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Abstract

Background: Autism Spectrum Disorder (ASD) is one of the fastest-growing developmental disorders in the United
States. It was hypothesized that variations in the placental chorionic surface vascular network (PCSVN) structure may
reflect both the overall effects of genetic and environmentally regulated variations in branching morphogenesis
within the conceptus and the fetus’ vital organs. This paper provides sound evidences to support the study of ASD
risks with PCSVN through a combination of feature-selection and classification algorithms.

Methods: Twenty eight arterial and 8 shape-based PCSVN attributes from a high-risk ASD cohort of 89 placentas and
a population-based cohort of 201 placentas were examined for ranked relevance using a modified version of the
random forest algorithm, called the Boruta method. Principal component analysis (PCA) was applied to isolate
principal effects of arterial growth on the fetal surface of the placenta. Linear discriminant analysis (LDA) with a 10-fold
cross validation was performed to establish error statistics.

Results: The Boruta method selected 15 arterial attributes as relevant, implying the difference in high and low ASD

risk can be explained by the arterial features alone. The five principal features obtained through PCA, which
accounted for about 88% of the data variability, indicated that PCSVNs associated with placentas of high-risk ASD
pregnancies generally had fewer branch points, thicker and less tortuous arteries, better extension to the surface
boundary, and smaller branch angles than their population-based counterparts.

Conclusion: We developed a set of methods to explain major PCSVN differences between placentas associated with
high risk ASD pregnancies and those selected from the general population. The research paradigm presented can be
generalized to study connections between PCSVN features and other maternal and fetal outcomes such as

gestational diabetes and hypertension.

Keywords: Placental chorionic surface vascular network (PCSVN), Autism spectrum disorder risk, Boruta algorithm,
Linear discriminant analysis, Placenta, Principal component analysis, Random forest, Arterial network

Background

Autism Spectrum Disorder (ASD) is a neurodevelopmen-
tal disorder with deficits in three defining areas: social
reciprocity, communication, and restricted and repetitive
patterns of behaviors. Symptoms are typically developed
by 36 months of age. The causes of ASD are not defini-
tive and include both genetic and non-inherited factors
and exposures. About one in 68 children in the United
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States and one percent of the world population has been
identified with ASD, according to a 2016 estimate from
the Center for Disease Control [1]. The lifelong cost of
ASD in the United States is about $2.4 million for a person
with an intellectual disability, or $1.4 million for a per-
son without intellectual disability [2]. Since the brain is
most responsive to treatment in the first year of life, early
intervention is key to help children diagnosed with ASD.
However, since most of the diagnoses of ASD are not made
until the child is three or four years old, the best opportu-
nities for intervention have already been lost. There is no
doubt that ASD is a global epidemic and efforts are needed
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in developing reliable bio-markers in assessing prenatal
and neonatal risk to not only increase the effectiveness
of the treatments and minimize the cost to treat children
with ASD.

One way to develop a bio-marker is to study groups of
children exposed to high risk for ASD. For example, chil-
dren with a twin sibling have a much higher chance of
getting diagnosed with ASD. In particular, studies have
shown that among identical twins, if one child has ASD,
then the other will be affected about 36-95% of the time.
In non-identical twins, if one child has ASD, then the
other is affected about 0-31% of the time [3, 4]. More-
over, parents who have a child with ASD have a 2-18%
chance of having a second child who is also affected
[5, 6]. Based on a research study completed by the Baby
Siblings Research Consortium [7], the recurrence risk of
ASD was 18.7% for families with at least one older sibling
with ASD. Children with more than one older sibling with
ASD were even more likely to be diagnosed, with a 32.2%
risk — twice that of children with only one older autistic
sibling [7].

As we know that the gene families that control branch-
ing morphogenesis in the permanent organs such as kid-
neys, lungs, and pancreas are related to the genes that
control branching morphogenesis in placenta [8], this
makes placenta an ideal organ to study fetal vasculoge-
nesis and angiogenesis. Abnormal placental angiogenesis
and vasculogenesis underly a number of pregnancy com-
plications, from preeclampsia to fetal growth restriction
and pre-term birth [9-11]. Evidence suggests that it may
also be responsible for irregular placental shape [12, 13].
A major feature of the whole placenta, the placental chori-
onic surface vascular network (PCSVN), has not been
extensively studied due to the extreme difficulty in reliably
extracting PCSVN features from digital images of the fetal
surface [14]. It was hypothesized that variation in PCSVN
structure, the template of the fetal organ positioned at the
interface of the mother and the conceptus, may reflect
both the overall effects of genetic and/or environmentally
regulated (e.g., [15]) variations in branching morphogen-
esis within the conceptus, and may also mirror vascular
network alterations in the fetus’ vital organs.

Although there were results linking chorionic surface
shapes to immediate neonatal outcomes such as birth
weight after adjustment for gestational length [13, 16],
very limited work has been done on the connection
between PCSVN features and neonatal outcomes. Pre-
liminary research results [17] suggested that there are
significant differences in PCSVN features (e.g., Number
of branch generations and angles of vascular branch-
ing.) in children at increased risk for autism spectrum
disorder. The study was conducted on a data set of 109
placentas with 33 from a high-risk ASD cohort and 76
from a population-based cohort, and did not include
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a mechanism to classify a given placenta as high-risk
for ASD with the PCSVN features that were deemed
significant.

Our goal in this paper is to provide sound evidences
to support the study of ASD risks through the placen-
tal chorionic surface vascular networks. We will do so
by developing a set of methods to explain major PCSVN
differences between placentas associated with high risk
ASD pregnancies and those selected from the general
population. The methods assume no a-priori knowledge
on which factors might have been in play to establish
the difference and can be generalized naturally to other
maternal and fetal outcomes such as gestational diabetes
and hypertension. A flowchart of our proposed work is
given in Fig. 1. We will begin by describing the ways we
obtain PCSVN features from a digital photograph of a pla-
centa (preprocessing stage of Fig. 1), then discussing the
methods we use to distill a relatively large set of PCSVN
features into a subset of physically meaningful ones (fea-
ture selection stage of Fig. 1), and finally presenting the
way the ASD risk is assigned (classification stage of Fig. 1).

Methods

Data sets

The placentas investigated in this study are taken from
two independently collected cohorts, Early Autism Risk
Longitudinal Investigation (EARLI) [18] and National
Children’s Study (NCS). Protocols for the original data
collections were approved by the pertinent Institutional
Review Boards. This study concerns with secondary anal-
ysis on de-identified data.

EARLI s an autism enriched-risk pregnancy cohort that
focuses on the prenatal and early life periods of children
who have biological siblings already diagnosed with ASD.
EARLI children are at an increased risk for ASD. On the
other hand, NCS is a population-based cohort with preg-
nancies at unknown risk for ASD. NCS was designed to
study environmental influences on child health and devel-
opment and it enlisted participants without a bias towards
risks and diagnoses in autism. Placentas in NCS are used
here as an unselected low-risk baseline. We randomly
selected 201 placentas from NCS and 89 placentas from
EARLI in this study.

We have limited clinical data such as gender, gestation
age, placental weight, and birth weights on small subsets
of NCS and EARLI Our data sets will be reduced signif-
icantly if we were to include these clinical attributes in
the study; hence, the present study concerns only with the
connections between vascular features of the PCSVN and
risk outcomes for ASD.

Vascular features
Digital photographs of the fetal surface were obtained on
201 NCS placentas and 89 EARLI placentas following the
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Fig. 1 A flowchart of the research pipeline. The proposed work follows a three-stage process: preprocessing (left), feature-selection (middle), and
classification (right). The entire process is automated except to obtain the color tracing

same imaging protocol (e.g., Fig. 2a). The photos of the
placentas were taken either at delivery or upon pathology
evaluation with fresh tissue. The raw PCSVN images in
both NCS and EARLI data sets were captured using the
same camera and polarizing filter. The distance between
the camera and the placenta being imaged was fixed in
NCS while there was a slight variability among EARLI
images. Lighting condition was also fixed in NCS while
there was a slight variability in lighting among EARLI
images.

PCSVN of each placenta was first traced manually (e.g.,
Fig. 2b) following the protocol documented in [14] using
GIMP by one of the researchers who was blind to the risk
categories. To make the manual tracing consistent and
compatible with the computer algorithms, the researchers
in [14] developed a protocol in which different colors and
pencil sizes were used to mark different vessel thicknesses
and separate the placental chorionic surface arterial net-
work from the subjacent venous network. All tracings
were reviewed for consistency and checked by a single
researcher. Ten percent of the tracings were selected at
random and traced by a second tracer, to confirm and
maintain our high inter-rater reliability. Since our study
relied on the color tracings of the PCSVN instead of
the original raw images, the slight variation in the image
acquisition process should pose little concern to the valid-
ity of our results as long as the images were clear enough
for the tracer to identify the location of the vessels.

Color tracings were uniformly scaled and converted to
1380 x 1440 pixel binary images so the width of the ves-
sels were normalized. One centimeter was marked with
two blue dots on the ruler within the original photograph
of the placenta to give scale. Roughly 35 pixels in the digi-
tal image corresponded to 1 cm on the placenta. Tracings

were aligned so that the umbilical cord insertion lies at
the center of the image. Each traced image was then fed
through a series of MATLAB scripts, written completely
by the researchers, to produce a fully connected graph net-
work (e.g., Fig. 2¢) based on its color profile. Notice that,
for example, in Fig. 2c each branch point is marked with
a solid dot to help with any calculation related to branch
points. The 1-pixel-wide skeleton graphs were then used
to produce 64 numerical values (e.g., Fig. 2d), of which
eight are shape-related (e.g., perimeter and area of placen-
tal chorionic surface plate) and 56 are vessel-related (e.g.,
number of branch points and vessel length).

Within the 56 vascular features, half of them were cal-
culated on arterial networks and the other half were done
on venous networks. Those features can be generally clas-
sified as counting descriptors (e.g., number of branches),
measuring descriptors (e.g., arterial length), and relating
descriptors (e.g., the distance between vessel and plate
boundary). While similar analyses and results are available
on the venous network, we will only present results on the
arterial network here. The arterial networks are typically
much more identifiable and visible than the venous net-
works. This allows the tracer to trace the arterial networks
with a much higher level of precision and accuracy [14].

Boruta algorithm for relevant feature selection

The Boruta algorithm is a feature selection algorithm for
finding a minimal set of relevant variables. This method,
which builds around the concept of random forest and
decision trees [19], systematically and iteratively removes
features that are less relevant than random probes by a sta-
tistical test [20—22]. By adding randomness to the system
and collecting results from the ensemble of randomized
samples one can reduce the misleading impact of random
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Fig. 2 The process of obtaining a feature vector for each placenta. a A digital photograph of the placental chorionic surface vascular network
(PCSVN) from the NCS data set. b Traced PCSVN for the image in (a) following the tracing protocols in [14]. € The skeletonisation of the traced PCSVN
image in (b) that was produced by a MATLAB program written in house by the research team. d Numerical values of PCSVN features computed by
our MATLAB program for the image in (c). Each of the 290 placentas in our data set is associated with a list of values similar to those given in (d)

fluctuations and correlations and reduce the undesirable
effect of over-fitting.

In the Boruta algorithm, each attribute has a “shadow
attribute” which is created by shuffling the values of the
original attribute. During a single run of Boruta, a fea-
ture attribute is deemed important if its importance score
(z-score) is significantly bigger than the maximum z-score
among all shadow attributes (MZSA). It is deemed unim-
portant if its z-score is significantly lower than the MZSA.
A two-sided test of equality with the MZSA is performed
on feature attributes that have undetermined importance.
This process is repeated until the importance is assigned
for all attributes or the algorithm has reached the previ-
ously set number of random forest runs, which is 500 in
our simulations.

In conclusion of a Boruta simulation, a ranked list of
features, ordered by their importance measure given in
z-scores is produced. A major advantage of the Boruta

strategy is its ability to discern truly important features
from those that gain importance due to random correla-
tions in data. Consequently, it gives us a powerful tool to
establish a hierarchy of relevance when we need to study
biological factors of various nature. In the current study,
the Boruta algorithm allows us to confidently identify a
list of PCSVN features that characterize the difference
between high- and low-risk ASD placentas.

Reduce dimensionality and collinearity with principal
component analysis

Many features extracted from the Boruta algorithm
remain correlated, making it harder to interpret the fun-
damental principles that govern villous growth. To this
end, we used Principal Component Analysis (PCA) to
reduce that collinearity, bringing a moderately large num-
ber of features down to a few independent signatures.
These linearly independent components will be ranked
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by their proportion of contribution to the data variance.
Precisely, if we let
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be the N x p feature matrix, where p = number of
samples (290 in this case) and N = the number of sig-
nificant features selected by the Boruta algorithm, then
the N x N covariance matrix C = ﬁfjﬁT gives the
feature variance on the diagonal entries and co-variance
on the off-diagonal entries, where F is centered around
the feature mean. When F is factored through its reduced
singular value decomposition (SVD), EF = USVT, where
U= [uj,uy,...,u]isN x k,Sisk x k,and Vis p x k,
the best feature basis (hence, the best feature space) to
represent the data in the reduced k-dimensional space
is stored in the k column vectors of U with k <« N.
The best choice of k depends on how much variance
we wish to capture. By representing the original data
points through this new set of coordinates {uj, uy, . .., ug},
the reduced-dimension data points, D = UTF, are
now expressed by a set of linearly independent principal
components.

This allows us to investigate physical interpretations of
these N features by finding which variables correlate most
strongly with each component, i.e., finding which num-
bers are large in magnitude or the farthest away from
zero in either positive or negative direction. Variables of
large magnitude within the same principal component
vary together, i.e., if one increases, then the remaining
ones also increase. Thus, PCA was used to identify groups
of biological effects of villous growth as a consequence of
ASD risk.

Classification with linear discriminant analysis

Associate each placenta in the data set with a k-
dimensional vector, p, where each entry of p corresponds
to a principal component coordinate. That is, p is a col-
umn vector in the matrix D = UTF in the previous
section. To classify high-risk ASD placentas, Linear Dis-
criminant Analysis (LDA) was conducted on the set of
290 placentas represented in the PCA coordinates. Sup-
pose D; and D, are sets of PCA-reduced data points of
low-risk and high-risk ASD placentas, respectively. Lin-
ear discriminant analysis amounts to finding a projection
direction wopt that maximizes the between-class scatter
and minimizes the within-class scatter among the data
points, which is equivalent to solving the optimization
problem,

(me2 — mel)2

St+S3

Wopt = aIgMaXx||y, ;=1
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where m; is the ith class mean and §? = Zye D; (wTy—

2, s )
me,-) is the within-class scatter among the ith class.

The optimization problem is then solved through its
matrix form: wept = argmax/(w), where J(w) =
wTSBW _ Nw)
wlSyw = Dw)’
by Sg = (my — m;)(my — m;)” and the within-class scat-
ter matrix is given by Sy = »_,_;, ZXGD:’ x—m;)(x —
m;)T. Wopt is the largest eigenvector associated with
the largest eigenvalue to the generalized eigen-problem
Spw = ASww. This problem can be solved numerically
through an SVD-based method.

Assume the projected values of the points in D; fall to
the left of those in Dy. If we set the separation threshold,

o, to be % (min {onpth} + max {wgptDl }), then a given

The between-class scatter matrix is given

placenta, p, is labeled low-risk for ASD if wgptp < o and

labeled high-risk for ASD if wgptp > a.

To generate error statistics, we perform LDA with a 10-
fold cross validation. Essentially, the entire data set was
randomly split into ten disjoint groups where each group
of 29 placentas was used as testing probes to produce error
statistics while the rest of the data set was used to find
Wopt during each trial. Sample population (i.e., 30.69% of
the population are high-risk for ASD and 69.31% are low-
risk for ASD) was used in the model as an estimated priors
to confirm that the use of Linear (instead of quadratic)
Discriminant Analysis was the correct model.

Results

Feature selection and dimensionality reduction

The Boruta algorithm selected 15 arterial features.
Figure 3 gives a visual output from running the Boruta
algorithm in the programming language R. The box plot
of each attribute, listed from the lowest (top) to the high-
est (bottom) rank, was the result of the z-score spread
obtained from running the random forest algorithm 500
times. The 15 relevant and important features selected
by Boruta are given in the “Vascular features” column of
Table 1 and appear in green in Fig. 3.

PCA, implemented in MATLAB, was applied to the
Boruta-selected 15-feature set. Five Principal Compo-
nents (PCs) were retained to capture roughly 88% of the
data variability. The principal components, also known
as the eigenvectors of the covariance matrix, are given in
Table 1 to delineate the source of contribution for each
principal direction. Notice that many attributes within the
same principal component are correlated. Next, we exam-
ine closely on the mathematical relationships of these fea-
tures and deduce a list of independent principal features
that will explain the biological and structural difference
between the two cohorts. Here, we chose to borrow the
term “principal” from “principal component” to describe
independent features that are linear combinations of many
other features.
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Fig. 3 Feature selection result. Importance scores (horizontal axis) for
each of the arterial vascular features (vertical axis) returned by the
Boruta algorithm. A feature is considered the most relevant and

ranked the highest when its importance score is the largest

Principal feature 1 - branch points
Each vascular network can be modeled by a mathematical
tree, known as an undirected graph. There are two types
of nodes on a vascular network — branch node and end
node. As depicted in Fig. 4a, a branch node is where a ves-
sel splits into multiple branches and an end point/node is
a terminal point on the network.

Let x = NumEndPoints be the total number of end
nodes on the vascular network, y = NumBranchPoints be
the total number of branch points found in the network,
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and z = MurrayBranchesUsed be the total number of
branches that have child branches. Then z can be obtained
by taking the difference between the total number of
branches and x. If we further let # = number of nodes in
the network, then the total number of branches is # — 1.
Overall, we have n = x + y. Therefore,

x=n—y and z=n—l-x=n—1—-(n—y)=y—1.

This is to say, all three vascular attributes with signifi-
cant weights in PC1 are functions of y, NumBranchPoints.

Principal feature 2 — diameter/thickness

Vascular networks are intrinsically 3-dimensional tubular
structure that can be modeled by circular cylinders. In this
study, the diameter, which is a 3-dimensional feature of the
vascular tubes, is treated the same as the width/thickness
of the rectangular region obtained when tubes are pressed
down, as depicted in Fig. 4b. The “pressed-down” effect
is similar to that of a stereographic projection. With this
in mind, MeanThickness measures the average thickness
among all arteries, i.e.,

T
. 1
MeanThickness = T ; d;,

where d; is the thickness of the ih arterial vessel and T
is the total number of arterial vessels exhibited in a sin-
gle placental arterial network. StdThickness measures the
standard deviation of thickness among all arterial vessels,
ie,

StdThickness =

i=1

where d is the MeanThickness. Volume gives the sum of all
arterial volumes, i.e.,

T d: 2
Volume = Zn <2l> - Ci)

i=1

where ¢; is the arc length of the /™ artery. All three
features are functions of individual artery thickness and
independent from the first principal feature.

Principal feature 3 - tortuosity

Tortuosity is a measure for the amount of twist or turns
a curve has. It can be defined, in its simplest form, as the
ratio of the length of the curve (c) to the distance between
the ends of it (d), i.e.,

Ci
Tortuosity of the i vessel = —,
i
as depicted in Fig. 4c. Severe tortuosity in vasculature
can lead to various serious symptoms [23]. For exam-
ple, tortuous artery and veins have been linked to aging,
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Table 1 The first five principal components (PCs) of the data retain approximately 88% of the data variability
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Boruta ranking Vascular features (variability captured) PC1 (35.27%) PC2 (22.57%) PC3 (17.20%) PC4 (7.79%)

PC5 (5.80%)

1 MeanThickness —0.1582 — 04747 0.1035 0.0651
2 MeanTortuosity 0.0002 0.0575 0.5347 —0.0979
3 MurrayL1FitError —0.256 —0.3903 0.0438 0.0139
4 StdThickness —0.1566 — 04762 0.0701 —0.0046
5 StdDevTortuosity 0.0029 0.0812 0.5912 —0.0641
6 MaxTortuosity 0.0948 0.0724 0.5459 —0.0264
7 MeanAngle — 00611 0.0704 0.2028 02135
8 NumEndPoints 04251 —0.0298 —00132 0.0153
9 ArcLength 03773 —0.1259 —0.0035 —0.0163
10 NumBranchPoints 04254 —0.0301 —0.0125 0.0146
1 MurrayBranchesUsed 04254 —0.0301 —0.0125 0.0146
12 Volume 0.1444 — 04823 0.065 0.0502
13 NumGenerations 0.3182 —0.0237 0.014 0.2178
14 MeanDistEndPointToPerim 0.0055 —0.0323 0.0545 0.905
15 VesselToDiscPercent 0.255 —0.3502 0.0031 —0.2561

—0.0089
0.0013
0.0397
0.0196
0.1449
0.1709

— 0936
—0.005
0.0116

—0.0038

—0.0038

—0.0368

—0.0619
0.2124

—0.1457

The absolute value of the attributes within each PC gives a measure of contribution. The higher the value, the bigger the contribution. Specifically, NumEndPoints,
NumBranchPoints, and MurrayBranchesUsed contributed the most to PC1, Thickness, StdThickness, and Volume contributed the most to PC2, MeanTortuosity, StdDevTortuosity,

MaxTortuosity contributed the most to PC3, MeanDistEndPointToPerim contributed most to PC4, and MeanAngle contributed most to PC5

A Umbilical cord insertion (UCIy
v+ End points

Branch points

—— : Distance between an end point
and its nearest boundary point

¢ Arc length of vessel i

di : Straight line distance between the
initial and terminal nodes of vessel i

the fourth pixel of each branch

Fig. 4 Visual definitions for the five principal features. a Principal feature 1 and 4: branch points and distance from an end point to its nearest point
on the boundary. b Principal feature 2: vessel thickness, which is the same as the diameter (d;) of the ith vessel tube. € Principal feature 3: tortuosity,
which is the ratio of arc length and straight line distance between the initial and terminal nodes of the vessel segment, i.e, tortuosity of the i vessel
= ¢;/d;. d Principal feature 5: branch angle, which is given by the angle between the two line segments formed by connecting the initial node and
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atherosclerosis, hypertension, genetic defects and dia-
betes mellitus in clinical settings [24—28].

With this definition, MeanTortuosity, StdDevTortuosity,
and MaxTortuosity give the mean, standard deviation, and
maximum of the arterial tortuosities. All three variables
are estimators of network’s tortuosity which is indepen-
dent from the number of branch points the network has
and vessel thickness.

Principal feature 4 — growth extension

The bolded lines in Fig. 4a illustrates the way we define the
distance from an end point of the arterial network to its
nearest point on the chorionic plate boundary. MeanDis-
tEndPtToPerim represents the average distance between
end points and their nearest point on the placental chori-
onic surface boundary;, i.e.,

1 m
MeanDistEndPtToPerim = — E d;,
mi3

where m is the total number of end points in the arterial
network and

d; = min [lx; — y||
ye

is the distance between each arterial end node, x;, and the
nearest point y in the boundary curve, €.

MeanDistEndPtToPerim gives a notion of growth exten-
sion; that is, the smaller this value is, the more extended
the network is to its boundary, on average. This mea-
sure is clearly distinct from principal features 1, 2, and 3
since there is no way we can calculate this value based on
existing knowledge of the previous three.
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Principal feature 5 — branch angle

Branch angles are used to capture the instantaneous
growth at each branch point. For simplicity, we only
consider vessels that bifurcate at their respective branch
point, which make up more than 90% of the data. As
illustrated in Fig. 4d, branch angle is calculated as the
angle between line segments that are formed between
the branch point and the fourth pixel on the respective
branch. The choice of four is an empirical decision to
mimic the effect of instantaneous change. MeanAngle
gives the average of all arterial vessels’ branch angles and
does not depend on any of the previous four principal
features. An alternative and popular approach to calculate
branching angle is the one that finds the angle between
two line segments joining the branch node and the end
node. With this definition, branches that start off far
apart but end up colliding at a single node would have
an angle of 0. This alternative notion of the branching
angle does not accurately capture the instantaneous
growth behavior at branch points; hence, not ideal in
our analysis.

Visualization of high- and low-risk ASD cohorts

The numerical distribution of the high- and low-risk ASD
placentas in each of the five principal features can be seen
in Fig. 5. The difference between the two groups were
particularly pronounced in the number of branch points,
vessel thickness, and vessel tortuosity. These differences
can be visualized more clearly when we compare the most
extreme cases within each principal feature, as illustrated
in Fig. 6. For example, the average number of branch
points in the EARLI placentas was a lot lower than that
in NCS, as illustrated by Fig. 6a. Similarly, a significant
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Fig. 5 Visible difference between high- and low-risk ASD groups in low dimensions. The box whisper plot of the projection coefficients for the first
five principal components of EARLI (89 data points) and NCS (201 data points) cohorts. The difference between the two groups are apparent and
consistent across all five PCs. For example, the mean of the first PC projection coefficients among the EARLI placentas is negative while the mean of
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Fig. 6 Images with the lowest (left) and the highest (right) Principal Component (PC) projection coefficients for the first five PCs. a Principal feature
1: number of branch points. For example, the average number of branch points is 36.74 with a standard deviation of 15.66 in EARLI (left) and 48.48
with a standard deviation of 16.34 in NCS (right). b Principal feature 2: thickness. For example, the average mean thickness is 0.16 with a standard
deviation of 0.03 in EARLI (left) and 0.13 with a standard deviation of 0.02 in NCS (right). € Principal feature 3: tortuosity. For example, the average
standard deviation of tortuosity is 0.06 with a standard deviation of 0.03 in EARLI (left) and 0.08 with a standard deviation of 0.03 in NCS (right).

d Principal feature 4: growth extension. For example, the average mean distance from end points to the nearest boundary point is 2.82 with a
standard deviation of 0.48 in EARLI (left) and 2.96 with a standard deviation of 0.41 in NCS (right). e Principal feature 5: branching angle. For example,
the average mean branching angle is 102.28 with a standard deviation of 2.87 in NCS (left) and 100.64 with a standard deviation of 3.51 in EARLI (right)

difference between the two groups was found in each of
the other four principal features as shown in Fig. 6.

Classification result of the high-risk ASD placentas

LDA with a 10-fold cross validation (CV), implemented
in MATLAB, was performed to examine how well the
selected principal features work together to classify
placentas with increased ASD risk. The average error
rates across all 10 validation trials were 6.90% and 8.97%
for false positives and false negatives, respectively. The

results suggested that on average, we were able to cor-
rectly tell whether a given placenta belongs to a low-risk
or high-risk ASD cohort 84 out of 100 times based
on various constructs of the five extracted principal
arterial features. Among the ones missed, roughly 9%
were EARLI placentas misclassified as NCS placentas
and 7% were NCS placentas misclassified as EARLI
placentas.

To increase the reliability of our results, we additionally
implemented a stratified 10-fold cross validation to take
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into consideration of the class imbalance in the data set.
The result was comparable to our original CV result with
an overall misclassification of 15.12%.

Discussion
A major contribution of our work is the creation and val-
idation of a model to classify placentas associated with
children in a high-risk ASD group against a population
of unknown ASD risk based on automatically selected
PCSVN features. The feature-selection algorithm that is
based on the Boruta method returned 15 ranked attributes
in an ensemble of 28 arterial features and 8 shape-related
features. The fact that the Boruta method ranked arte-
rial features higher than all of the shape-related features
tells us that the difference in ASD risk can be explained
by arterial features alone. We benchmarked our results
with another feature selection method called Elastic Net
[29], which is also known to minimize over-fitting issues.
The Elastic Net method returned a set of 16 features.
Among the 16 features, 14 were identical to the Boruta
result with two new features, MedianAngle and Kurtosis-
Tortuosity. The feature VesselToDiskPercent was present
in the Boruta method only. We then conducted a Principal
Component Analysis on the set and noticed that the prin-
cipal features selected were, sorted by the amount of vari-
ance captured, (1) number of branch points, (2) tortuosity,
(3) thickness, (4) branching angle, and (5) growth exten-
sion. Notice that the types of principal features selected
by the Elastic Net and PCA combination are identical to
those selected from the Boruta and PCA combination.
The only difference is in the amount of the variability each
feature captures.

The statistical significance of our results was estab-
lished through the Linear Discriminant Analysis with a
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10-fold cross validation. Specifically, our classifier trained
on the five PCA-reduced principal features placed unla-
beled placentas in the correct group nearly 84% of the
time. We were able to improve the overall classification
rate to slightly above 90% with a non-linear classifier
called support vector machine (SVM). As mentioned ear-
lier, since NCS was population-based, one would expect
that some small number of the pregnancies resulted in
a child with ASD and would thus have been “high-risk”
Therefore, a perfect classification result was unlikely.
The improved classification rate afforded by SVM might
therefore be a result of over-fitting. The misclassifica-
tion result returned by LDA can be visualized in Fig. 7.
Specifically, when a high-risk ASD placenta had too many
branch points, thinner and tortuous arterial vessels, larger
branching angles, and did not extend closely to the sur-
face boundary, it was treated as if it were a low-risk ASD
placenta.

Research [7] has shown that about 20% of the high-risk
group will go on to have ASD, compared to roughly 1.5%
in the low-risk group. Among the ASD high-risk group,
30-40% will have other developmental delays, compared
to roughly 5-15% in the low-risk group. That is, the
remaining 40—-50% of the ASD high-risk placentas will be
typically developing. For this reason, one should expect
that the collections of PCSVN signatures selected by
Boruta and PCA for the high-risk ASD and the diagnosed
ASD placentas will not overlap completely. We made no
attempt to differentiate the vascular features of the placen-
tas associated with ASD and those associated with other
developmental delays since our data does not come with
such diagnoses. Our study offers no additional insight
into what could have caused the placentas associated with
the high ASD risk to grow this way. That is, it remains
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Fig. 7 A visualization of the Linear Discriminant Analysis (LDA) result. Each placenta in the data set is associated with a dot in the projected space.
The vertical dashed line serves as a separation threshold. In the case of a perfect separation, all points on the top line should fall to the left of the
threshold while all points on the bottom line should fall to the right of the threshold. The graph illustrates cases for which the classifier has an easier
time (True Negative and True Positive) and a harder time (False Positive and False Negative) predicting
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unclear what PCSVN characteristics is unique to ASD
placentas.

Some interesting questions to ask next include what
environmental or genetic factors cause this group of five
parameters to vary together and whether these variables
stabilize in their permanent state early in gestation. Fur-
thermore, searching for the types of geometric signatures
that are measurable and capable of providing accurate
readings in 3-dimensional imaging environment is also
going to play a vital role in early risk assessment and
intervention for ASD.

Many important ultimate placental morphologic
features are likely predetermined early in pregnancy.
Reliable quantization of PCSVN features will provide
researchers useful tools to study the intrauterine origins
of diverse disease outcomes and lead to the develop-
ment of methods more broadly applicable to other
branched structures including other vascular networks.
Improved understanding of the details of early placental
development as expressed in PCSVN branching mor-
phogenesis may shed light on the interplay between
the fetal genetic program and intrauterine environ-
mental factors that may vary across gestation [30, 31].
Because the placenta is key to the development of many
fetal/perinatal/neonatal and potentially lifelong health
risks, the work presented here helps to translate placental
research that can clarify timing and nature of concep-
tus compromise into potentially actionable clinical risk
assessment.

The study presented here should motivate a pursuit
of additional PCSVN features which might be correlated
with various dichotomous health outcomes as long as
information on outcome classification is available. We
anticipate that some PCSVN features will correlate with
outcomes such as diabetes, obesity, hypertension and
cardiovascular disease or other “fetal origins” disorders,
including autism and schizophrenia, once reliable and
automated vessel extraction methods are established to
allow analysis of PCSVNSs in large cohorts.

Since digital images of PCSVN can be captured and
analyzed within days of delivery, our classification model
allows us to determine, within minutes, which risk group
a new placenta belongs to. This information can be one
of the multiple measures doctors use to make recommen-
dations for early ASD interventions in clinical settings.
However, a major barrier in implementing the results
of our work in clinical practices is the availability of
trained human tracers. Tracing PCSVN is the most time-
consuming and laborious step in the entire classification
pipeline. Researchers are currently developing reliable
methods to automatically extract placental vascular net-
works from digital images of placental chorionic surface
[32, 33] in order to bypass the need for manually traced
images.
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Conclusions

Our study specifically demonstrated that the arterial net-
works that are associated with a high risk for ASD tend
to have a fewer number of branch points, thicker and less
tortuous vessels, better extension to the surface boundary,
and smaller branch angles than their population-based
counterparts. These five independent geometric features
work collectively to provide a discriminating vascular sig-
nature for the high-risk ASD placentas. This result does
not imply that all high-risk ASD children will have placen-
tas satisfying each of those five conditions simultaneously;
rather, these features, when taken as a whole, provide
substantive discriminatory power.

The combination of the feature-selection and classifica-
tion algorithms presented herein provides a mechanism
in discriminating placentas from high-risk ASD pregnan-
cies against those from a population-based cohort with
unknown risks based on automatically selected PCSVN
features. Although our study which built upon a single
risk cohort can only offer limited implications, our work
is readily transferrable to studying other adult and neona-
tal diseases. We will be in a great position to conduct a
comprehensive study across many disease cohorts as soon
as the data becomes available.
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