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Abstract

Background: Identifying targets of herbs is a primary step for investigating pharmacological mechanisms of herbal
drugs in Traditional Chinese medicine (TCM). Experimental targets identification of herbs is a difficult and time-
consuming work. Computational method for identifying herb targets is an efficient approach. However, how to
make full use of heterogeneous network data about herbs and targets to improve the performance of herb targets
prediction is still a dilemma.

Methods: In our study, a random walk algorithm on the heterogeneous herb-target network (named heNetRW) has
been proposed to identify protein targets of herbs. By building a heterogeneous herb-target network involving
herbs, targets and their interactions and simulating random walk algorithm on the network, the candidate targets
of the given herb can be predicted.

Results: The experimental results on large-scale dataset showed that heNetRW had higher performance of targets
prediction than PRINCE (improved F1-score by 0.08 and Hit@1 by 21.34% in one validation setting, and improved
F1-score by 0.54 and Hit@1 by 69.08% in the other validation setting). Furthermore, we evaluated novel candidate
targets of two herbs (rhizoma coptidis and turmeric), which showed our approach could generate potential targets
that are valuable for further experimental investigations.

Conclusions: Compared with PRINCE algorithm, heNetRW algorithm can fuse more known information (such as,
known herb-target associations and pathway-based similarities of protein pairs) to improve prediction performance.
Experimental results also indicated heNetRW had higher performance than PRINCE. The prediction results not only
can be used to guide the selection of candidate targets of herbs, but also help to reveal the molecule mechanisms
of herbal drugs.
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Background
Target identification of herb medicine is the primary step to-
ward investigating herbal molecular mechanism and improv-
ing clinical efficacy of treatment. Unlike allopathic Western
Medicine, Traditional Chinese medicine (TCM) is character-
ized as holistic emphasizing on regulating the integrity of the
human body [1]. The diverse herbal ingredients and multi-

target molecular mechanism are critical characteristics of
herb medicine [2, 3]. In recent years, herbal molecular mech-
anism studies mainly are focused on animal experiments, for
example, Yu et al. [4] found that SP1 is potential target of
turmeric by mice experiments. However, animal experiments
not only cost a lot of times and manpower, but also are
limited to the scale of minority herbs, which has caused
enormous challenge for TCM researchers.
Network pharmacology emphasized the paradigm shift

from “one target, one drug” to “network target, multicom-
ponent therapeutics,” highlighting a holistic thinking also
shared by TCM [2, 5]. By integrating computational and
experimental methods, network pharmacology provided a
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new perspective of herb compatibility [6] and herbal mo-
lecular mechanism research [7]. On the one hand, plenty
of medical associations data, i.e., drug-target associations
(DrugBank [8] and Stitch [9]), phenotype-genotype associ-
ations (OMIM [10] and DO [11]), protein-protein interac-
tions (String10 [12]) and human symptom-disease
associations [13], provided abundant and valuable medical
data, which can be applied to computational methods to
predict herbal protein targets. On the other hand, plenty
of prediction approaches based on network propagation
have been widely applied to identify genetic associations,
e.g., drugCIPHER-MS [14] for drug target identification,
PRINCE [15], pgWalk [16] and Know-GENE [17] for dis-
ease gene identification and herb target prediction, which
indicated that network propagation is an effective ap-
proach to figure out the problem of link prediction in
complex network. In our previous work [3], we proposed
a network-based herb target prediction algorithm integrating
efficacy-based herb similarity, which implied efficacy-based
herb similarity was better measure of herb correlation than
herbal chemical-based similarity.
In TCM field, several curated databases involving

the associations between herbal ingredients and tar-
gets, i.e. HIT [18], TCMID [19], have been estab-
lished. Yet, the high credible dataset of herb-target
associations is still incomplete. Therefore, developing
effective approaches to identifying herbal protein tar-
gets has become a key step to decode molecular
mechanism of herbs. Network pharmacology methods
have been utilized to active ingredient-target networks
of herbs that were responsible for the beneficial

effects against hepatocellular carcinoma [20]. By inte-
grating serum pharmacochemistry-based screening
with high-resolution metabolomics analysis, Wang et al.
[21] developed chinmedomics to identify the bioactive
constituents of herbs and predicted action potential targets.
Zhang et al. [22] proposed a computational strategy for
network understanding of herb pharmacology via rapid
identification of putative ingredient-target interactions in
human structural proteome level. Liang et al. [23] proposed
a holistic analysis method combines chemical and thera-
peutic properties with network pharmacology to decipher
targets and ingredients of herbal formulae. Zhao et al. [24]
introduced a system pharmacology model based on absorp-
tion filtering, network targeting and systems analyses to
clarify the active compounds and therapeutic mechanisms
of Bufei Jianpi formula.
Here, aiming at protein targets identification of herbs,

a random walk algorithm [25] on heterogeneous herb-
target network (heNetRW) was put forward (Fig. 1). By
constructing a heterogeneous herb-target network and
simulating random walk on the network, the candidate
targets of the query herb can be predicted. In the experi-
mental stage, two validation setting: NoTarget and
HalfTarget situations were simulated to evaluate predic-
tion performance of heNetRW. And the final results
indicated that heNetRW has better performance than
baseline algorithm PRINCE (improved F1-score by 0.08
and Hit@1 by 21.34% under NoTarget simulation, im-
proved F1-score by 0.54 and Hit@1 by 69.08% under
HalfTarget simulation). Furthermore, we evaluated novel
candidate targets (not recorded in the benchmark) of

Fig. 1 The workflow of heNetRW. Based on herb-efficacy and protein-pathway associations, cosine similarities of herb pairs and protein pairs were
calculated. Then the herb-herb network and protein-protein network (Fig. 1a), whose nodes represent herbs or proteins and edges represent
shared efficacies or shared pathways, were built. Given a query herb, the random walk algorithm was simulated (red line) on the heterogeneous
herb-target network (Fig. 1b). By ranking the candidate targets by correlation scores, candidate targets of a given herb can be identified (Fig. 1c)
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rhizoma coptidis and turmeric by consulting recent pub-
lished papers and conducting shortest path analysis,
whose results manifested the correlativity between these
candidate targets and query herbs.

Methods
Dataset
We integrated 1427 herbs were extracted from HIT [18]
and Chinese pharmacopoeia (CHPA, 2015 edition) and
16,005 proteins from HIT and KEGG [26] databases. In the
HIT database, there are associations between herbal ingre-
dients and targets from medical literatures. By integrating
herb-ingredient and ingredient-target associations, 23,453
associations between 1016 herbs and 1214 targets (see
Additional file 1) were connected directly through 511
herbal ingredients. On average, each herb was associated
with 23.08 targets, and each target was relevant to 19.32
targeted herbs (Fig. 2). The target number of 57.48% herbs
was bigger than ten, which also verified multi-target
mechanism of herbs. Otherwise, we collected 3487
herb-efficacy associations between 742 herbs and 360
efficacies from CHPA (see Additional file 2). 16,162
protein-pathway associations between 4794 proteins
and 244 pathways (see Additional file 3) were also
collected from KEGG database.

Similarity calculation of herb pairs and protein pairs
By building efficacy or target vectors and measuring the
cosine value of these vectors, efficacy-based and target-
based similarities of herb pairs can be calculated. For
example, given m herbs and n related efficacies, every

herb i can be represented by a vector of efficacy Vi = (wi,

1,…,wi, j,…,wi, n), where wi, j = 1 if efficacy j belong to
herb i, if not, wi, j = 0. Then the efficacy-based similarity
of herb x and y can be measured by the cosine value of
their vectors (Eq. 1). Similarly, target-based herb similar-
ities were also calculated.

Cos V x;Vy
� � ¼ Vx∙Vy

j Vx j ∙ j Vy j ð1Þ

Similarly, by building vectors of pathways and herbs,
and measuring the cosine value of these vectors,
pathway-based and herb-based similarities of protein
pairs also can be calculated.

Herb pairs with similar efficacies indicate similar targets
The basic assumption of heNetRW is that herb pairs
with shared efficacies indicated shared targets, and
protein pairs with shared pathways implied shared
targeted herbs. Given an herb pair, we quantified the
efficacy-based cosine similarity between the herb pair,
and measured the target-based cosine similarity of the
pair as the average pairwise similarity score. We par-
titioned the similarities of all herb pairs into 10 bins
of equal size. The average target-based similarity of
herb pairs in each bin can be calculated. Similarly,
pathway-based and herb-based similarity of protein
pairs were also measured.
To illustrate overlap results of herb pairs and protein

pairs, we compared the overlap results with random
shuffle [27]. We took herb pairs as an example. First of

Fig. 2 The distribution of associations between herbs and targets. The target number distribution of herbs were shown in Fig. 2a. The horizontal
axis represents number of targets, and the vertical axis represents the number of herbs with corresponding number of targets. Fig 2b showed
the targeted herb number distribution of targets. The horizontal axis represents number of herbs, and the vertical axis represents the number of
targets with corresponding number of targeted herbs
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all, for herb pairs, remaining constant known efficacies
of herbs, we shuffled randomly equal number of targets
for each herb. Secondly, based on the random targets of
herb pairs, the overlap results can be calculated. Finally,
the above procedures were repeated for 100 times, and
the average ratios of overlap results can be obtained.

Construction of herb-herb network and protein-protein
network
Based on efficacy-based similarities of herb pairs, we
constructed the herb-herb network, where nodes repre-
sent herbs and edges represent herb pairs with shared
efficacies (that is, efficacy-based herb similarities are big-
ger than zero). The network we built may contain a large
number of low confident edges between herbs pairs with
small similarities. Therefore, only α neighbor herbs with
the highest similarity scores for each herb were selected
to build a more confident herb-herb network.
Similarly, by calculating pathway-based similarities of

proteins, the protein-protein network also can be con-
structed. For a more confident protein-protein network,
β neighbor proteins with the highest similarity scores for
each protein were kept. The parameters α and β have
been tuned to observe the influence of target prediction
under different values of α and β.

Random walk on heterogeneous herb-target network to
identify candidate targets
Given an herb-herb network, a protein-protein network
and known herb-target associations, the heterogeneous
herb-target network (HHGN) can be constructed, which
included two type nodes: herb and protein nodes, and
three type edges: herb-herb, protein-protein, and herb-
target edges. Then the process that a random walker
wandered on HHGN can be simulated to identify candi-
date targets of given herb.
For the HHGN, there are an herb layer, a protein layer,

and interconnections between the two layers. The herb
layer, which can be weighted by efficacy-based similarities
of herbs, was composed of herbs and their relationships.
The protein layer, which can be weighted by pathway-
based protein similarity, was composed of proteins and
their associations. Interconnections, which connected
herb layer and protein layer, are composed of known asso-
ciations between herbs and proteins. Hence, given a query
herb, the random walker would start a journey on the
HHGN with initial probability p(0). In next each step, the
walker would select to start a new journey with the prob-
ability θ or select to move to neighbors of the current
node with the probability 1 − θ. For moving to neighbors,
the walker would select to jump from the herb layer to the
protein layer or vice versa with probability φ or select to
wander in either the herb layer or the protein layer with
the probability 1 − φ. After a number of steps, the

probability of each node on the HHGN would reach a
steady state p(t), which can be used to measure the
strength between the query herb and candidate targets.
Mathematically, HHGN is denoted by I = (H,G, R),

where H = (hij)m ×m is the weight matrix of herb-herb
network, G = (gij)n × n is the weight matrix of protein-
protein network, R = (aij)m × n is the adjacency matrix of
herb-protein network, and m and n is the numbers of
herbs and proteins, respectively. The heNetRW is de-
scribed as follows:

For the transition matrices A and B, rij and sij are the
probability that the walker jumps from the i-th herb to the
j-th protein and jumps from the i-th protein to the j-th
herb, respectively. u(0) = (u(0))m × 1 and v(0) = (v(0))n × 1 are
initial probabilities for the herb layer and the protein layer,
respectively. p(0) represents the initial probability of every
herb and protein. p(t) represents probability of nodes
after t-th iteration of random walker, and Δp represents
changed matrix of t-th and (t − 1)-th iteration.
Finally, when the L1 norm of matrix Δp is smaller than

ε, the algorithm obtained steady-state probability p(t),
and it contains the two part: herb scores u(t) and protein
scores v(t), which can be regarded as predicted targets of
the query herb. Sorting all the predicted proteins by the
scores, the top n proteins of ranked list were selected as
candidate proteins of the query herb.

Experimental setting and evaluation
We collected 1016 herbs with known targets, 120 of
which only targeted one protein target and the
remaining 896 herbs targeted more than one protein tar-
get. We filtered overlapped 261 herbs with known tar-
gets and known efficacies. In real world, there usually
are two situations of target identification: (1) the query
herb has no target; (2) the query herb has some targets.
Therefore, we simulated the two situations: (1) predict
all targets for the query herb whose all targets are
removed (NoTarget); (2) predict left targets for the query
herb whose half number of targets are randomly removed
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(HalfTarget). Particularly, if the query herb only has one
target, it only can be used to the first situation. If all
known targets of the given herb were removed, and the
given herb didn’t have any herb neighbors in the heteroge-
neous herb-target network, the initial value p(0) of the
given herb will be zero, which would lead that the random
walk algorithm would not spread nodes information to
other nodes of the network. So when simulating NoTarget,
261 herbs with herbs and targets neighbors were selected
as test herbs. And when simulating HalfTarget, we select
896 herbs with more than one known targets as test herbs.
For the two situations: NoTarget and HalfTarget,
heNetRW and PRINCE were evaluated by leave one out
cross validation (LOOCV): remove all of known targets or
half of known targets for the query herb and retain all of
known targets for other herbs.
If the query herb had k known targets, the top k pro-

teins of ranked proteins list will be selected as candidate
targets of the query herb. For example, given the query
herb rhizoma coptidis with 64 known targets, our algo-
rithm would select the top 64 targets of ranked list as
candidate targets. On the one hand, precision, recall and
F1-score of every query herb were calculated by Eqs. 2
and 3, in which TP, FP and FN represent the numbers of
true positives, false positives and true negatives, respect-
ively. On the other hand, the top one hit (Hit@1) rate
was also used to evaluate the algorithms. Hit@1 con-
siders that the proportion of the query herbs, whose top
one protein of ranked list is the known target of the
query herb.

Precision ¼ TP= TP þ FPð Þ;Recall
¼ TP= TP þ FNð Þ ð2Þ

F1 ¼ 2∙Precision∙Recall
Precisionþ Recall

ð3Þ

Shortest path analysis
To investigate the associations between candidate tar-
gets and known targets of given herbs, average shortest
path length (ASPL) and shortest path length (SPL)
distribution between them were conducted. First of all,
the shortest path length SPL(t, s) between candidate
target t and known target s (s ∈ the known targets set
S) in the protein-protein interaction (PPI) network can
be calculated. Then the ASPL can be calculated by the
equation:

ASPL t; Sð Þ ¼ 1
Sj j
X

s∈S

SPL t; sð Þ ð4Þ

where |S| represented the number of known targets.
Otherwise, the distribution of all the SPLs was also cal-
culated and compared with random shuffle. For the

random experiment, candidate targets were selected ran-
domly from the PPI network, and the SPL distribution
between the candidate target and known targets was
calculated. The above process was repeated for ten thou-
sand times, finally, the average distribution of random
candidate target and known targets can be obtained.

Results
Overview of heNetRW
The core idea of heNetRW is simulating random walk
on a heterogeneous herb-target network to identify
candidate targets of herbs. As illustrated in Fig. 1,
firstly, based on herb-efficacy and protein-pathway
associations, cosine similarities of herb pairs and pro-
tein pairs can be calculated. After that, the herb-herb
network and protein-protein network were con-
structed. The weight of edges in the two networks
depend on similarities of herb pairs or protein pairs.
There are 741 nodes and 60,753 edges in herb-herb
network (Table 1), whose average degree (the number
of neighbors) is 163.98. The protein-protein net-
work with 4794 nodes and 656,681 edges has a higher
average node degree (= 273.95). Compared with herb-
herb network (network density: 0.22), protein-protein
network has the lower network density (=0.06). By
integrating herb-herb network, protein-protein net-
work and herb-target associations, the heterogeneous
herb-target network (network density: 0.03), which is
a very sparse network, can be constructed. Given a
query herb, random walk algorithm on the heteroge-
neous network can be simulated to predict candidate
targets. Sorting all predicted targets by correlation
scores, the ranking list of candidate proteins can be
obtained. LOOCV was used to evaluate the prediction
performance. In addition, the PRINCE [3] algorithm,
which is a state-of-the-art algorithm for herb target
prediction, was adopted as the baseline algorithm in
our experiments. With efficacy-based similarities of
herb pairs, the PRINCE simulated network propaga-
tion on the PPI network to predict herb targets.

Herb pairs with similar efficacies indicate similar targets
The basic assumption of our method is that the herb
pairs with shared efficacies implied shared targets, and

Table 1 The description of related networks

Network Number of
nodes

Number of
edges

Average
degree

Network
density

Herb-herb network 741 60,753 163.98 0.22

Protein-protein
network

4794 656,681 273.95 0.06

Heterogeneous
herb-target network

6716 740,887 220.63 0.03
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target pairs with shared pathways implied shared targeted
herbs. To validate this assumption, we quantified efficacy-
based and target-based similarities of herb pairs. And
the overlap results were compared with results of random
permutation using Fisher-Yates method [27]. Meanwhile, to
validate whether protein pairs with similar pathways indi-
cated similar targeted herbs, pathway-based and herb-based
similarities of protein pairs also were adopted according to
the same way. We selected 261 comon herbs with efficacies
and targets as experimental herbs (Fig. 3a). The herb pairs
with weak efficacy-based similarities (0.1–0.2) had weak
target-based average similarity (0.18; Expected: 0.06±0.0013).
Nevertheless, for the herb pairs with strong similarities (0.9–
0.1), their target-based average similarity (0.60; Expected:
0.06±0.02) was also strong, which indicated herbs with
more similar efficacies are more likely to have more similar
targets. Similarly, for 789 proteins with pathways and tar-
geted herbs (Fig. 3b), there were the similar results, which
were proteins similarity bin from 0 to 0.1 (0.18; Expected:
0.07±0.0007) versus similarity bin from 0.9 to 1 (0.49;
Expected: 0.08±0.01).

Target identification of herbs
In this study, we simulated two situations existed in the real
world: NoTarget, the query herb with no known target (all
of known targets as test targets); HalfTarget, the query herb
with half of known targets (Half of known targets as train
targets, the left targets as test targets). For the two settings:
NoTarget and HalfTarget, we selected 261 herbs and 896
herbs as test herbs, respectively. Using LOOCV, the

prediction performance of heNetRW was compared with
PRINCE. Target prediction results (Table 2) implied that the
performance of heNetRW was slightly better than PRINCE
(improved F1-score by 0.08 and Hit@1 by 21.34%) under
the NoTarget simulation. We also displayed F1-scores distri-
bution of 261 test herbs with different number of test targets
(known targets) (Fig. 4a). The distribution of F1-scores indi-
cated that heNetRW (64.75% F1-scores bigger than 0.20)
had better performance (p-value = 1.10e-8) than PRINCE
(40% F1-scores bigger than 0.20). Under the HalfTarget
simulation, heNetRW had much better performance than
PRINCE (improved F1-score by 0.54 and Hit@1 by 69.08%).
And the F1-scores distribution also implied heNetRW
(70.87% F1-scores bigger than 0.40) has much better
performance (p-value = 1.10e-249) than PRINCE (1.23% F1-
scores bigger than 0.40). For the PRINCE, iteration algo-
rithm would spread information of known nodes to other
nodes in the PPI network. If the known nodes were isolated
nodes in the PPI network, the information of the known
nodes would not spread to other nodes, which would lead
to poor prediction performance. But for the heNetRW algo-
rithm, the information of known nodes still could spread to
other nodes if there are neighbors (herb nodes or protein
nodes) of these nodes in the heterogeneous herb-target net-
work. The prediction results of PRINCE showed 67.30%
F1-scores (12.17% for the heNetRW) was zero (Fig. 4b),
which also implied heNetRW had a greater robustness
than PRINCE. Otherwise, the prediction results also
implied that under both the NoTarget and the HalfTarget,
the query herbs with more test targets can lead to better

Fig. 3 Overlap analysis of herb pairs and protein pairs. Figure 3a Herb pairs with shared efficacies imply shared proteins. The horizontal axis represents
efficacy-based similarity bins of herb pairs, and the vertical axis represents target-based average similarity of herb pairs under the corresponding
efficacy-based herb similarity bins. The mazarine and green bar represent observed results and expected results of random permutation. Figure 3b
Protein pairs with shared pathways imply shared targeted herbs. Similarly, the horizontal and vertical axis represent pathway-based similarity of protein
pairs and herb-based average similarity of protein pairs under the corresponding bins
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performance of PRINCE. But for the heNetRW, more test
targets of the query herb had a better performance under
the NoTarget, and moderate quantity of test targets may
have a better performance under the HalfTarget.

Parameters tuning of heNetRW
The prediction algorithm heNetRW had four parameters
need to be tuned: the number α of selected neighbors
for each herb in the herb-herb network, the number β of
selected neighbors for each protein in the protein-
protein network, the probability θ to start a new journey
of random walk, and the probability φ to jump from the
herb layer to the protein layer or vice versa. For NoTar-
get and HalfTarget simulations, the parameter α and β
were tuned at the range from 20 to 100 (scale is 20), and
the parameter θ and φ were tuned at the range from 0.1
to 0.9 (scale is 0.1) (Fig. 5). When one parameter was
tuned, other three parameters remain unchanged. The
prediction results indicated the algorithm is not sensitive
to the parameters α, β, θ and φ under the NoTarget
simulation (Fig. 5a and b). And under the HalfTarget

simulation, the parameters α and β have little influence
on improving prediction performance, small α and large
β could make heNetRW have a better prediction
performance (Fig. 5c). The parameters θ and φ have
much influence on prediction performance of heNetRW
(Fig. 5d). The larger parameter φ can lead to the better
prediction performance. When the parameter θ is 0.4,
heNetRW had better prediction performance.

Case study
We took prediction results of rhizoma coptidis and tur-
meric as an example (Table 3). For the NoTarget simula-
tion, all of known targets of the given herb would be
regarded as test targets. And half of known targets
would be regarded as test targets for the HalfTarget
simulation. Under the NoTarget, there were 35 known
targets of rhizoma coptidis in the top 64 candidate tar-
gets (precision/recall/F1-score = 0.55) (Table 3). Also, we
listed the top 20 candidate targets of rhizoma coptidis
(Table 4). 16 of top 20 candidate target (precision = 0.80;
recall = 0.22) were known targets (the bold targets in the
Table 4) of rhizoma coptidis. To fully evaluate the per-
formance of heNetRW, we consulted recent published
papers to verify whether recent researches indicated the
left 4 targets were associated to rhizoma coptidis. The
researches of Han et al. [28] and Huang et al. [29] im-
plied CYP3A4 (rank = 7) and ICAM1 (rank = 18) were
related to rhizoma coptidis, respectively. For the tur-
meric with more test targets (152 known targets as test
targets), 81 known targets appeared in the top 152
candidate targets (precision/recall/F1-score = 0.53). The
entire top 20 predicted candidate targets (Table 4) were

Table 2 The performance comparison of different prediction
algorithms

Prediction
simulation

Algorithm Number
of herbs

F1-score Hit@1 (%)

NoTarget PRINCE 260 0.16±0.17 29.23

heNetRW 261 0.28±0.20 50.57

HalfTarget PRINCE 896 0.05±0.10 6.70

heNetRW 896 0.59±0.33 75.78

NoTarget and HalfTarget are two experimental simulations. PRINCE and
heNetRW are prediction algorithms. Hit@1 represents the top one hit

Fig. 4 F1-scores distribution of PRINCE and heNetRW. F1-scores distributions of heNetRW and PRINCE under the NoTarget and HalfTarget situations
were showed, respectively (Fig. 4a and Fig. 4b). The horizontal axis represents number of test targets, and the vertical axis represents F1-scores of herbs
with corresponding number of test targets. The circle point and triangle point represent the F1-scores of heNetRW and PRINCE. The green and pink
line represent the curve fitting of heNetRW and PRINCE

Yang et al. BMC Medical Informatics and Decision Making 2018, 18(Suppl 1):17 Page 33 of 72



known targets of turmeric (precision = 1; recall = 0.13).
As for the HalfTarget simulation, there were 24 and 43
known targets of rhizoma coptidis (precision/recall/F1-
score = 0.75) and turmeric (precision/recall/F1-score =
0.57) in the top 32 and 76 candidate targets, respectively
(Table 3). There were 17 known targets and 18 known
targets of rhizoma coptidis (precision = 0.85; recall =
0.53) and turmeric (precision = 0.90; recall = 0.24) in the
top 20 candidate targets, repectively (Table 5). Li et al.
[30] revealed that coptisine reduced the expression of
the MMP9 (rank = 16) at the mRNA level. By RT-qPCR
and Western blot data, Wang et al. [31] showed that
curcumol phosphorylated CDK2 (rank = 12) and CDK4
(rank = 14), which indicated that both of candidate

targets are related to turmeric. For the left four candi-
date targets: SOD1 (NoTarget, rank = 8), HMOX1
(NoTarget, rank = 19), AKT1 (HalfTarget, rank = 12), and
IL2 (HalfTarget, rank = 17), the average shortest path
length (ASPL) and the distribution of shortest path
length (SPL) analysis between these candidate targets
and known targets of rhizoma coptidis (named KTofRC)
were conducted (Fig. 6). Compared with random experi-
ment (ASPL = 3.74±0.86), the ASPL between these can-
didate targets (SOD1: 2.60; HMOX1: 2.00; AKT1: 1.67;
IL2: 1.92) and KTofRC indicated that these targets had
strong interaction with KTofRC in the PPI network. The
SPLs between these candidate targets and KTofRC were
mainly distributed 1 and 2, e. g. for SOD1, HMOX1,
AKT1 and IL2, 46.03%, 84.13%, 92.06% and 87.30% of
SPLs with smaller than 3 (15.55% of SPLs for the ran-
dom shuffle), which also implied that there were strong
interaction between these targets and KTofRC.

Discussion
In genetic research, as a universal amplifier of genetic asso-
ciations [32], network propagation methods, e.g. random
walk [25], information diffusion [33] and electrical resist-
ance [34], have been applied successfully to identify gene
function [35], disease characterization [36], and drug targets
[37]. In our study, a random walk algorithm on the hetero-
geneous herb-target network has been proposed to identify

Fig. 5 Parameter tuning of heNetRW. Under NoTarget and HalfTarget simulations, the four heNetRW-related parameters α, β, θ and φ were tuned,
and F1-scores (average and standard deviation) of prediction results were showed, respectively, as follows: Fig. 5a tuning parameters α and β
under the NoTarget; Fig. 5b tuning parameters θ and φ under the HalfTarget; Fig. 5c tuning parameters α and β under the HalfTarget; Fig. 5d
tuning parameters θ and φ under the HalfTarget

Table 3 The prediction performance of rhizoma coptidis and
turmeric

Simulation Herb Number
of
Train
targets

Number
of
test
targets

Number of
correct
targets

Precision/
recall
/F1-score

NoTarget Rhizoma
coptidis

0 64 35 0.5469

Turmeric 0 152 81 0.5329

HalfTarget Rhizoma
coptidis

32 32 24 0.75

Turmeric 76 76 43 0.5658

PRINCE and heNetRW are algorithms of herb target prediction
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candidate targets for herbs. By building a heterogeneous
herb-target network and simulating random walk on the net-
work, the candidate targets of given herbs can be predicted.
In the experiment stage, the NoTarget and HalfTarget situa-
tions were simulated to validate prediction performance of
heNetRW. The final results indicated that heNetRW had
better prediction performance than PRINCE.
There are two advantages of heNetRW algorithm. The

algorithm PRINCE simulated random walk on the PPI
network, and the initial nodes are known proteins of the
herbs that are relevant to query herb. Nevertheless, for
the heNetRW, random walk was simulated on the het-
erogeneous herb-target network, the initial nodes are
targets that are relevant to known targets of the query
herb and herbs that are relevant to the query herb. So
with respect to PRINCE considering herb similarities
and PPI associations, heNetRW considered more known
information including known herb-target associations
and pathway-based protein similarities. Experimental
results also indicated more known information could
make heNetRW have better prediction performance.
Otherwise, by tuning parameters of heNetRW algorithm,
we effectively controlled the trend of random walk to
improve prediction performance. The prediction results

can be used to guide the selection of candidate targets of
herbs that have not been studied at present or find new
protein targets of common herbs, which would help to
reveal molecular mechanism of herbal drugs and im-
prove treatment of complex diseases.

Table 4 The top 20 candidate targets of rhizome coptidis and
turmeric under the NoTarget

Rhizoma coptidis Turmeric

Rank Candidate Target Score Rank Candidate Target Score

1 CASP3 0.4526 1 CASP3 0.2750

2 RELA 0.4109 2 RELA 0.2554

3 PTGS2 0.3834 3 PTGS2 0.2222

4 TNF 0.2988 4 TNF 0.1816

5 NOS2 0.2771 5 BCL2 0.1716

6 BCL2 0.2708 6 NOS2 0.1624

7 CYP3A4 0.2325 7 BAX 0.1403

8 SOD1 0.2132 8 TP53 0.1349

9 BAX 0.2096 9 JUN 0.1318

10 CASP9 0.1928 10 CYP3A4 0.1230

11 IL6 0.1846 11 SOD1 0.1182

12 JUN 0.1777 12 FOS 0.1165

13 CDKN1A 0.1701 13 CASP9 0.1158

14 TP53 0.1701 14 VEGFA 0.1141

15 IL1B 0.1658 15 IL6 0.1111

16 VEGFA 0.1612 16 CDKN1A 0.1106

17 FOS 0.1561 17 NFKBIA 0.0992

18 ICAM1 0.1558 18 IL1B 0.0926

19 HMOX1 0.1502 19 MMP9 0.0873

20 MAPK1 0.1358 20 ICAM1 0.0872

The bold candidate targets are known targets of given herbs

Table 5 The top 20 candidate targets of rhizome coptidis and
turmeric under the HalfTarget

Rhizoma coptidis Turmeric

Rank Candidate Target Score Rank Candidate Target Score

1 PTGS2 0.0311 1 CASP3 0.0657

2 NOS2 0.0285 2 TNF 0.0619

3 BAX 0.0259 3 BCL2 0.0518

4 CASP9 0.0252 4 JUN 0.0438

5 CDKN1A 0.0238 5 VEGFA 0.0424

6 NFKBIA 0.0220 6 BAX 0.0400

7 FOS 0.0212 7 IL6 0.0390

8 CDK2 0.0203 8 MMP9 0.0355

9 VEGFA 0.0202 9 CASP9 0.0334

10 IL4 0.0178 10 AKT1 0.0326

11 BCL2L1 0.0160 11 CCND1 0.0302

12 AKT1 0.0146 12 CDK2 0.0296

13 HERC5 0.0143 13 MAPK1 0.0282

14 CDC2 0.0135 14 CDK4 0.0269

15 EIF6 0.0132 15 XDH 0.0245

16 MMP9 0.0130 16 SOD1 0.0241

17 IL2 0.0126 17 PRKCB 0.0233

18 MPO 0.0121 18 CYP3A4 0.0213

19 EGFR 0.0120 19 VCAM1 0.0211

20 HIF1A 0.0118 20 MYC 0.0202

The bold candidate targets are known targets of given herbs

Fig. 6 Shortest path analysis of candidate targets of rhizoma
coptidis. The horizontal axis represents shortest path length, and the
vertical axis represents proportion of SPLs
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In recent years, network embedding representation
methods, e.g. deepwalk [38], LINE [39] and node2vec [40],
have been widely applied to network classification [41] and
link prediction [40]. By learning continue feature represen-
tations for nodes in networks, the node2vec algorithm can
obtain a mapping of nodes to a low-dimensional space of
features [40], which can be used to measure accurate simi-
larity of nodes. In our study, the similarities of herb pairs
and target pairs are based on efficacy-based and pathway-
based cosine similarities, which only considered unilateral
similarity of herb pairs or target pairs. In the future, by
building heterogeneous herb-related (e.g. efficacies, indica-
tions and ingredients) network and target-related (e.g. path-
ways, GO terms and interactions) network, we will apply
network embedding algorithm to obtain multi-dimensional
similarity measure of herb pairs or target pairs. Otherwise,
Under the NoTarget simulation, since initial nodes only
contain herb nodes, not target nodes, the prediction per-
formance of heNetRW was not well. To address the issue,
known targets of herbs that are relevant to the query herb
will be added to the set of initial nodes in the future.

Conclusions
Herb target identification is a critical step for revealing
pharmacological mechanisms of herbal drugs and improving
clinical treatment of diseases in TCM. In this study, we de-
veloped a heterogeneous network propagation method to
identify herb targets. Based on two validation settings, our
method was compared with the baseline method PRINCE.
The experimental results indicated that our method had
higher performance than PRINCE. We manually evaluated
several candidate targets of two herbs, which is not in bench-
mark dataset, but have been confirmed by recent published
papers. Therefore, the prediction results not only can be
used to guide the selection of herbal candidate targets in wet
lab, but also help to reveal molecule mechanisms of herbs.

Additional files

Additional file 1: – HIT_herb_target.xls. 23,453 herb-target associations
between 1016 herbs and 1214 targets were collected and integrated
from the HIT database. (XLS 1200 kb)

Additional file 2: – CHPA_herb_efficacy.xls. 3487 herb-efficacy associations
between 742 herbs and 360 efficacies were collected from the Chinese
pharmacopoeia (CHPA, 2015 edition). (XLS 200 kb)

Additional file 3: – KEGG_protein_pathway.xls. 16,162 protein-pathway
associations between 4794 proteins and 244 pathways were collected
from KEGG database. (XLS 896 kb)
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