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Abstract

Background: A scoping review to characterize the literature on the use of conversations in social media as a
potential source of data for detecting adverse events (AEs) related to health products.

Methods: Our specific research questions were (1) What social media listening platforms exist to detect adverse
events related to health products, and what are their capabilities and characteristics? (2) What is the validity and reliability
of data from social media for detecting these adverse events? MEDLINE, EMBASE, Cochrane Library, and relevant websites
were searched from inception to May 2016. Any type of document (e.g., manuscripts, reports) that described the use of
social media data for detecting health product AEs was included. Two reviewers independently screened
citations and full-texts, and one reviewer and one verifier performed data abstraction. Descriptive synthesis
was conducted.

Results: After screening 3631 citations and 321 full-texts, 70 unique documents with 7 companion reports available
from 2001 to 2016 were included. Forty-six documents (66%) described an automated or semi-automated information
extraction system to detect health product AEs from social media conversations (in the developmental phase). Seven
pre-existing information extraction systems to mine social media data were identified in eight documents. Nineteen
documents compared AEs reported in social media data with validated data and found consistent AE discovery in all
except two documents. None of the documents reported the validity and reliability of the overall system, but some
reported on the performance of individual steps in processing the data. The validity and reliability results were found
for the following steps in the data processing pipeline: data de-identification (n = 1), concept identification (n = 3),
concept normalization (n = 2), and relation extraction (n = 8). The methods varied widely, and some approaches yielded
better results than others.

Conclusions: Our results suggest that the use of social media conversations for pharmacovigilance is in its infancy.
Although social media data has the potential to supplement data from regulatory agency databases; is able to capture
less frequently reported AFEs; and can identify AEs earlier than official alerts or regulatory changes, the utility and validity
of the data source remains under-studied.
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Background

Each year, thousands of people die from an adverse
drug reaction, defined as an undesirable health effect
that occurs when medication is used as prescribed
[1]. Adverse drug reactions can vary from a simple
rash to more severe effects, such as heart failure,
acute liver injury, arrhythmias, and even death [1].
These events have a significant impact on both
patients and the health care system in terms of cost
and health service utilization (e.g., frequent visits to
physicians and emergency departments, hospitaliza-
tions) [2].

Post-marketing adverse drug reaction surveillance in
most countries is suboptimal and consists largely of
spontaneous reporting. It is estimated that spontaneous
reporting systems only capture 1-10% of all adverse
drug reactions. For example, one out of every five physi-
cians reports an adverse drug reaction using the Canada
Vigilance Database [3].

In order to advance pharmacovigilance (defined as
the science and activities related to detection, com-
prehension and prevention of adverse drug events)
[4], monitoring and analysis of data collected from
social media sources (ie., social media listening) is
being researched as a potential to supplement trad-
itional drug safety surveillance systems. Three reviews
[5-7] have been recently published to explore the
breadth of evidence on the methods and use of social
media data for pharmacovigilance; however, none of
the reviews found rigorous evaluations of the reliabil-
ity and validity of the data.

As this is a rapidly evolving field, we conducted a
comprehensive scoping review to assess the utility of
social media data for detecting adverse events related
to health products, including pharmaceuticals, medical
devices, and natural health products.

Methods
Research questions
The specific research questions were:

(1) Which social media listening platforms exist to
detect adverse events related to health products, and
what are their capabilities and characteristics?

(2) What is the validity and reliability of data from
social media for detecting these adverse events?

Study design

We used a scoping review method to map the concepts
and types of evidence that exist on pharmacovigilance
using social media data [8]. Our approach followed the
rigorous scoping review methods manual by the Joanna
Briggs Institute [9].
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Protocol

The Preferred Reporting Items for Systematic Reviews
and Meta-analysis Protocols (PRISMA-P) [10] guideline
was used to develop our protocol, which we registered
with the Open Science Framework [11] and published in
a peer-reviewed journal [12]. The protocol was devel-
oped by the research team and approved by members of
the Health Canada Health Products and Food Branch,
the commissioning agency of this review. Since the full
methods have been published in the protocol [12], they
are briefly outlined below.

Eligibility criteria

The eligibility criteria were any type of document (e.g.,
journal article, editorial, book, webpage) that described lis-
tening to social media data for detecting adverse events
associated with health products (see Additional file 1:
Appendix 1). The following interventions were excluded
from our review: programs of care, health services,
organization of care, as well as public health programs
and services. Documents related to the mining of social
media data to detect prescription drug misuse and abuse
were eligible for inclusion. Social media listening was de-
fined as mining and monitoring of user-generated and
crowd-intelligence data from online conversations in
blogs, medical forums, and other social networking sites
to identify trends and themes of the conversation on a
topic (see Additional file 1: Appendix 2). We included
documents that reported on at least one of the following
outcomes: social media listening approaches, utility of social
media data for pharmacovigilance and their performance
capabilities, validity and reliability of user-generated data
from social media for pharmacovigilance, and author’s per-
ception of utility and challenges of using social media data.

Information sources and search strategy

Comprehensive literature searches were conducted in
MEDLINE, EMBASE, and the Cochrane Library by an
experienced librarian. The MEDLINE search strategy
was peer-reviewed by another librarian using the PRESS
checklist [13], which has been published in our protocol
[12], and also available in Additional file 1: Appendix 3.
In addition, we searched grey literature (i.e., difficult to
locate, unpublished documents) sources outlined in
Additional file 1: Appendix 4 using the Canadian Agency
for Drugs and Technologies in Health guide [14], and
scanned the reference lists of relevant reviews [5, 6, 15].

Study selection process

After the team achieved 75% agreement on a pilot-test
of 50 random citations, each citation was independently
screened by reviewer pairs (WZ, EL, RW, PK, RR, FY,
BP) using Synthesi.SR; an online application developed
by the Knowledge Translation Program [16]. Potentially
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relevant full-text documents were obtained and the same
process (described above) was followed for full-text
screening.

Data items and data abstraction process

Data were abstracted on document characteristics (e.g.,
type of document), population characteristics of social
media users (e.g., disease), characteristics of social media
data (e.g., social media source), characteristics of social
media listening approaches (e.g., pre-processing), and
performance of the different approaches (e.g., validity
and reliability of social media data). After the team
pilot-tested the data abstraction form using a random
sample of 5 included documents, each document was
abstracted by one reviewer (WZ, EL, RW, PK, RR, FY,
BP) and verified by a second reviewer (WZ, EL). The
data were cleaned by a third reviewer (WZ, EL) and con-
firmed by the content expert (S], GH).

Risk of bias assessment or quality appraisal

Risk of bias or quality appraisal was not conducted,
which is consistent with the Joanna Briggs Institute
methods manual [9], and those documented in scoping
reviews on health-related topics [17].

Synthesis of results

To characterize the health conditions studied, the
World Health Organization version of the International
Statistical Classification of Diseases and Related Health
Problems (10th Revision, ICD-10) was used [18]. The
social media system characteristics were described and
categorized according to the steps typically involved in
a social media data processing pipeline [19]. In addition,
the social media systems were classified according to
whether they were manual systems (i.e., coded by hand,
without computer assistance), experimental/developmen-
tal stage systems (i.e., automatic information extraction
systems being developed by researchers), or fully devel-
oped systems (i.e., automatic information extraction sys-
tems that are either commercially available or being used
by regulatory agencies).

Descriptive statistics were performed (e.g., frequencies,
measures of central tendency) using Excel 2010. The-
matic analysis of open-text data was performed by two
reviewers (WZ, EL) and verified by a third reviewer
(ACT or SJ) to categorize the author perception of utility
and challenges of using social media data for pharma-
covigilance [20].

Results

Study flow

A total of 3631 citations from electronic databases and
grey literature and other sources (e.g., reference scanning)
were screened (Fig. 1). Of these, 321 potentially relevant
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full-text records were screened and 70 unique records
with an additional 7 companion reports were included in
our scoping review. The full list of included documents
and companion reports can be found in Additional file 1:
Appendix 5.

Document characteristics

The documents were dated between 2001 and 2016
with 78% of the relevant documents being from 2013
onwards (Table 1). The most common document
types were journal articles (57%) and conference pa-
pers (33%). Most of the corresponding authors were
from North America (73%) and Europe (17%). Public
sources of funding were the most common (40%).
Most of the papers (66%) described an experimental/
developmental automated information extraction sys-
tem to mine data from social media for drug safety
surveillance.

Social media data characteristics

The commonly mined sources of social media plat-
forms were Twitter (33%), MedHelp (13%), Daily-
Strength (11%), and AskaPatient (9%) (Fig. 2). The
majority of the documents mined only one social
media site to obtain user-generated data (54%)
(Table 2). The user types included patients from
health forums, such as BreastCancer.org (50%); the
general population on micro-blogging sites, such as Twit-
ter (39%); or both (10%). The geographic location of the
social media users was seldom reported (17%). When it
was reported, the users were from high-income countries
as per the World Bank classification [21]. The social
media posts were mostly in English (86%), followed by
Spanish, French, and multiple languages (3% each). A
small fraction (1% each) of posts was written in German
and Serbian.

The posts were collected for a median duration of
1.13 years (ie., the investigators “listened” to social
media conversations for this duration), with an inter-
quartile range of 6 months to 7 years. A median of
42,594 posts were included in the documents, with an
interquartile range of 4608 to 711,562 posts. A variety of
techniques were used to identify relevant social media
posts, such as web crawlers or spiders (27%, i.e., an auto-
mated program that scans the social media source to
identify posts about adverse events), application pro-
gramming interfaces (APIs) of the host site (20%, ie., a
set of applications, rules, and definitions used to build
the data set) and keyword search of social media sites
(10%). Four papers (6%) used a combination of the above
methods. Other approaches included using browser
add-ons to monitor search query activities, using a
pre-existing database of social media conversations, and
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Additional records identified
through other sources
(n=1487)

Citations identified through database
(MEDLINE, EMBASE, Cochrane Library)
searching
(n=2892)

Identification

(n=3631)

Citations after duplicates removed

Screening

Citations excluded (n = 3310)

(n=3631)

Citations screened

Not related to adverse event
» surveillance (n=2806)

Not social listening (n=493)
Non-English (n=11)

A 4

Eligibility

(n=321)

Full-text documents
assessed for eligibility

Full-texts excluded (n = 244)

Not related to adverse event
surveillance (n=58)
Not social listening (n=55)

A 4

A 4

No relevant characteristics,
reliability or validity data (n=58)
Unable to locate (n=68)
Non-English (n=5)

n=77

Documents included in synthesis

(Including 7 companion papers)

Fig. 1 Study flow diagram

requesting processed database from the social media site
system administrators.

Health conditions, types of surveillance, and types of
health products

The majority of the documents applied their social
media listening approach to the study of a specific
health condition (Table 3). According to the ICD-10
classification system, almost half (46%) included pa-
tients with health conditions from more than one dis-
ease system, 13% included patients with neoplasms,
and 11% included patients with mental illness and be-
havioural disorders. The focus of surveillance was
most commonly any adverse event (74%), and the
type of health products examined were mostly pharma-
ceutical drugs (98.6%).

Social media data processing pipeline
A variety of data processing approaches were identified
(Additional file 1: Appendix 6):

e supervised learning (21%, i.e., a machine learning
approach that is trained from a set of labeled data
that has been coded typically by humans)

o rule-based learning (9%, i.e., a learning algorithm
that allows automatic identification of useful rules,
rather than a human needing to apply prior domain
knowledge to manually constructed rules and curate
a rule set)

e semi-supervised learning (7%, i.e., a machine learning
method that uses both labeled and unlabeled data for
training)

e unsupervised learning (6%, i.e., machine learns patterns
in the data without any labels given by humans)

After the social media dataset was created, the follow-
ing steps were typically used to process the social media
data (Fig. 3):

1) pre-processing (e.g., removing punctuations and
stop words; breaking text into words, phrases, and
symbols or tokens; reducing words to the root; and
correcting spelling mistakes)

2) de-identification (e.g., removing identifiable
information, such as user names and addresses)

3) de-duplication (e.g., removing duplicate and
related posts)

4) concept identification (e.g., identifying adverse drug
reactions and other events from a sequence text)
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Table 1 Document characteristics

Document characteristics (n = 70) Count (%)
Year of dissemination 2001-2004 1 (1.4%)
2005-2008 1 (1.4%)
2009-2012 13 (18.6%)
2013-2016 55 (78.6%)
Document type Blog 1 (1.4%)
Dissertation 1 (1.4%)
Book section 2 (2.9%)
Report 3 (4.3%)
Conference paper/poster 23 (32.9%)
Journal article 40 (57.1%)
Geographic region Asia 2 (2.9%)
of publication Australia & New Zealand 5 (7.1%)
Europe 12 (17.1%)
North America 51 (72.9%)
Funding type Non-sponsored 4 (5.7%)
Industry and public-sponsored 5 (7.1%)
Industry-sponsored 7 (10.0%)
Not reported 26 (37.1%)
Public-sponsored 28 (40.0%)
Types of social media Used an available automatic 8 (11.4%)
listening systems information extraction system
studied for drug (fully developed and
safety surveillance available for use)
Used a manual approach 16 (22.9%)
for information extraction
Used an experimental 46 (65.7%)

automatic information
extraction system
(at the development stage)

5) concept normalization (e.g., converting colloquial
terms to medical terms for drug names, symptoms,
history, events, disease)

6) relation extraction (e.g., determining the
relationship between the health product and an
adverse event)

Different text processing methods were reported for
each step, with varying levels of automation.

Types of social media listening systems

Most of the documents examined an experimental social
media listening system that was under development
(66%). Seven pre-existing social media listening systems
were identified in eight documents (Additional file 1:
Appendix 7): MedWatcher Social (US Food and Drug
Administration), commercial systems AETracker (IMS
health), Visible Intelligence (Cision), BeFree System:
Bio-Entity Finder & RElation Extraction (Integrative
Bioinformatics group), MeaningCloud (MeaningCloud
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LLC, Sngular company), Treato (Treato Ltd.), and Open-
Calais (Thomson Reuters). An eighth system was identi-
fied during the environmental scan, which is known as
the Web-RADR Social and is currently under develop-
ment by European Union regulators. Sixteen documents
studied a manual approach, whereby posts were coded
manually by humans without any assistance from
computers (23%).

Outcome results

Utility of social media data for pharmacovigilance
Nineteen documents provided information on the
utility of social media data for pharmacovigilance; how-
ever, this was not considered to be the primary object-
ive of the documents (Additional file 1: Appendix 8).
Most of the documents focused on the detection of ad-
verse events, while one document focused on the tim-
ing of adverse event detection [22].

Ten documents compared social media data against
spontaneous reports to regulatory agencies to study
the difference in the number of adverse events cap-
tured, time lag in detecting adverse events or whether
the two data sources are correlated [22—-31]. Specific-
ally, 7/10 documents [25-31] compared the frequency
of adverse events detected from social media source(s)
versus a regulatory database, and all but one [26] re-
ported consistent results [24—30]. In 2/10 documents,
authors reported a positive correlation between ad-
verse events reported in social media data sources and
those reported by regulatory agencies [23, 31]. In one
document, timing of adverse event reporting on social
media was compared with the timing of the FDA’s of-
ficial alert or labeling revision time, and adverse
events were detected on social media earlier [22].

Six documents compared adverse events reported in
social media posts against published data or safety sig-
nals known by the authors, [32—38] (exact sources were
not specified) and all found consistent results. One
document compared weighted scores of adverse events
reported in social media posts with drugs withdrawn
from the market and found a positive correlation be-
tween higher weighted scores and withdrawn drugs [39].
One document compared the frequency of adverse
events reported on social media with those from a large
integrated healthcare system database and found that
their results were generally consistent, though several
less frequently reported adverse events in the medical
health records were more commonly reported on social
media (e.g., aspirin-induced hypoglycemia was discussed
only on social media) [40]. In contrast, one document
found that less than 2% of adverse events detected by
AETracker (a commercially available platform) were actual
events, as confirmed by pharmacovigilance experts [41].
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Fig. 2 Wordcloud of social media sources mined in the documents
A

Social media source mentioned more than twice (n=70) Count (%)
Twitter 23 (32.9%)
MedHelp 9 (12.9%)
DailyStrength 8 (11.4%)
AskaPatient 6 (8.6%)
WebMD 5(7.1%)
Google 5(7.1%)
Facebook 5(7.1%)
BreastCancer.org 4 (5.7%)
RevolutionHealth 3 (4.3%)
Yahoo! 3 (4.3%)
Health & Wellness Yahoo! Groups 3 (4.3%)
HealthBoards.com 3 (4.3%)

Note: Fifty-two unique sources were reported for social media listening in 65 papers; 5 papers did not list the

Themes of utility and challenges of social media listening
Several themes emerged from the qualitative analysis
of the study authors' discussions of the strengths and limi-
tations of using social media data for pharmacovigilance.
In order of prevalence, the utility of social media listen-
ing were as follows: provides supplemental data to trad-
itional surveillance systems, captures perceptions about
the effects of treatment (including adverse events), and of-
fers an extensive source of publicly available data (Table 4).
The three most common challenges were the unstruc-
tured nature of the data, complex structure of the
text data, and potential lack of representativeness
(i.e., posts may not be representative of all those ad-
ministered health products) (Table 4). Further details
can be found in Additional file 1: Appendix 17.

Validity and reliability of analytics used to process social
media data

The validity and reliability measures were categorized
according to the social media data processing pipeline,
as follows:

Pre-processing Thirty-two documents reported methods
for pre-processing (Additional file 1: Appendix 9), and pro-
vided information on the software used and accessibility of
the tool (e.g., public, proprietary) [23, 26, 32, 34, 35, 42-72].
Validity or reliability of data processed in this step was not
reported.

De-identification Six documents reported methods for
de-identification (Additional file 1: Appendix 10), and
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Table 2 Social media data characteristics
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Social media data characteristics (n = 70)

Count (%)

Number of social media sources included by 1
study authors 5
3
4
>5

Not reported

Type of social media sites

General population

Patient-specific

38 (54.3%)
10 (14.3%)
8 (11.4%)
3 (4.3%)

7 (10.0%)
4 (5.7%)
35 (50.0%)
27 (38.6%)

Both patient-specific and general population 7 (10.0%)
Not reported 1 (1.4%)
Region of origin of the social media posts USA 5(7.1%)
Spain 2 (2.9%)
Germany 1 (1.4%)
50+ countries 1 (1.4%)
USA, Canada, UK, Australia, New Zealand 1 (1.4%)
France 1 (1.4%)
UK, North America, Australasia 1 (1.4%)

Not reported

Language of the social media posts English
Spanish
French

German

Serbian

Multilingual
Not reported

Method employed to collect social media data

API of the host site
Keyword search
Multiple methods
Other methods
Not Reported
Median (Q1, Q3)

Duration (years) of social media data

Not reported
Median (Q1, Q3)

Number of social media posts retrieved

Not reported

Web crawling/ spidering software

58 (82.9%)
60 (85.7%)

19 (27.1%)

14 (20.0%)

7 (10.0%)

4 (5.7%)

13 (18.6%)

13 (18.6%)

1.13 (0.5, 7.13)

34 (48.6%)

42,594 (4608, 711,562)
5(7.1%)

provided information on the software used and accessi-
bility of the tool [31, 43, 53-56, 64, 73]. Only one study
reported validity/reliability of data processed in this step,
which included a precision of 67%, recall of 98%, and
F-measure of 80% [43].

De-duplication Five documents reported methods for
de-duplication (Additional file 1: Appendix 11), and pro-
vided information on the software used and accessibility

of the tool [30, 40, 74-76]. Validity or reliability of data
processed in this step was not reported.

Concept identification Forty-five documents reported on
automated methods for concept identification for drugs,
adverse events, and overall (i.e., drug and adverse events),
which were reported using the following approaches: dic-
tionary/lexicon-based (n = 30) [22, 23, 26, 30, 31, 39, 40, 43,
44, 47, 50, 51, 53-57, 59, 63-69, 72, 74, 75, 77-82],
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Table 3 Health conditions, types of surveillance, and types of health products investigated

Topic (n=70) Count (%)

Health conditions studied as per ICD-10 Multiple disease system 32 (45.7%)
Neoplasm 9 (12.9%)
Mental illness & behavioural disorders 8 (11.4%)
Factors influencing health status & contact with health services 6 (8.6%)
Nervous system 6 (8.6%)
Endocrine, nutritional & metabolic 3 (4.3%)
Not reported 2 (2.9%)
Circulatory system 2 (2.9%)
Injury, poisoning and certain other consequences of external causes 1 (1.4%)
Skin & subcutaneous tissue 1 (1.4%)

Type of surveillance studied Any adverse event 52 (74.3%)
Drug abuse/misuse 6 (8.6%)
Drug-to-drug interaction 4 (5.7%)
Specific adverse event (e.g, arthralgia, heart diseases, infertility) 7 (10.0%)
Treatment switching 1 (1.4%)

Type of health products included Pharmaceutical drugs (including biologics) 69 (98.6%)
Medical devices 1 (1.4%)
Natural health products 0 (0.0%)

supervised classifier (n=6) [42, 61, 62, 71, 73, 83], mixed
lexicon-based/supervised classifier (n=2) [52, 58],
rule-based phrase extraction (n = 2) [34, 35, 84], sentiment
analysis (n=2) [32, 46], statistical approaches (n=2)
[58, 70], or unspecified (n = 1; Additional file 1: Appen-
dix 12) [85]. Three documents reported evaluation re-
sults for overall concept identification. In these,
supervised classifier approaches were studied and their
accuracy for overall concept identification ranged from
78 to 83%, precision ranged from 32 to 78%, recall
ranged from 32 to 74%, and F-measure ranged from 42
to 61%. [62, 71, 73] Validity and reliability results for
drug and adverse event concepts can be found in
Additional file 1: Appendix 14.

Concept normalization — Drug names Nineteen docu-
ments reported on automated methods for concept
normalization of drug names and all used a variation
of dictionary or lexicon-based approaches (n=19;
Additional file 1: Appendix 13) [22, 30, 43, 47-51,
54-58, 63-66, 74, 75, 78, 79, 83, 86]. One paper also
used a hybrid approach of statistical modeling using
conditional random fields and dictionary-based methods
[58]. Two documents reported accuracy results for dic-
tionary/lexicon-based approaches, which ranged from 0
to 92% [58, 83]. Using a hybrid approach of statistical
methods combined with dictionary-based methods,
Metke-Jimenez and colleagues found accuracy results
ranging from 75 to 77% [58].

Concept normalization — Medical events Thirty-four
documents reported on automated methods for concept
normalization of medical concepts (i.e., adverse events,
symptoms, disease), of which 33 documents reported a
dictionary/lexicon-based approach [22, 23, 26, 30-32,
39, 40, 43-45, 48, 50, 51, 53-59, 61, 63, 64, 66—69, 71,
72, 74, 75, 77, 81-83], and 2 documents also used stat-
istical approaches (Additional file 1: Appendix 14)
[58, 70]. Two documents reported accuracy of dic-
tionary/lexicon approaches, which ranged from 3 to
67%. Using a hybrid approach of statistical methods
combined with dictionary methods, Metke-Jimenez
and colleagues found accuracy results ranging from
33 to 38%.

Relation extraction Thirty-eight documents reported
on automated methods for relation extraction, which is
used to establish relationships between drugs and ad-
verse events using social media data (Additional file 1:
Appendix 15). Methods were classified as rule-based or
statistical association mining (n = 16) [22, 31, 34, 35, 40,
43, 47, 51, 60, 67-69, 75-77, 83, 85], supervised classi-
fier (n=16) [30, 39, 44, 49, 53-57, 61, 63-66, 70, 71, 73,
74, 86], dictionary/lexicon based (n =4) [23, 45, 78—80]
or sentiment analysis (n =2) [32, 46]. Eight documents
provided validity/reliability data on rule-based or statis-
tical association mining. The precision ranged from 35
to 79%, recall ranged from 6 to 100%, F-measure ranged
from 9 to 94%, and area under the curve (AUC) ranged
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Step 5: Performance evaluation of the

Step 4: Data analysis: relation extraction system

Identify Drug — Adverse event
relations:

Quantitative evaluation against gold
standard data using the following

Rule-based metrics:
Statistic-based F-measure
Machine learning-based Precision
Dictionary/lexicon-based Recall
Sentiment analysis Accuracy

Fig. 3 Steps typically involved in social media data processing flow
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Table 4 Utility and challenges of social media listening

Utility and challenges of social media Count (%)

listening

Utility of social media listening for pharmacovigilance

Supplemental data to traditional 31 (44.3%)
post-marketing safety surveillance

Captures perceptions and consequences 14 (20.0%)
of treatment and adverse events

Large publicly available data source 14 (20.0%)
Able to discover undocumented or rare 11 (15.7%)
adverse events

Promising early warning system 10 (14.3%)
Computationally efficient 7 (10.0%)
Captures prescription drug misuse/abuse 4 (5.7%)
Not biased towards severe adverse events 7 (10.0%)
Captures large geographical area 3 (43%)
Useful for risk communication 3 (4.3%)
Able to extract complex medical concepts 2 (2.9%)
Can be more accurate than spontaneous 2 (2.9%)
reporting systems

Hypothesis-generating 2 (2.9%)
Able to identify undocumented drug 2 (2.9%)
interactions

Findings are similar to traditional systems 1 (1.4%)
Captures information on adherence related 1 (1.4%)

to adverse events
Challenges of social media listening for pharmacovigilance

Non-standard reporting format (informal language, 30 (42.9%)
format used to report information, amount of

information provided by each user)

Difficult to draw complex semantic relationships from 14 (20.0%)
unstructured texts

May not be a representative population 13 (18.6%)
Noise may exist in signal detection 12 (17.1%)
Inadequate information to draw causality 9 (12.9%)
Lacks comprehensive medical and demographic 8 (11.4%)
information

Subjective, incomplete or misinformation 6 (8.6%)
Not a balanced coverage of all drugs and medical 5 (7.1%)
conditions

Data acquisition challenges due to host site 4 (5.7%)
restrictions

Duplication of data (double-counting) 4 (5.7%)
Processing multi-lingual texts 3 (4.3%)
Resource-intensive to process big data 2 (2.9%)

from 0.57 to 0.93. Fifteen documents provided validity
and reliability data for the supervised classifier approach
and accuracy ranged from 29 to 90%, precision from 20
to 86%, recall from 23 to 100%, F-measure from 32 to
92%, and AUC was 74%. Two documents provided data
on the reliability and validity of dictionary/lexicon-based
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approaches, which ranged from 44 to 83% for precision, 2
to 84% for recall, and 3 to 58% for the F-measure. Validity
and reliability of data for this step were not reported for
sentiment analysis or semantic matching approaches.

Additional processing steps Some authors investigated
additional processing steps, which included identifying
the source of an adverse event report (n = 4; i.e,. personal
experience vs. witnessed) [42, 44, 53-56], and query
matching which retrieves and filters the relevant docu-
ments to answer a given user query (n=1; Additional
file 1: Appendix 16) [87]. Eight documents analysed
user-generated texts in other languages, including
Spanish [78-80], French [29, 88], German [37], Serbian
[51], and multiple languages [45, 77] but only 5 reported
their methods [47, 52, 62, 88—90]. One document in-
cluded 53 different languages [77] and another docu-
ment included English, Spanish, and French [45]. None
of the papers described validity or reliability of processing
non-English text.

Discussion

Most of the documents included in our scoping review
dated from 2013 onwards. We identified seven
pre-existing social media platforms, and another platform
(Web-RADR Social) that is currently under development
by European regulators. Unfortunately, no information on
when this social media platform will be completed was
provided. The majority of the documents primarily focused
on the development of social media listening tools for phar-
macovigilance (as opposed to their application), which
would be useful for those interested in developing such
platforms. In particular, documents authored by Freifeld et
al,, [74] Karimi et al,, [83] and Vinod et al. [19] provide use-
ful information on the development of such platforms.

We identified 19 documents providing some informa-
tion on the utility of social media. This information was
mostly abstracted from the discussion section of the
documents, suggesting that the conclusions were highly
speculative. Furthermore, most of the included docu-
ments only followed social media posts for a median
duration of 1 year. A high-quality study that examines
utility over a longer timeframe with a broader data frame
may provide further useful information to the field.

According to authors’ perceptions, social media can be
used to supplement traditional reporting systems, to un-
cover adverse events less frequently reported in trad-
itional reporting systems, to communicate risk and
to generate hypotheses. However, challenges exist, such
as difficulties interpreting relationships between the
drugs and adverse events (e.g., there are inadequate data
to draw causality), potential lack of representativeness
between social media users and the general population,
and the resource-intensive process of using social media



Tricco et al. BMC Medical Informatics and Decision Making (2018) 18:38

data for pharmacovigilance. Evaluation studies of phar-
macovigilance using social media listening are needed to
substantiate these perceptions. Future studies should
also consider evaluating the performance and utility of
integrating social media data with other data sources,
such as regulatory databases that collect spontaneous re-
ports, as well as relevant surveillance databases.

Our results have summarized the most common ele-
ments involved in the processing of social media data for
pharmacovigilance. Across the included documents, the
most common steps employed were: 1) pre-processing; 2)
de-identification; 3) de-duplication; 4) concept identifica-
tion; 5) concept normalization; and 6) relation extraction.
Validity and reliability findings varied across the different
approaches that were used to mine the data, which sug-
gests some may be more effective than others. The hetero-
geneous nature of the study designs and approaches
reported in the documents; however, make it difficult to de-
finitively determine which approaches are more useful than
others.

As described in our protocol, we conducted this scoping
review to inform members of Health Canada who are cur-
rently using our results to plan an evaluation study on util-
ity of social media for detecting health product adverse
events. They may also consider a Canadian platform to
be developed in the future, depending on the results of
their study.

Our results are similar to 3 other reviews on this topic.
A recent review by Sarker et al. [7] described the different
automatic approaches used to detect and extract adverse
drug reactions from social media data for pharmacovigi-
lance purposes in studies published in the last 10 years.
Although the authors characterized existing social media
listening and analytics platforms, validity and reliability of
the user-generated data captured through social media
and crowd-sourcing networks were not examined.
Golder and colleagues [5] conducted a systematic re-
view on adverse events data in social media. They
found that although reports of adverse drug events can
be identified through social media, the reliability or val-
idity of this information has not been formally evalu-
ated. Finally, Lardon and colleagues [6] conducted a
scoping review on the use of social media for pharma-
covigilance. They identified numerous ways to identify
adverse drug reaction data, extract data, and verify the
quality of information. However, gaps in the field were
identified. For example, most studies identifying ad-
verse drug reactions failed to verify the reliability and
validity of the data and none of the studies proposed a
feasible way to integrate data from social media across
more than one site/information source.

The strengths of our scoping review include a compre-
hensive search of multiple electronic databases and
sources for difficult to locate and unpublished studies
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(or grey literature), as well as the use of the rigorous scop-
ing review methods manual by the Joanna Briggs Institute.
In addition, we included researchers with computer sci-
ence expertise (SJ, GH) to help code automated ap-
proaches. In terms of a dissemination plan, we will use a
number of strategies, such as: a 1-page policy brief,
two stakeholder meetings (i.e., consultation exercises),
presentations at an international conference, and pub-
lications in open-access journals. Team members will
also use their networks to encourage broad dissemin-
ation of results.

There are some limitations to our scoping review
process. The review was limited to documents written in
English to increase its feasibility, given the 5-month time-
line. Additionally, due to the large number of documents
identified, the data were abstracted by one reviewer and
verified by a second reviewer. Lastly, although our litera-
ture search was comprehensive, there is always a chance
that some social media platforms or data analytics docu-
ments were missed. Since this is a rapidly evolving and
emerging field, we expect that new documents fulfilling
our inclusion criteria will be released in increasing num-
bers [91, 92], highlighting a potential need to update our
review in the near future.

Conclusion

Our results suggest that the use of social media is being
investigated for drug safety surveillance from an early
developmental perspective. Within this context, social
media data has the potential to supplement data from
regulatory agency databases, capture less frequently
reported AEs, and identify AEs earlier than official
alerts or regulatory changes. However, the utility,
validity and implementation of information extrac-
tion systems using social media for pharmacovigi-
lance are under-studied. Further research is required
to strengthen and standardize the approaches as well
as to ensure that the findings are valid, for the pur-
pose of pharmacovigilance.
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