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Abstract

Background: It is a challenge to precisely classify plasma proteomic profiles into their clinical status based solely on
their patterns even though distinct patterns of plasma proteomic profiles are regarded as potential to be a biomarker
because the profiles have large within-subject variances.

Methods: The present study proposes a rank-based weighted CBR classifier (RWCBR). We hypothesized that a
CBR classifier is advantageous when individual patterns are specific and do not follow the general patterns
like proteomic profiles, and robust feature weights can enhance the performance of the CBR classifier. To
validate RWCBR, we conducted numerical experiments, which predict the clinical status of the 70 subjects
using plasma proteomic profiles by comparing the performances to previous approaches.

Results: According to the numerical experiment, SVM maintained the highest minimum values of Precision and Recall,
but RWCBR showed highest average value in all information indices, and it maintained the smallest standard deviation
in F-1 score and G-measure.

Conclusions: RWCBR approach showed potential as a robust classifier in predicting the clinical status of the subjects
for plasma proteomic profiles.
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Background
Case-based reasoning (CBR) is an artificial intelligent
approach based on an inference technique that is said to
be the most effective method to construct an expert
system [1]. When a target case occurs, CBR is mainly
performed according to the following four procedures:
retrieving, reusing, revising and retaining [2, 3]. It solves a
target problem by revising the solution with the previous
cases in similar situations retrieved from the case-base,
and the target case is retained in the case-base for the next
problem once the problem is solved. Thus, up-to-date
case-base is always maintained in CBR system. The CBR
system has been applied in many learning or problem-
solving techniques of real-world applications. In particular,
the prediction techniques based on CBR can be more
appropriate in bio-medical field than other fields because

CBR has less risk of overfitting in prediction, and medical
cases can’t be often explained by general patterns of the
case-base. It is important to classify the plasma proteomic
profiles solely depending on their shapes because their
distinct patterns of profiles are regarded as a potential bio-
marker according to clinical status [4]. However, plasma
proteomic profiles may be a typical example not following
the general patterns which lead to poor accuracies in
prediction by classification methods based on overall
means of similarity due to large within-subject variance,
and there is no gold standard to analyze the plasma
proteomic profiles yet. The present study conducts a CBR
based classification method with the plasma proteomic
profiles which does not make decision for classification
depending on the overall mean. However, CBR often also
shows lower prediction performance compared to other
learning techniques. Previous studies proposed some
methods to improve the performance of CBR. Those stud-
ies were primarily focused on either weight optimization
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methods [5–9] or feature (or subset) selection methods
[10, 11], and one study proposed a hybrid generic
approach to optimize the both with the number of neigh-
bor cases to compute in the case retrieval procedure of
CBR [12]. The meaningful set of features is often predeter-
mined by experts in bio-medical fields, and the most simi-
lar case may result in the best accuracy in prediction
when output values of each feature are wide-spread like
plasma proteomic profiles. If that is the case, a proper
weight optimization may only enhance the prediction
performance of CBR. The weights are optimized either
subjectively or objectively. Subject weights are typically
allocated according to the preference scores or informa-
tion of experts such as Delphi method [5]. Objective
weights can be allocated by entropy method [7], statistical
method [8] or they can be optimized while proceeding
algorithms such as generic algorithm (GA) [12] or neural-
net (NN) [6]. Among these approaches, NN needs a large
number of inter-connected neurons to allocate weights, so
small or moderate-size samples may not attain a standard
structure of NN [9]. GA is also criticized due to premature
convergence or low reliability [9]. A weight by a statistical
method was allocated by the proportion of Wald’s statis-
tics [8] which is obtained by assuming asymptotically nor-
mal distributions of parameters. The present study
proposes a non-parametric weight allocation method
without using normality assumption. We investigate the
accuracy of a CBR based classification with plasma prote-
omic profiles to diagnose cervical cancer, and observe the
enhancement of the prediction performance of the CBR
classifier by allocating feature weights. To validate our ap-
proach, we also conduct previous weight allocation
methods for the CBR classifier together with the plasma
proteomic profiles. The paper is organized as follows.
After introduction, section 2 briefly describes the CBR
system and reviews previous studies. Section 3 presents

the proposed method using Rank, and section 4 describes
our data schemes and empirical results. At last, the con-
clusion and further research are discussed in section 5.

Methods
The CBR classifier with plasma proteomic profiles
The general problem-solving process by the CBR classifier
is described in Fig. 1. The CBR classifier describes a target
problem using old experiences, and finds a solution of the
problem by retrieving similar cases stored in the case-base
to the target problem where the case-base is the specific
knowledge base of past experiences. The case is typically
retrieved by learning techniques for the CBR classifier,
and the most common technique is k-nearest neighbor
(NN). The original CBR classifier uses 1-NN which
retrieves the most similar case from the case-base to the
target problem. The problem is adapted from the retrieved
cases, and is revised. Once the problem is solved, the cases
are retained. The CBR classifier with plasma proteomic
profiles maintained the same scheme. The problem is to
identify the class of a target case by comparing the pattern
of the target case with those in the case-base where the
case-base consists of trained samples with their class-
labels. The case is retrieved from the case-base by k-near-
est neighbor (NN) to solve the problem, and the target
case as well as the retrieved case are stored in the case-
base once the class of the target case is determined.

Prior studies for weight optimization
The original classifier assesses the similarity of a target
case with cases in the case-base under the assumption
that all features are equally likely important. However, it
may be practical to think of the relative importance
among the features, so some researches differently
allocated the weights on features considering the relative
importance. Since different weights for the attributes

Fig. 1 Problem solving process of CBR Classifier. The CBR classifier finds the solution of the problem by retrieving similar cases stored in the case-base
to the target problem as described
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can vary the distribution of the overall similarities
among the cases, the retrieved cases by the CBR
classifier can be different depending on the altered
distribution of the similarities. Regarding that matter,
the weight allocation or optimization is closely
related with the performance of the CBR classifier.
In particular, the weight allocation or optimization
techniques have gained attention as a way to
enhance the performance of the CBR classifier in
previous studies.
DELPHI method is one of the most common

approaches to allocate feature weights to the CBR
classifier. DELPHI method directly reflects experts’ opin-
ions about the features as the corresponding weights like
Gu et al. [13] or Chang et al. [5], so the weights can be
changed by the point of view of the subjects. Alterna-
tively, weights have been objectively allocated using
information gain or entropy. Cardie and Howe [14] first
selected a set of relevant features using a decision tree,
and assigned the weights with information gain to the
feature which was chosen by the tree. Ahn and Kim [12]
encoded feature weights with numbers from 0 to 7
which represented the relative importance of the
features. These numbers were processed as 3-bit binary
numbers and transformed into floating decimal numbers
(xf ) for weights. Zhao et al. [7] used information entropy
for feature weights to select suppliers. They computed
the average regression coefficients to seek the integrated
average index of each supplier, and calculated both the
information gain in ID3 of the decision tree and the
entropy. These values were later standardized as the
numbers in the range of [0,1] for weights. Besides, Liang
et al. [8] optimized feature weights by a statistical
approach. They fitted features with binary logistic
regression, and computed the Wald statistics of param-
eter estimates for the features. Then, the statistics are
standardized by dividing them by the sum of all the
statistics before they are allocated to the features as the
weights. Suitable weights may vary depending upon
problems we encountered. Prior studies about the
weight optimization or allocation methods are summa-
rized in Table 1.

Rank-based weight optimization
Distance functions and problem setting
A typical similarity or dissimilarity measure is a distance
metric, and it is crucial to learn a good distance metric
to represent the similarity or dissimilarity in feature
space although there are considerable researches on
distance metrics [15–17]. Some researches have been
focused on the comparison of their impacts on the
performance in classification with known public
database [18, 19]. However, no single similarity or
dissimilarity showed dominantly superior to the others

in all methods in their studies [18, 19]. Most classifiers
try to use a distance metric that keeps data points close
if the class labels are the same while keeps distance from
the data points if the class labels are different. The goal
of the CBR classifier is to predict a class label of a target
case of x!0 by retrieving the most similar case from the
case-base using the proper distance metric. Let χ ¼ f x!1

;⋯; x!ng be a collection of n data points in the case-
base with the known class labels of C = {c1,⋯, cn} where
x!i∈Rm and ci ∈ {1,⋯, K}. The CBR classifier typically
adapts the k-NN approach to retrieve the similar cases
to the target case with a given k. The k-NN approach as-
sumes that the class conditional probability in the near-
est neighbors to x!0;Nð x!0Þ , is constant, and tries to
maintain consistency in predicting class labels for x!0 by
obtaining its neighborhood as follows where I(·) is an in-
dicator function.

p j x!0

��� � ¼
Pn

i¼1I x!i∈N x!0
� �� �

I ci ¼ jð ÞPn
i¼1I x!i∈N x!0

� �� � ð1Þ

The global distance between the target case and any
case in the case-base is computed by summing up the
local distances to determine the nearest neighbors for
the target case on Eq. (1). The local distance is
computed for each feature between the target case and
any case in the case-base by the pre-defined local
distance metric, and the types of local distance metric
do not have to be the same among the features. Euclid-
ean distance metric is typically used to compute the
physical distance between the two data points, but it
suffers in the case that vectors of data points aren’t
linearly distributed like default measurements of
proteomic profiles. On the contrary, Fre’chet distance
metric is known to be useful to measure the distance
between the data points when the vectors of those data

Table 1 Prior studies about the weight optimization methods

Authors Year Methods Weights

Cardie & Howe [14] (1997) Information gain G(f) a

Ahn & Kim [12] (2009) Relative importance [0-7] x fXm

f¼1

x f

Gu et al. [13] (2010) Delphi method –

Chang et al. [5] (2011) Delphi method –

Zhao et al. [7] (2011) Entropy method entropy fXm

f¼1

entropy f

Liang et al. [8] (2012) Logistic regression Wald fXm

f¼1

Wald f

a indicates information gain of the f-th feature, and entropy is defined

as −
X
i

pi ∙ log2pi
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points lie on the non-linear curve [20]. According to the
characteristics of the feature types, the distance metric
consists of either Euclidean distance metric or Fre’chet
distance metric for the present study. Euclidean distance
metric and Fre’chet distance metric are defined for the

feature, f, as follows where x!ð f Þ
i and x!ð f Þ

0 are sub-
vectors of any data point in the case-base and the target
case consisting of the feature, f, respectively.

d f x! fð Þ
i ; x! fð Þ

0

� �
¼ x! fð Þ

i − x! fð Þ
0

� �T
x! fð Þ

i − x! fð Þ
0

� �
ð2Þ

d f x! fð Þ
i ; x! fð Þ

0

� �
¼ inf

α;β
max
t0∈ 0;1½ �

d x! fð Þ
i α t0ð Þð Þ; x! fð Þ

0 β t0ð Þð Þ
� �

ð3Þ

Conversion to rank-order information
Plasma proteomic profiles have the large within-subject
variance. Although the class labels are the same, the
profiles can be distributed over a considerable extent as
well as they are not following the general pattern. We
determined the proximity of the cases using the global
similarity based on rank-order information of the
distances [21] instead of using the distance itself to
enhance robustness in predicting the class label of the
target case in the present study. The similarity is com-
puted as follows where N′ is the number of cases having
a unique ranking-order in the case-base and ωf is an
unknown weight for a feature of f.

S x!i; x
!

0
� � ¼

Xm

f¼1

ωf �
N 0− rank d f x! f

i ; x
! f

0

� �� �

N 0−1

2
4

3
5 ð4Þ

According to Eq. (4), the higher the rank, the greater
the similarity between the i-th case and the target case.

Weight optimization
Every feature is equally likely important to the
original CBR classifier. Since the original CBR
classifier often showed lower predictability, there have
been some researches to improve the predictability by
assigning different weights to the features according
to their relative importance. In the same line of
thoughts, we adopted the different weights to the
feature in calculating the similarity, and optimized the
weights according to the objective function from
Wilcoxon’s rank sum test statistics. The ability of the
objective function is mainly influenced by the feature
weights, and the weights are determined to maximize
the ability of the objective function to differentiate
the cases having different class labels. Wilcoxon’s rank
sum test is a non-parametric test to assess the
difference of the mean ranks for two samples, and it
is known to be useful when outliers exist in the
observations compared to the parametric tests. The

similarity is regarded as a function of ranks in the
present study because the similarity is computed
according to the corresponding rank-order informa-
tion of the distances for features between the target
case and any case in the case-base. Thus, the weights
can be naturally allocated to the features in the
similarity measure maintaining the same property
from the objective function based on Wilcoxon’s rank
sum statistics. The objective function for the present
study can be summarized as follows where n1 is the
number of cases having the class label of 1 when the
class labels are denoted as either 0 or 1 and the
number of classes, J, is set to 2.

arg maxω f : f¼1;⋯;m

Xm

f¼1
ω f � r f

where r f ¼
Xn1

i¼1
rank

�
d f

�
x!ð f Þ

i ; x!ð0Þ
0

��

−
n1 � ðn1 þ 1Þ

2

constraint to f 0≤ω f ≤1
Xm

f¼1
ω f ¼ 1

ð5Þ
On Eq. (5), as the probability increases that the two

groups of the cases are truly drawn from the population-
cases having the different class labels, the corresponding
feature weight of ωf becomes large because the resulted
statistics, W, is large. The significance of the test statis-
tics is directly represented by the magnitude of the cor-
responding p-value, so the feature weights can be
computed using the magnitudes of p-values from the
test statistics as follows.

ω f ¼ 1−pðjW j≥r f ÞPm
f¼11−pðjW j≥r f Þ ð6Þ

where W denotes the test statistics of the Wilcoxon’s
rank sum test. The feature weights from Eq. (6) are used
to compute the similarity of Eq. (4).

Application and experiments

Data description The proteomic profiles were obtained
from the blood plasma samples which were collected
from recruited subjects at the University of Louisville,
KY, USA. Total 70 female subjects were recruited for
this study, and 50% of those subjects were diagnosed
with cervical carcinoma while the others are healthy
controls, without any known diseases. The study proto-
col was approved by the institutional review board of the
University of Louisville, and informed consent forms
were voluntarily signed by the participants. The origin of
the data can be referred to [22], and the secondary data
was used for the study. The default output measurement

Kwon BMC Medical Informatics and Decision Making  (2018) 18:34 Page 4 of 9



of the proteomic profiles was the excess heat capacity
(ΔCp), which were recorded at the different tempera-
tures from 45 to 90 °C by incrementally adding 1 °C to
the previous measuring temperature. The proteomic
profiles were preprocessed prior to the analysis. The
excess heat capacity (ΔCp) as the default measurement is
a vector of real numbers of length 451 and it typically
shows one or two peaks on the range of temperatures
during the experiment. We newly extracted 5 features
from the pre-processed data besides the excess heat
capacity. The feature information is summarized in
Table 2. The class information for each proteomic
profile was labeled as either ‘control’ or ‘cancer’ ac-
cording to the clinical status of the corresponding sub-
ject. On Table 2, PEAK1 and PEAK2 indicate those
peaks, and T1 and T2 are temperatures that those
peaks occur at where {PEAK1, PEAK2, T1, T2} were
estimated by Gaussian kernel regression from the ex-
cess heat capacity patterns. IND indicates a set of 451
individual measurement of the excess heat capacity,
and IR is a binary value indicating the initial direc-
tional tendency of the excess heat capacity as the
temperature increases. IR is 1 if the directional ten-
dency is positive, 0 otherwise.

Numerical experiments The purpose of the numerical
experiments is to study the performance of the CBR
classifier in prediction with the plasma proteomic pro-
files by comparing with the previous approaches. In par-
ticular, we observed whether the rank-based feature
weights enhance the performance of the CBR classifier
with proteomic profiles or not. As reference methods,
two common machine learning methods, k-NN (k -NN)
and support vector machine (SVM), a statistical ap-
proach using the composite coefficient [23], and three
CBR approaches weighted by different allocation
methods in previous studies [7, 8] were conducted to
validate the performance of the proposed CBR approach
for the present study. The number of neighbors for k
-NN was 5 which was determined by cross-validation
(CV) with training samples, and SVM was conducted
based on the radial basis kernel.

The statistical model was introduced to show the dif-
ference of the plasma proteomic profiles between two
groups having different clinical status using a composite
coefficient which was a weighted product of an average
probability being in the same group of the reference
sample and Pearson’s correlation coefficient. In the
present study, this model was conducted with the default
setting of the composite coefficient as in the literature
[23]. Namely, the reference set was composed with the
cases in the ‘control’ class for this model, and the weight
factor of the composite coefficient was set to 1 as
described in the literature. This classification model is
abbreviated as (SCUCC) indicating statistically classified
using the composite coefficient for the experiments as a
reference method. Among the CBR approaches, the first
model is a classical CBR approach (CLCBR), which gives
attributes equal-weights and uses 1-NN for the case re-
trieval. This model would be the base model to examine
the effect of the CBR classifiers having different weights
on features. ETCBR and LWCBR are the weighted CBR
approaches. The feature weights were allocated with
standardized entropy value in ETCBR [7]. In the present
study, IR is Berno’ulli and the other features are
assumed as normal distribution. The computed entropy
was standardized by dividing each entropy by the sum of
all entropy values prior to allocation, and 1-NN was
used for the case retrieval. LWCBR indicates a weighted
CBR approach from logistic regression model. This
model adopted standardized Wald statistics of the re-
gression coefficients for feature weights by fitting the
observation with binary logistic regression. Namely,
the Wald statistics were divided by the sum of the all
statistics before they were allocated to the features
[8], and also used 1-NN for the case retrieval. Logis-
tic regression is a typical parametric approach and
Wald statistics are derived from the regression coeffi-
cients under the asymptotic normal assumption, so
this model can be a good reference to observe the
performance of the proposed feature weights. The
proposed CBR approach is abbreviated as RWCBR
indicating a rank-weighted CBR approach. As
described in the above sections, the feature weights

Table 2 Description of the features

Features (Abbreviation) Type Contents

Initial Response (IR) Binary number 0: decreasing

1: increasing

Temperature 1 (T1) Real number Range [45 - 55]

Temperature 2 (T2) Real number Range [56 - 90]

Maximum Peak at T1 (PEAK1) Real number Range [0 - ∞]

Maximum Peak at T2 (PEAK2) Real number Range [0 - ∞]

A set of individual ΔCp (IND) A vector of real numbers Range [0 - ∞]
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were computed from Wilcoxon’s rank sum test and
the most similar case was retrieved as the other CBR
approaches.
The data set of proteomic profiles consists of the pre-

defined features on Table 2 with 70 subjects, and the
class labels are fully given with the number of classes as
two. The data set was randomly partitioned into five
equal-sized subsets for 5-fold CV. At each fold, a subset
was selected as a test set, and the other four subsets be-
came a training set where the proportion of the cases
were equally distributed from the two classes during the
experiments. The feature weights for the ETCBR,
LWCBR and RWCBR were estimated with the training
set, and the optimized weights were allocated to the fea-
tures in the test set.

Results
Each fold has the same size of cases in the test set
and the training set as 14 and 56, respectively during
the experiments. The estimated feature weights by
ETCBR, LWCBR and RWCBR at each fold are sum-
marized in Table 3. The performances of the seven
different models were evaluated at each fold in terms
of Precision, Recall, F-1 score, [24, 25] and G-
measure [25]. The estimated weights in Table 3 were
allocated to the features when the CBR classifiers re-
trieved the most similar case from the case-base by
ETCBR, LWCBR and RWCBR. The information indi-
ces of Precision, Recall, F-1 score and G-measure are
defined as follows.

Precesion ¼
P

true positiveP
true positiveþ false positiveð Þ

Recall ¼
P

true positiveP
true positiveþ false negativeð Þ

F‐1 score ¼ 2 � precision � recall
precision þ recallð Þ

G‐measure ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
precision � recall

p

With the retrieved case for each target case, the class
label of the target case was predicted according to Eq. (1),
and the prediction results were used to compute the
information indices at each fold according to the above
definitions.
The resulting information indices at each fold are

summarized on Table 4, and the comprehensive statistics
using the minimum (MIN), average, (AVG), standard
deviation (STD) and the maximum (MAX) for each
index are summarized on Table 5. Among the models,
RWCBR and SVM consistently showed good perfor-
mances over different sample sets in predicting the class
labels with plasma proteomic profiles in comparison
with others, but the performance of RWCBR was slightly
better. In case of Precision and Recall indices, LWCBR
had the biggest range from the minimum of 33% to the
maximum of 80% and from the minimum of 29% to the
maximum of 100%, respectively while SVM had the
smallest range from the minimum of 85.7% to the max-
imum of 100% in both indices. However, RWCBR
showed the highest average value of 91% among the all
models in both Precision and Recall, and the perform-
ance was maintained at least 71%. ETCBR and RWCBR
showed better performance than CLCBR in both Preci-
sion and Recall, but LWCBR worked poor in compari-
son with CLCBR by showing lower mean values in all
indices although we generally expected a weighted CBR
approach to perform better than CLCBR. Comparing
CLCBR to SCUCC, a statistical approach, average preci-
sion index of CLCBC was lower, but average recall index
was higher. F-1 score and G-measure were similar
between the two, so it appears that CBR approaches do
not always work well with plasma proteomic profiles.
Regarding F1-score and G-measure, SVM also main-
tained the shortest ranges, but RWCBR showed the best
performance at most aspects of summary statistics
among the seven models. In particular, it maintained the
smallest standard deviations in comparison with the
other models.
The retrieved cases for each target case from the test

set by RWCBR model at the first fold are displayed on
Fig. 2. The black solid lines represent the 14 target cases
from the test set, and the red solid lines are the most
similar cases retrieved from the case-bases according to
the similarity measure of Eq. (4).

Table 3 Estimated feature weights

Fold Model IR PEAK1 PEAK2 T1 T2 IND

I ETCBR 0.0067 0.0145 0.0347 0.0595 0.0220 0.8625

LWCBR 0.0158 0.1145 0.3845 0.0960 0.0179 0.3713

RWCBR 0.1704 0.1890 0.1488 0.1886 0.1596 0.1436

II ETCBR 0.0089 0.0311 0.0477 0.0766 0.0314 0.8042

LWCBR 0.0877 0.0752 0.2550 0.0016 0.3244 0.2561

RWCBR 0.2190 0.2222 0.0954 0.2203 0.1325 0.1106

III ETCBR 0.0068 0.0265 0.0391 0.0654 0.0243 0.8377

LWCBR 0.0175 0.1780 0.2481 0.1188 0.1584 0.2793

RWCBR 0.1274 0.2603 0.1144 0.2837 0.1092 0.1051

IV ETCBR 0.0076 0.0259 0.0383 0.0643 0.0247 0.8392

LWCBR 0.0001 0.3524 0.0682 0.4252 0.1484 0.0056

RWCBR 0.1627 0.2266 0.1279 0.2206 0.1233 0.1388

V ETCBR 0.0065 0.0223 0.0345 0.0581 0.0213 0.8573

LWCBR 0.0250 0.0036 0.1628 0.2751 0.3219 0.2116

RWCBR 0.2205 0.2186 0.1024 0.2334 0.1076 0.1175
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Table 4 Information indices by 5-Fold CV

Fold Measures K-NN SVM SCUCC CLCBR ETCBR LWCBR RWCBR

I Precision 0.5000 0.8571 1.0000 0.6667 1.0000 0.8000 1.0000

Recall 0.7143 0.8571 0.2857 0.5714 0.7143 0.5714 0.7143

F1-score 0.5882 0.8571 0.4444 0.6154 0.8333 0.6667 0.8333

G-measure 0.5976 0.8571 0.5345 0.6171 0.8452 0.6761 0.8452

II Precision 0.8571 0.8571 1.0000 0.8000 0.7500 0.3333 1.0000

Recall 0.8571 0.8571 0.8571 0.5714 0.8571 0.2857 0.8571

F1-score 0.8571 0.8571 0.9231 0.6667 0.8000 0.3077 0.9231

G-measure 0.8571 0.8571 0.9258 0.6761 0.8018 0.3086 0.9258

III Precision 0.6000 0.8571 0.8333 0.7500 0.8333 0.7778 0.7778

Recall 0.8571 0.8571 0.7143 0.8571 0.7143 1.0000 1.0000

F1-score 0.7059 0.8571 0.7692 0.8000 0.7692 0.8750 0.8750

G-measure 0.7171 0.8571 0.7715 0.8018 0.7715 0.8819 0.8819

IV Precision 0.7500 1.0000 1.0000 1.0000 0.8750 0.7778 1.0000

Recall 0.8571 1.0000 0.5714 1.0000 1.0000 1.0000 1.0000

F1-score 0.8000 1.0000 0.7273 1.0000 0.9333 0.8750 1.0000

G-measure 0.8018 1.0000 0.7559 1.0000 0.9354 0.8819 1.0000

V Precision 0.5455 0.8571 0.7000 0.6000 1.0000 0.6000 0.7778

Recall 0.8571 0.8571 1.0000 0.8571 1.0000 0.8571 1.0000

F1-score 0.6667 0.8571 0.8235 0.7059 1.0000 0.7059 0.8750

G-measure 0.6838 0.8571 0.8366 0.7171 1.0000 0.7171 0.8819

Table 5 Comprehensive statistics for information indices

Measures Statistics K-NN SVM SCUCC CLCBR ETCBR LWCBR RWCBR

Precision MIN 0.5000 0.8571 0.7000 0.6000 0.7500 0.3333 0.7778

AVG 0.6506 0.8857 0.9067 0.7633 0.8917 0.6578 0.9111

STD 0.1490 0.0639 0.1362 0.1529 0.1087 0.1985 0.1217

MAX 0.8571 1.0000 1.0000 1.0000 1.0000 0.8000 1.0000

Recall MIN 0.7143 0.8571 0.2857 0.5714 0.7143 0.2857 0.7143

AVG 0.8285 0.8857 0.6857 0.7714 0.8571 0.7428 0.9143

STD 0.0639 0.0639 0.2748 0.1917 0.1429 0.3097 0.1278

MAX 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F1-score MIN 0.5882 0.8571 0.4444 0.6154 0.7692 0.3077 0.8333

AVG 0.7236 0.8857 0.7375 0.7576 0.8672 0.6861 0.9013

STD 0.1067 0.0639 0.1795 0.1514 0.0965 0.2320 0.0637

MAX 0.8571 1.0000 0.9231 1.0000 1.0000 0.8750 1.0000

G-measure MIN 0.5976 0.8571 0.5345 0.6171 0.7715 0.3086 0.8452

AVG 0.7221 0.8857 0.7649 0.7624 0.8708 0.6931 0.9070

STD 0.1088 0.0639 0.1451 0.1488 0.0951 0.2345 0.0593

MAX 0.8571 1.0000 0.9258 1.0000 1.0000 0.8819 1.0000

Note: MIN the minimum, AVG average, STD standard deviation, MAX the maximum
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Conclusion and Discussion
Plasma proteomic profiles have been regarded as a
potential biomarker to diagnose certain diseases
according to their specific patterns. It is challenging to
precisely predict the clinical status based solely on the
patterns of profiles because some profiles do not
frequently follow the general patterns, which leads to
large within-subject variance. The prediction based on
CBR based approaches may be effective in that case. The
CBR classifier predicts the clinical status of a target case
by retrieving the most similar case from the case-base,
so it would be advantageous in prediction because it can
avoid the risk to make decision according to deviated
overall means due to the outlying pattern. However,
CBR classifier often shows low predictability, and some
studies made efforts to enhance the predictability using
weight optimization for features. There is still no golden
standard to optimize or allocate the feature weights,
which can be dependent upon the characteristics of the
data we encounter.
The present study suggests a rank-based weighted

CBR classifier (RWCBR) to predict the clinical status of
plasma proteomic profiles. The rank-based weighted
CBR classifier uses a weighted similarity based on rank-
order information of distance metrics to retrieve the
most similar case from the case-base where the feature
weights are optimized from Wilcoxon’s rank sum
statistics. We conducted numerical experiments to
validate the performance of RWCBR. As reference
methods, two machine learning techniques, k-NN and
SVM, a statistical method, SCUCC, a classical CBR
(CLCBR) and two differently weighted CBR, ETCBR and
LWCBR methods were compared in terms of Precision,
Recall, F-1 score and G-measure. According to the results,
SVM showed the lowest standard deviation and the high-
est minimum value for Precision, Recall, but RWCBR

outperform in average value in all information indices,
and it maintained the lowest standard deviation in F-1
score and G-measure. Also, LWCBR showed lower per-
formance than CLCBR in most information indices. A
weighted CBR approaches do not always perform well, so
the weight allocation or optimization methods should take
into accounts the characteristics of the data set to enhance
the performance of CBR classifier.
The sample size of the plasma proteomic profiles was

small in the present study. However, RWCBR approach
showed potential to predict the clinical status based
solely on plasma proteomic profiles as a robust classifier
over different sample sets in the present study.
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