7, 8]. Hristoskova et al. [9] propose another
system wherein patient conditions are mapped to medi-
cal conditions using ontology-driven methods, and alerts
generated based on corresponding risk stratification. Even
though there has been noticeable success in detection
and diagnosis of specific disease conditions, most of these
works have not explored the opportunity for personal-
ized and precision diagnosis. In an extensive review of
Big Data for Health, Andreu-Perez et al. [10] specifi-
cally emphasize on the opportunity for stratified patient
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management and personalized health diagnostics citing
examples of customized blood pressure management [11].
More specifically, Bates et al. [12] discuss the utility of
using analytics to predict adverse events, which could
reduce the associated morbidity and mortality rates. Fur-
thermore, Bates et al. [12] argue that patient data ana-
lytics based on early information supplied to the hospital
prior to admission can result in better management of
staffing and other hospital resources. One of the recent
works in personalized criticality detection is reported
in [13], which propose an analytical unit in which the
Improved Particle Swarm Optimization (IPSO) algorithm
is used to arrive at patient-specific threat ranges. To
improve precision in diagnosis we also need to arrive
at a balance between a completely automated system
on one hand, and physician assist systems on the other.
Celler et al. [14] propose a balanced approach wherein
sophisticated analytics are presented to physicians who
in turn identify the changes and decide on the diag-
nosis. This is also supported by many results including
that reported in [6], wherein domain knowledge based
method performed as well as other trained machine
learning models. These arguments and results provide
further impetus for personalized, precision, and preven-
tive diagnostic techniques that are amenable to physician
interventions.

Methods

The first significant improvement that we bring into bear
is the quantization of every remotely sensed parame-
ter based on its own customized severity boundaries.
Sequential time windows of such quantized values are
examined for dominant appearances of normalcies or
abnormalities, as the case may be, and motifs correspond-
ing to them are extracted. Using factors set by doctors, the
system then transforms these motifs by generating inter-
ventional time alerts as per clinically prescribed protocols.
Both the alerts and motifs are amenable to rapid trans-
mission to doctors, even as SMSs on bare minimum band-
width starved wide area wireless networks. This results
in the generation of more clinically relevant critical infor-
mation, along with a drastic reduction in reporting every
minor aberrational data that may not be indicative of
any serious condition, after all. The system does not stop
here. The attending doctors, when they view the alerts
and/or motifs, have the luxury to request Detailed Data
on Demand (dubbed DD-on-D), upon which the next
level of detail in the data is transmitted. This level of
detail could be a straightforward frequency map of normal
and abnormal values, or much more intelligent machine
learning classifications in the case of proven disease con-
ditions. The heart of our system is a framework called
RASPRO (see Fig. 1) consisting of Physician Assist Filters
(PAFs) that, in going from data to diagnosis, implement
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Fig. 1 RASPRO-PAF Framework The architecture shows the RASPRO-PAF framework which progressively converts the raw multi-sensor data into
quantized symbols, helpful motifs, diagnostic predictions, and critical alerts

the 3 Ps: Precision, Personalization, and Prevention. In
the following sections we describe each of these 3Ps in
detail.

Personalization PAF

Due to the distributed data gathering and processing
architecture, there is an opportunity to enhance person-
alization in diagnosis and treatment. The first component
in the RASPRO framework, the personalization PAF takes
the form of a patient and disease condition specific sever-
ity quantizer that converts raw sensor values to a series of
clinically relevant severity symbols.

Adaptive quantization

In general, let us consider N body sensors, S1,Ss,...,Sn
with varying sensing frequencies fi,/2,...,fy. The raw
time series values from these sensors are converted to dis-
crete severity level symbols by the quantizer. The number
of severity levels L; for a sensor S; can be set based on the
sensor and many other factors. We assume that different
vital parameter sensors have different number of severity
levels, and hence Lj, say the number of severity levels for
a blood pressure sensor, could be equal to five, whereas,
L, (say oxygen saturation levels) could be equal to seven.
In our symbolic notation, the clinically accepted normal

values are assigned the symbol A, while above-normal
values are assigned with progressive degrees of severity
as A+, A + + etc., while that of sub-normal values are
assigned A-, A—— etc.; the number of “+” and “-” symbols
representing degree of normal and subnormal severities
respectively. Figure 2 depicts how various severity levels
are arrived at in Personalization PAF severity quantizer.

The quantized severity symbols are arranged into a
Patient Specific Matrix (PSM) of N rows and W columns,
where N is the total number of sensors being observed,
and W is a time window in which the data is summarized.
The value of W can be set by a physician or automatically
derived based on the risk perception of that particular
patient.

Personalization

The quantization breadth are decided by doctors based
on the patient profile (or history), doctor’s diagnostic
interest (for instance, a cardiologist may assign severity
ranges differently from that of a nephrologist), severity
ranges as suggested by using analytics on local hospital
information system (HIS), and also based on population
analytics across multiple HIS spanning multiple hospitals
or even from publicly available databases such as Phys-
ioNet [15]. Together, this approach gives ample flexibility
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Fig. 2 Personalized Quantization Quantization of sensor data is based on multiple severity categorization criteria, resulting in the generation of

in achieving customization in inter-patient, inter-disease,
intra-patient, inter-specialty diagnosis from multi-sensor
data.

Precision PAF

Whereas in most other applications, precision directly
translates into great detail in data, in remote health mon-
itoring, precision cannot come at a cost of voluminous
data presentation to the doctor. Compactness has to be
retained. We have developed a step-wise refinement pro-
cess for precision, which is delivered on demand to the
attending doctor. Step 1 is “Consensus Motifs (CM)’, Step
2 is a collection of statistical parameters including severity
frequency maps (SFMs), and Step 3 is Machine Learning
(ML). In the first step, motifs corresponding to commonly
seen normalcies and abnormalities in the severity symbols
series are extracted. The outcome of this is two severity
summaries: (1) the most frequent trend in sensor data that
we call as consensus normal motif (CNM), and (2) the
most frequently occurring abnormality that we term as
consensus abnormality motif (CAM), to construct which,
we use the following building blocks.

Candidate Symbol, o[ p] is the p-th quantized severity
symbol in a row of the PSM, «[1],«[2],...,a[p],

Lo W

Normal Symbol, anora is a candidate symbol that rep-
resents the normal level and its value is equal to “A” for
every sensor.

Now, let the set C,, denote all the candidate symbols in a
W-long observation window, corresponding to z-th sen-
sor in the PSM. However, we have dropped the subscript
n for better clarity of discussion.

C={a[1],x[2],...,a[p],...,a[ W]}

Let o[ p] denote the sum of hamming distances of «[ p]
from all other candidate symbols in C such that:

olpl= 2 Dp],eli])

where, D(a[p],a[i]) is the hamming distance of «[p]
from ofi]. Here, we assume that the hamming distance
between neighboring severity levels (say, A and A+) is 1.
We define a set H of all ¢’s such that:

solpl,...,a[ W]}

Consensus Normal Symbol, acys[ C] is defined as a
candidate symbol among all the symbols in C that satis-
fies the following two conditions: (1) its hamming distance
from the normal symbol, denoted as D(acns[ Cl, anorm),
is less than a sensor specific near-normal severity thresh-
old S[#]rHrEsH, and (2) its sum of hamming distances
from all other candidate symbols in C is the minimum.
This is formulated as:

H={o[1],0[2],...

acns[Cl = {a[p]: D (a[p], anorm) < S[nlTHRESH
and o p] is the lowest such candidate in H}.

(1)

Consensus Abnormality Symbol, acss[ C] is defined
as a candidate symbol in C that satisfies the following two
conditions: its hamming distance from normal symbol,
D(acasl Cl,anorm) is greater than or equal to a sensor
specific near-normal severity threshold S[#]ryresy and
the sum of hamming distances from all other candidate
symbols in C is the minimum. This is formulated as:

acas[Cl = {a[p]: D(a[pl,anorm) = S[nlTHRESH
and o[ p] is the lowest such candidate in H}.

(2)
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Defining upper and lower bounds for the deviations of
a[ p] from anorp using the S[ n]ruresy variable ensures
that the doctors can choose to differentiate “near-normal”
severity levels from those which are critical in nature,
providing for increased personalization and precision in
diagnosis.

Consensus Normal Motif, pucyy[P] is an ordered
sequence of consensus normal symbols belonging to N
rows in the PSM of a patient P, and is represented as
< acns [Ci],acens [Col, ..., aens [Cn] >. The n-th con-
sensus normal symbol acns [Cy] in pwenm[P] can be
indexed as uenpl P [ 7).

Consensus Abnormality Motif, ;tcaas[ P] is an ordered
sequence of consensus abnormality symbols belonging to
N rows in the PSM of patient P, which is represented as
< acas [Ci],acas [Cal,...,acas [Cn] >. The n-th con-
sensus abnormality symbol acas [Cy] in pcam [ P] can be
indexed as pcaml Pl [ n].
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To reiterate in the above formulation, each row of a
PSM is considered as an observation window set C (corre-
sponding to a summarization time window W) to find the
corresponding consensus symbols, ozcys[ C] and acas[ Cl.
The sequence of these symbols over the N rows in a PSM,
form column vector motifs wena[ P) and pwean| P) (refer
to Fig. 3).

In subsequent steps of Precision PAF, the system gener-
ates a frequency map that shows how frequently different
multi-sensor parameters have crossed the personalized
severity thresholds. Finally, the motif time series is further
used as input to proven deep learning (DL) and machine
learning (ML) techniques such as Long Short Term Mem-
ory (LSTM) recurrent neural networks (RNN) [16] or
Support Vector Machines (SVM) [17] that could help the
doctors in diagnosis. In the next section, we use the above
consensus motifs for alert generation to aid in criticality
prevention.
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Fig. 3 RASPRO Severity detection, summarization, and AMI calculated using CAMs and sensor specific severity weight matrix. It also shows an AMI
based patient prioritization table that can help physicians in attending to the neediest patient




Pathinarupothi et al. BMC Medical Informatics and Decision Making (2018) 18:78

Prevention PAF

Implemented as an alert generation technique that uses
simple or complex mathematical models, to calculate the
amount of time available to the physicians for effective
intervention, the Prevention PAF is amenable to changes
based on patient, disease, and physician’s diagnostic inter-
est. The output of the Prevention PAF is an alert measure
index (AMI) that is used to prioritize the patients based
on their urgency for physicians’ interventional attention.

Each severity symbol in a motif also communicates how
much time is available with the doctor for deciding an
intervention (any if needed). Hence, for each sensor Sj,
S2, ..., Sn and its corresponding severity symbol « in
wenm Pl and peam| Pl (where a could be A, A+, A-, etc.)
we associate it with a corresponding medically accepted
intervention time 8 [S,] [«]. Across different sensors S,
for a patient P, let us consider 0 [S,] [«] as a sensor and
severity symbol indexed matrix of weights derived from
interventional time using the following relationship:

Kp

8 [Snl [e]

In Eq. 3, the constant Kp can be set by the physi-
cian considering the context of patient’s health condition
(including historical medical records and specific sensitiv-
ities and vulnerabilities documented therein) or derived
through machine learning techniques. Equation 3 may be
substituted by more complex equations for progressively
complicated disease conditions.

At the end of each observation time-window W, for
every patient P, we also define an aggregate criticality alert
score, called the Alert Measure Index (AMI), which is
calculated as:

0 [S,] [e] (3)

AMI = 2N | (0 1Sy] [wcaml P [1]]) % num (camlP] [1])
(4)

wherein, each severity quantized symbol in the pcan( P]
of the n-th sensor is converted into a numerical value
(e.g., AL is assigned 1, A + + or A — — is assigned 2)
using num (ucam[ P] [n] ), and scales it up by the sensor-
severity specific weight 0 [S,] [ «] (defined in Eq. 3). The
resulting AMI is indicative of the immediacy of patient
priority for physician’s consultative attention. The process
of motif detection, AMI calculation, and patient prioriti-
zation is summarized in Fig. 3. The data used to arrive
at the AMI scores could be other statistical parameters
(such as frequency maps) or machine learning prediction
scores. Also, the technique for calculating the score may
also be based on predefined simple mathematical models,
or complex machine learning algorithms.

Clinical relevance and validation
In October 2016, the RASPRO framework was introduced
to doctors in multiple specialties in our super-specialty
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hospital, wherein they validated its clinical deployment
applications. We present some of the specific clinical
scenarios that emerged from this pilot study.

Cardiology

The electrocardiogram is a potential indicator of car-
diac events and can be exploited for personalized and
precision diagnosis by varying the parametric thresh-
olds and summarization window, based on patient pro-
file/disease condition and associated factors. For instance
taking into account the disease condition, a 3mm depres-
sion in the ST segment would be graded as A++ for an
active patient having exertion related chest pain, indicat-
ing cardiac ischemia, whereas the same if occurred in a
patient at rest, would be graded as A+++ with limited
time of intervention (30 min), indicating cardiac muscle
death. To extend the spectrum of diseases that ST seg-
ment depression would cover, a chronic hypertensive with
left ventricular hypertrophy of the heart (and no chest
pain) would also presumably have a continuous 3mm dip
in the ST segment which does not require any interven-
tional attention, and hence, would be graded as A/A+
(near normal) by the severity quantizer. Next, taking into
account the patient profile, in sedentary workers, aged
above 45 having smoking habit, with high cholesterol
levels, and other associated risks the thresholds will be
low (A+, A++, and A+++ would be assigned to 1-2mm,
2-3mm, and above 3mm ST depression respectively)
while in highly active but risk patients with age less
than 45, and no previous associated history, the levels
will be high (A+, A++, and A+++ would correspond-
ingly be assigned to 2—-3mm, 3-3.5mm, and above 3.5mm
respectively). Also, in the former case the summarization
window W (capturing how long ST depression sustains)
would be 3—4 min (more critical), whereas in the latter it
would be 7-9 min.

Pulmonology

Simple but vital parameters such as oxygen saturation lev-
els in the body (SpO2), BP, heart rate variability (HRV),
and respiratory rate variability (RRV), present in unique
combinations, would facilitate differentiating between
benign diseases such as interstitial lung disease/sleep
apnea for which the thresholds for alert (set through
the interventional time constant Kp) will be fairly high,
and emergencies such as pulmonary edema/pulmonary
embolism (blood clot in an artery in the lung) for which
the thresholds will be kept low if any of the predisposing
factors such as left heart failure, pulmonary hypertension,
prolonged immobilization, pregnancy, etc. are present.
Hence, the physician would preset these combinations of
vitals to be looked for as sequence of symbols in the CAM.
Since the number of parameters that could be picked up
to indicate disease are a few, it is pertinent that stepwise
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precision techniques such as machine learning algorithms
be used for distinguishing between closely mimicking
conditions. To quote as an example is obstructive sleep
apnea and chronic obstructive pulmonary disease, both of
which would show similar trends in SpO2, HRV, RRV and
BP. In a trial that was conducted at our hospital, we were
able to achieve 99% precision in diagnosing sleep apnea
from HRV using deep learning algorithm called Long
short-term memory recurrent neural networks (LSTM-
RNN) and is reported in one of our previous works [16].
The algorithm evaluation was done using the multi-sensor
patient data from the Physionet Challenge 2000 [18],
which contained annotated data from 35 patients who
underwent overnight sleep study.

Neurology

One of the early markers of autonomic neuropathy in
epileptic patients is the discrepancy between the BP and
the pulse rate of the patients. In this scenario, the sever-
ity levels of BP and pulse rate would be set accordingly
(as a combination) to alert the practitioner. Suppose S1
is BP and S2 is heart rate sensor respectively. Let us say
for the patient P1, ucam[Pl]=< A — —, A >, and for
patient P2, ucam[ Pl =< A—,A+ >. In both cases, the
diagnosis, alert level, and treatment vary because P1 has
BP decline with no change in heart rate (critical), while P2
has a compensatory increase in heart rate, which indicates
good autonomic function.

Though these are representative clinical scenarios, we
found wide agreement among the doctors from other spe-
cialties too that personalization, step-wise precision, and
prevention introduced through the RASPRO framework
is of high utility in remote monitoring and critical alert
generation.

Results and discussion

In order to quantitatively evaluate the effectiveness of
RASPRO, we measure both the diagnostic ability as well
as the preventive predictive power of this technique. We
formulate three hypotheses and evaluate the effectiveness
of RASPRO in satisfying these:

e Precision Hypothesis: RASPRO consensus motif
time series can replace raw sensor data time series for
the task of identification/classification of specific
disease conditions.

¢ Prevention Hypothesis: RAPSRO based consensus
motifs can predict future disease condition with as
much accuracy as raw sensor data time series.

e Personalization Hypothesis: There exists an
inter-patient variability in severity levels and
summarization frequencies, which if optimized
individually can result in better accuracy in
predicting/classifying a specific disease condition.
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By assessing the validity of the first hypotheses we aim to
evaluate the extent to which RASPRO motifs can provide
precision in diagnostics. The second hypothesis evaluates
the utility of RASPRO as a tool for predictive analytics
in critical conditions; while the third hypothesis help us
understand if there exists a case for personalization in
disease discovery and prediction.

Dataset

The first step to evaluate these hypotheses is to identify
datasets that are extensive, long term and critically signif-
icant. We used large time series dataset from MIMIC II
[19] database, which contains multiple body sensor val-
ues from over 20,000 ICU patients. This dataset consists
of ECG, ABP (Arterial Blood Pressure), Heart Rate (HR),
Non-obtrusive BP (NBP), SpO2, Mean Arterial BP (MAP),
and other vital signs. From this, we selected a curated set
of patient and control group data that contained a long
time series data followed by a critical event. We selected
patients with Acute Hypotensive Episodes (AHE), which
is a potentially fatal condition, found quite common in
ICUs as well as caused due to postural hypotension. An
AHE event is analytically identified as when MAP mea-
surements remain below 60 mmHg for more than 30 min.
This is a potentially fatal event and requires immediate
intervention. We also made sure that the dataset provides
uninterrupted MAP signal with a minimum sampling rate
of 1 per minute, over at least 3 h for both the event-
patients as well as the control group. We selected a group
of 35 patients (called group H) who had AHE during some
time during their stay in ICU, and another 35 patients
(called group G) who did not have AHE during their ICU
stay. This dataset was selected from the PhysioNet [15]
challenge 2009 [20]. The H dataset also had a time marker
to, after which AHE occurred in that patient within a
one-hour window. Since the data was obtained from pub-
licly available sources, we did not require getting prior
approval of IRB for this work.

Evaluating precision hypothesis

The first task is to measure the replaceability of the orig-
inal time series data with the quantized symbols and
consensus motifs. To evaluate this, the H and G group
time series data comprising of Mean Arterial Pressure
(MAP), of length 60 min after #y are modeled as feature
vectors of length 60. These vectors are called original time
series (OTS), and are used for training an SVM model for
classifying the data as having AHE or not. The vectors
belonging to AHE were labelled as H, and G otherwise.
After using OTS, we then generate quantized time series
(QTS) vectors with different quantization breadth. The
quantization breadth (denoted by B) are varied as 5, 10, 15,
and 20. For instance, when B=10, each of the OTS MAP
values between 60 mmHg and 50 mmHg are quantized
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into the same severity symbol, say “A-", whereas for B=5,
the symbol “A-” quantizes all OTS MAP values between
60 mmHg and 55 mmHg. These vectors are used in sim-
ilar manner to first train and then test the SVM model.
Finally, we generate the corresponding motif time series
(MTS) for each of the QTS, with varying the summa-
rization time window W as 5, 10, and 15. The value
of W corresponds to the time window in which all the
severity symbols in the QTS are converted to a single con-
sensus symbol. A comparison of OTS, QTS, and MTS
is done using the statistical measure of binary classifi-
cation, the F-score. An F-score (also called Fj-score) is
calculated as:

(Precision * Recall)
Fiscore = 2 % — (5)
(Precision + Recall)

Significant results

The Fl-scores for the SVM models are summarized in
Fig. 4. It shows that OTS based SVM model gave an F1-
score of 0.76, which is the gold standard that we compare
other models with. The QTS and MTS based SVM models
were able to perform as well as OTS in most of the cases.
Furthermore, MTS with (B=10 and W=15) and (B=20 and
W=5,10,15) performed better than the OTS in the classi-
fication problem. In fact, these MTS models showed more
than 12% better F1-score compared to OTS. These results
support the precision hypothesis that motif time series
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can replace original time series data for the task of identifi-
cation/classification of specific disease conditions, in this
case AHE.

Evaluating prevention hypothesis

The next evaluation parameter of RASPRO is to identify
if a priori motif series could predict future disease condi-
tion, and thereby aid in preventive intervention. For this,
the H and G group time series data comprising of Mean
Arterial Pressure (MAP), of length T minutes prior to ¢
is modeled as a T-long feature vector (OTS). These vec-
tors are used for training (using 70% data, with 5 fold
cross validation) and testing (using 30% data) an SVM
model for predicting them as AHE or not, where patients
belonging to H group are annotated as having AHE and
G group patients are annotated otherwise. In effect, we
try to classify sensor data prior to AHE event as a pre-
dictor for ensuing AHE condition. Since G group data did
not have a time marker ¢y we selected a random but con-
tinuous time series of length T from each of the G group
patients. SVM was selected due to its widely accepted
performance in classification problems involving multi-
ple features, although we might obtain comparable results
using other classification techniques too.

The backward offset time T (from ty) is varied as 30,
60, 90, 120, 150, and 180 min as an expanding window. In
the next step, the raw feature vectors are quantized using
severity quantizer to form a quantized time series (QTS).

oTS
QTS (B=5)
QTs (B=10)
QTS (B=15)
QTS (B=20)
MTS (B=5) (W=5)
MTS (B=5) (W=10)
MTS (B=5) (W=15)
MTS (B=10) (W=5)
MTS (B=10) (W=10)
MTS (B=10) (W=15)
MTS (B=15) (W=5)
MTS (B=15) (W=10)
MTS (B=15) (W=15)
MTS (B=20) (W=5)
MTS (B=20) (W=10)
MTS (B=20) (W=15)
0 0.25

that are better than one obtained using OTS SVM model

AHE classification F1-score

0.5 0.75 1
F1-score

Fig. 4 AHE classification F1-score The F1-scores of SYM models trained and tested for classifying the given 60 min of data as AHE or not using OTS,
QTS (B=5,10,15,20), and MTS (W=5,10,15). It shows that QTS and MTS with different B and W values are able to classify the AHE signal with F1-scores




Pathinarupothi et al. BMC Medical Informatics and Decision Making (2018) 18:78

Once again, the quantization breadth B is varied as 5, 10,
15, and 20. In the third step, the QTS are summarized
and motifs extracted to form RASPRO Motif Time Series
(MTS), with varying observation time window sizes W: 5,
10 and 15 min. The QTS and MTS are then given as input
to train and test the SVM model (one for QTS and another
for MTS) for predicting AHE before it’s onset.

Significant results

From the comparative analysis of OTS and QTS (Fig. 5),
we observe that QTS with B=15 has better F1-score in
comparison to OTS in all the time-offsets T, although the
root mean square error (RMSE) between these two series
is an insignificant 0.001, pointing to the fact that OTS
could be replaced with QTS. We select this QTS (B=15)
and then compare it with MTS of varying time windows
in Fig. 6. We observe from Fig. 6 that QTS has higher
Fl-score compared to the best MTS with W=10. How-
ever, RMSE between QTS and MTS (W=10 and W=15)
is a statistically insignificant value of 0.01, which implies
that MTS using W=10 and 15 performs as well as QTS on
an average across different time windows. Now, we fur-
ther compare the OTS against the best performing B and
W values corresponding to QTS and MTS respectively,
and the results are plotted in Fig. 7. These data points are
marked as QTSmax and MTSmax respectively. In Fig. 7,
QTSmax and MTSmax show closely similar F1-score with
the RMSE as 0.018, which could be considered statistically
insignificant.

Going further, we used data from a moving time win-
dow of 30 min each, instead of an expanding window. This
simulates the situation when we obtain data for 30 min
alone and are required to classify it as a predictor for AHE.
Here, we do not have the luxury of having data till £, as
the 30 min slice of data could be from anywhere upto 3 h
before 5. We show in Fig. 8 the comparative analysis of
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OTS against the best B and W values corresponding to
QTS and MTS in the moving window experiment. The
results plotted in Fig. 8 show that MTS and QTS per-
form better than OTS in most of the time intervals, while
the RMSE between MTS and QTS is 0.018 on an average.
The results comparing QTS with different B values against
MTS with different W values are given in Additional
files 1, 2, 3, 4 and 5.

From these results, we can conclude that quantized
symbols, as well as summarized motifs, are as good as
(or better in many cases) compared to raw time series
in identifying predictors for AHE, both in expanding
and moving windows, thereby supporting our prevention
hypothesis.

Evaluating personalization hypothesis

The third hypothesis aims to find out if there are patient
specific custom severity levels, and summarization fre-
quencies, which if optimized could lead to better accura-
cies in diagnosis. For this, we further analyze our earlier
results. We observe from Figs. 7 and 8 that by selecting
different severity quantization breadth (B) and through
varying the summarization window size (W), we are
able to predict the onset of AHE with higher F1-score.
This supports an argument for using disease and time-
specific B and W values for achieving better accuracy in
classification problems. We observe very similar results
in Fig. 4, which shows that by choosing optimized W
and B values, the machine learning models can perform
better in classification problems too. These results fur-
ther support our third hypothesis, that there exists an
opportunity for personalization at least at disease specific
and time specific level. Though the above experiments
using AHE are only representative of how step-wise pre-
cision, personalization, and prevention can be achieved
using RASPRO, the practitioners as a whole agree that in

0.9

0.8

F1-score

0.7

0.6
30 60 90

better performance of QTS with B=15

Expanding Window: OTS Vs. QTS

—— OTS
- QTS (B=
5)

QTS (B=
10)
—a— QTS (B=
15)
—4— QTS (B=
20)

120 150 180

Backward offset from t0 (minutes)

Fig. 5 Expanding Window: OTS Vs. QTS Comparison of F1-score of OTS and QTS for classification of AHE using expanding time windows shows
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Expanding Window: QTS (B=15) Vs. MTS

== QTS —@~ MTS (W=5) MTS (W=10) ~#= MTS (W=15)

0.9

0.8

F1-score

0.7

0.6
30 60 90 120 150 180

Backward offset from t0 (minutes)
Fig. 6 Expanding Window: QTS Vs. MTS Comparison of F1-score of

QTS (B=15) and MTS (varying W) for classification of AHE using
expanding time windows

wide-ranging scenarios patient-sensor-disease-time spe-
cific severity levels need to be defined that is both prac-
tical to manage alerts as well as effective in identifying
emergencies.

Global health deployment

These medical benefits of RASPRO framework would
contribute directly to fulfill the primary goals of remote
health monitoring in global health scenario. We call these
as the 34 benefits in short, which stands for: availability,
accessibility, and affordability.

e Availability: By enabling the doctors to prioritize
their time based on the AMI, we effectively increase
the availability of doctors for the neediest of remote
patients.

Expanding Window: Best of OTS, QTS, MTS

== OTSmax == QTSmax MTSmax
1 \
09
o X
2
S
? 0.8
e
0.7
0.6
30 60 90 120 150 180

Backward offset from t0 (minutes)

Fig. 7 Expanding Window: QTSmax Vs. MTSmax Comparison of
F1-score of OTS with QTSmax and MTSmax corresponding to best
performing B and W values respectively for classifying AHE using
expanding time windows

Moving Window: Best of OTS, QTS, MTS

== OTSmax =% QTSmax MTSmax
1 N\
0.9
/&
2
o
g 08 / \
Iy
0.7
0.6

0-30 30-60 60-90 90-120

Backward offset from t0 (minutes)

120-150  150-180

Fig. 8 Moving Window: QTSmax Vs. MTSmax Comparison of F1-score
of OTS with QTSmax and MTSmax corresponding to best performing

B and W values respectively for classifying AHE using moving window
of 30 min duration

® Accessibility: A patient’s summarized health status
represented by the consensus motifs could be sent
over even bare minimum communication networks
(for instance, in the form of SMS). The clinically
validated RASPRO motifs would then enable the
doctors to use it instead of voluminous raw sensor
data for arriving at timely diagnosis. In addition, by
providing step-wise precision through detailed
data-on-demand (DD-on-D), the doctors can choose
to get more data if needed. Together, these
techniques, as illustrated in Fig. 9, increase the
accessibility of patients’ to quality and critical remote
healthcare services.

e Affordability: Remote health monitoring combined
with timely criticality detection can substantially
reduce the healthcare costs, by reducing the number
of unnecessary hospital visits and smartly managing
the available time of doctors who could focus on the
neediest of patients. For instance, in a developing
country the patients could be spending anywhere
between $4-5 for travelling to the nearest hospital.
Combined with the loss of their daily wages due to
taking a break from their work, the cost to the patient
for a hospital visit could be around $10-20 per day,
not including the consultation charges (which ranges
between $5-10 per visit). Through an initial survey of
the patients visiting the cardiology department in our
hospital it was observed that a majority of the patients
do not, at the end of examination, have a cardiac
disease. These could well have been diagnosed as such
using remote monitoring of their vital parameters
and hence avoid unnecessary hospital visits. Also, for
a majority of revisiting patients, the visits could have
been avoided using remote monitoring.
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Fig. 9 Detailed Data-on-Demand The DD-on-D technique as implemented in RASPRO-PAF framework enables patient’s multi-sensor data to be sent
over even SMS to remote doctors, who then initiate emergency intervention through telemedicine units stationed near to the patients location

These advantages would help bring quality healthcare
to millions of people who are currently under-served in
the global health scenario. We are readying for large-scale
deployment of the RASPRO framework including the 3P
RASPRO-PAF analytical tools using a network of more
than 45+ telemedicine nodes (as shown in Fig. 10) and
remote health centers across the Indian sub-continent,
which are connected to the AIMS hospital.

Practitioner education is one of the key challenges in
global deployment of any new data analytics technique.
To ensure usability of the system, we have involved the
doctors from the design and conceptual phase of the

Fig. 10 Global Health Deployment The RASPRO-PAF system is being
readied for deployment using the telemedicine network of AIMS
hospital, which has more than 45 remote nodes spread across India
and Africa, connected through satellite network

RASPRO-PAF system. In order to provide hands on train-
ing, acceptability and experience in the use of the data
analytics techniques, we also aim to introduce these to all
the practitioners as part of the annual continuing medical
education (CME) program.

Challenges and drawbacks: One of the major draw-
backs of any severity detection and summarization tech-
nique is the risk of missing important data. In RASPRO
technique, we try to mitigate some of these risks by
providing a graded information flow from the multiple
sensors to the doctors. The alerts are calculated based
on patient and disease specific quantization and thresh-
old levels. Hence, the chances of generation of unneces-
sary alerts are low. One the other hand, upon receiving
these alerts the doctors can further request for detailed
data on demand (DD-on-D), using which the doctors
can see actual sensor values, the calculated motifs, the
frequency maps, as well as any other machine learn-
ing based assistive diagnosis. This provides the flexibility
to doctors and emergency responders to obtain com-
plete view of the patient condition before deciding any
intervention. However, any such system is also fraught
with the danger of system failures that could jeopar-
dize the patient’s life, though this could be overcome to
a large extent by developing robust hardware and fail-
safe firmware. We are also aware that a thorough cost-
risk-benefit analysis needs to be carried out before any
wide scale deployment. Apart from these, in developing
countries there are implementation gaps that need to be
addressed which include: (a) intermittent and unreliable
mobile connectivity in rural regions, (b) capturing and
transmission of data while the patient is mobile, (c) power
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management in edge devices such as mobile phones to
ensure timely processing and transmission of data, (d)
whether to do the RASPRO-PAF processing at the edge
or in the cloud, and (e) efficient management of remote
patient monitoring through educating the support staff in
hospitals.

Conclusion

In this paper, we have reported on the successful design,
development, and deployment of a set of 3P tools
for healthcare data analytics, called RASPRO-PAFs that
transform voluminous physiological sensor data into
meaningful motifs using personalized disease severity
levels. These motifs have been found to be as effec-
tive as, or in many cases better than, the raw sensor
data in identification and prediction of critical condi-
tions in patients. Through a step-wise precision process,
the doctors can gain further insight into the medical
condition of the patient, progressively using quantized
symbols, motifs, frequency maps, and machine learning.
Furthermore, the criticality of a patient is analyzed from
these motifs using a novel interventional time relation-
ship that helps doctors prioritize their time more effi-
ciently. Together, the 3P PAFs helps in personalized, pre-
cision and preventive diagnosis of the patients. We have
also clinically validated the efficacy of the system using
both doctor feedback from the hospital as well as using
machine learning techniques. Given the initial acceptance
of this tool among the medical community, we are prepar-
ing for testing and evaluation in other medical domains
as well as large-scale field deployment in global health
scenario.

Additional files

Additional file 1: Moving Window OTS Vs. QTS. The figure shows the
F1-score while using a moving window of size 30 mins with varying
backward offset from t0. The results show that QTS is always better than
QTS in classifying a given window as predictor for AHE or not. (PNG 28 kb)

Additional file 2: Moving Window QTS (B=5) Vs. MTS. The figure shows
the F1-score comparison of QTS with B=5 and MTS while using a moving
window of size 30 mins with varying backward offset from t0. The results
show that MTS is better than QTS except in two time slots. (PNG 21 kb)

Additional file 3: Moving Window QTS (B=10) Vs. MTS. The figure shows
the F1-score comparison of QTS with B=10 and MTS while using a moving
window of size 30 mins with varying backward offset from t0. The results
show that MTS is better than QTS except in two time slots, and also W=10
and W=15 are better summarization windows. (PNG 22 kb)

Additional file 4: Moving Window QTS (B=15) Vs. MTS. The figure shows
the F1-score comparison of QTS with B=15 and MTS while using a moving
window of size 30 mins with varying backward offset from t0. The results
show that MTS is better than QTS except in two time slots, and also W=10
and W=15 are better summarization windows. (PNG 21 kb)

Additional file 5: Moving Window QTS (B=20) Vs. MTS. The figure shows
the F1-score comparison of QTS with B=20 and MTS while using a moving
window of size 30 mins with varying backward offset from t0. The results
show that QTS is marginally better than MTS in four time slots. (PNG 22 kb)
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