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Abstract

Background: Cardiac diseases represent the leading cause of sudden death worldwide. During the development of
cardiac diseases, the left ventricle (LV) changes obviously in structure and function. LV motion estimation plays an
important role for diagnosis and treatment of cardiac diseases. To estimate LV motion accurately for cine magnetic
resonance (MR) cardiac images, we develop an algorithm by combining point set matching with surface structure
features of myocardium.

Methods: The structure features of myocardial wall are described by estimating the normal directions of points
locating on the myocardium contours using an approximation approach. The Gaussian mixture model (GMM) of
structure features is used to represent LV structure feature distribution. A new cost function is defined to represent the
differences between two Gaussian mixture models, which are the GMM of structure features and the GMM of
positions of two point sets. To optimize the cost function, its gradient is derived to use the Quasi-Newton (QN).
Furthermore, to resolve the dis-convergence issue of Quasi-Newton for high-dimensional parameter space, Stochastic
Gradient Descent (SGD) is used and SGD gradient is derived. Finally, the new cost function is solved by optimization
combining SGD with QN. With the closed form expression of gradient, this paper provided a computationally efficient
registration algorithm.

Results: Three public datasets are employed to verify the performance of our algorithm, including cardiac MR image
sequences acquired from 33 subjects, 14 inter-subject heart cases, and the data obtained in MICCAI 2009s 3D
Segmentation Challenge for Clinical Applications. We compare our results with those of the other point set
registration methods for LV motion estimation. The obtained results demonstrate that our algorithm shows inherent
statistical robustness, due to the combination of SGD and Quasi-Newton optimization. Furthermore, our method is
shown to outperform other point set matching methods in the registration accuracy.

Conclusions: We provide a novel effective algorithm for cardiac motion estimation by introducing LV surface
structure feature to point set matching. A new cost function is defined to measure the discrepancy between GMMs of
two point sets. The GMM of point positions and the GMM of surface structure descriptor are defined at the same time.
Optimization by combining SGD and Quasi-Newton is performed to solve the cost function. We experimentally
demonstrate that our algorithm shows improved registration accuracy, and is convergent when used in
high-dimensional parameter space.
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Background

Cardiovascular diseases (CVDs) are the leading cause
of death in the developed world, as reported by the
World Health Organization. Detecting the abnormalities
in myocardial functions can assist the establishment of
the early diagnosis of cardiomyopathy. The LV changes in
structure and function during the development of cardio-
vascular diseases. Analysis of LV structure using imaging
instrument is shown to be effective in reducing CVDs
mortality and morbidity. Magnetic Resonance Imaging
(MRI) is a state-of-the-art technique for the direct exam-
ination of changes in myocardial structure [1], with good
spatial resolution and high signal to noise ratio. It allows
the analysis of the structure alterations of LV and can be
used to measure the functional change of LV.

Image registration technique can be employed to esti-
mate LV motion for MR images, assisting the diagnosis of
cardiac diseases [2, 3]. For instance, the myocardial hyper-
trophy disease can be diagnosed by detecting parameters
such as blood flow, ejection fraction, stroke volume, and
so on [4]. Additionally, this technique allows the investi-
gation of cardiac pathology as well.

A large number of methods for cardiac functional and
motion modeling have been developed. At present, the
methods of LV motion estimation can be classified into
three groups: image intensity-based, geometrical and seg-
mentation model-based, and point set matching-based.

Image intensity-based registration method optimizes a
similarity function between images at different phases.
A spatial transformation is used to compute the dis-
placement of the myocardium [5, 6]. Chandrashekara
et al. [7] used normalized mutual information between the
short-axis and long-axis images to recover the complete
three-dimensional motion of the myocardium. Ebrahimi
et al. [8] introduced and evaluated the performance
of a non-rigid joint multi-level image registration and
intensity correction algorithm, which integrated inten-
sity change compensation and motion correction into
a unified model. Furthermore, Oubel et al. [9] applied
an information-theoretic metric to measure the similar-
ity between frames of tMRI for heart motion estimation.
Shi et al. [10] used a spatially weighted similarity mea-
sure between the untagged cine and the four-dimensional
pseudo-anatomical MR image over time for myocardial
motion estimation, while Bai et al. [11] combined the
similarity metric between two images and the similarity
between two probabilistic label maps of images to register
atlases and segment cardiac MR datasets.

The geometrical and segmentation model-based meth-
ods segment the myocardial wall and use active contours
or surfaces to model the geometrical and mechanical
structure of heart. In this model, geometric features
are tracked to derive the motion of the heart walls
and the dense displacement field was extracted by a
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non-registration model [12]. Escalanteramirez et al. [13]
estimated the motion of the heart based on the opti-
cal flow and image structure information that was
extracted from the steered Hermite transform coeffi-
cients in sequential computed-tomography (CT) images.
Papademetris et al. [12] segmented MR images and used
a shape-tracking approach to establish correspondence of
objects. Macan et al. [14] segmented the LV and extracted
characteristic boundary points by investigating curva-
ture distribution along the three-dimensional surface
of cardiac wall. Points in two consecutive frames were
matched by comparing curvature for LV motion estima-
tion. Shi et al. [15] represented the LV surface shape using
Delaunay triangulation and established correspondence
between surface features to recover dense field motion
from the tagged MR data.

The point set matching-based method is a type of
feature-based registration method. Mathematically, point
set matching can be represented as a problem to establish
the point-to-point correspondence and the spatial trans-
formation between two point sets at the same time. A cost
function is defined to measure the discrepancy between
two point sets based on a transformation function. The
optimal transformation parameters are obtained by opti-
mizing cost function. The iterative closest point (ICP)
method [16] is the most commonly used point match-
ing method, which estimates the global transformation
between two point sets. ICP supposes a one-to-one cor-
respondence between two point sets based on the nearest
neighbor criterion, and estimate an affine transformation
between two point sets. Algorithms were subsequently
developed [17-19] to deal with elastic matching between
two point sets based on the idea of ICP. Chui et al. [17]
presented the point matching problem as a joint optimiza-
tion problem over the parameterization of the elastic spa-
tial mapping and the softassign for the correspondence.
However, the transformation estimated by [17] was based
on the correspondence relationship between a virtual
point set and a real point set, instead of correspondence
relationship between two real point sets. This model was
extended by Lin et al. [20], who used free-form defor-
mation model in robust point matching to analyze LV
motion. The FFD model was based on arbitrarily-shaped
lattices instead of parallelepipedically-shaped lattices.

Furthermore, various metrics for determining the align-
ment of point sets are proposed. A correlation-based
point set matching method was proposed, where point
sets were represented by kernel correlation, such as
Gaussian Mixture Model (GMM) [19]. In [19], two GMMs
of two point sets are defined and the discrepancy of
these GMMs is defined to describe the alignment of two
point sets. Myronenko et al. [18] modelled the point set
distribution with GMM, and constrained the motion of
the point set in the temporal direction for displacement
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estimation of 3D echo images of LV. Liu et al. [21] defined
a novel, more accurate and meaningful equivalent dis-
tance to measure the position discrepancy between two
point sets. Ravikumar et al. [22] proposed a probabilistic
framework for group-wise rigid alignment of point-sets
using a mixture of Student’s t-distribution. Their method
reduces alignment errors significantly in the presence of
outliers. Du et al. [23] integrated a Gaussian probability
model into the bounded-scaled registration problem to
deal with the alignment of point sets with noise.

Here, we employ point set matching-based method to
estimate motion of LV. Considering that existed point
set matching methods are primarily based on the spa-
tial relationship between two point sets, we introduce
the structure information of LV to point set matching
to improve LV registration accuracy at different time
points. In this study, we develop a novel point set match-
ing algorithm by considering the surface structure of LV.
The key contributions of this study are as follows: (1)
The normal direction is computed as the surface struc-
ture feature to describe the structure of myocardial wall.
Additionally, a cost function for the determination of the
discrepancy of the GMMs of positions and GMMs of
surface structures of two point sets is developed. (2) To
resolve the dis-convergence problem of the optimization
in high-dimensional parameter space, the Stochastic Gra-
dient Descent (SGD) is combined with Quasi-Newton
method in order to estimate optimal transformation
parameters.

Methods

Overview of the methodology

Two cardiac slices taken at different times are consid-
ered a target image and a source image. For example, the
slice obtained in the end-diastole represent a target image
and the one obtained in end-systole represent the source
image. Point sets are extracted from these images, and the
point set in the target image is considered a scene set,
while the other represent a model set. Since the slice num-
bers of two 3D cardiac images along long axis are different,
we interpolate the point sets along this axis to obtain an
equal number of slices of two corresponding 3D cardiac
images. Afterwards, corresponding slices are considered
source image and target image. The surface structure fea-
tures of points located on myocardial wall are estimated
approximately. A new cost function is defined as the com-
bination of the GMM of spatial locations and the GMM
of surface structures between two point sets, which is
optimized by SGD and Quasi-Newton methods.

Point interpolation along the long axis

Cardiac MR spatial resolution is low along the long axis
and relatively high along the short axis, as shown in Fig. 1.
Moreover, slice numbers of two 3D cardiac MR images in
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Fig. 1 A MR cardiac image: a 3D heart image after scaling along z axis;
b a slice of the 3D image along z axis

different phases differ. Two point sets in end-systole and
end-diastole phases are illustrated slice by slice in Fig. 2a
respectively, which demonstrates that the slices in these
two images do not matched each other along the long axis.
To resolve this problem, points are interpolated along long
axis to equalize the number of slices between two images.
Next, point sets of the corresponding slices are registered.

To interpolate point sets along the long axis, we con-
struct a section traversing the center of LV image and
being parallel to the long axis, as shown in Fig. 2b. All the
points of this section are interpolated. At first, the original
point sets are interpolated by B-spline interpolation on the
xy plane slice by slice to ensure that there are dense sam-
pled points on the section. For a given section, all points
located on the section are interpolated to make the slice
numbers of two 3D point sets to be equal. Secondly, the
section is rotated around the long axis to obtain a new
section, and the point interpolation on the new section
is performed again. Repeating the described procedure,
we obtain a number of points along the long axis and
make sure that the number of slices in two 3D LV images
are equal. Figure 2c shows an example of an interpolated
point set, where red points represent the interpolated
points.

Long axis

- section

a [+

Fig. 2 Point interpolation along z axis: a the scene set by magenta
points and the model set by cyan points ; b the red points are the
model points located on the given section; ¢ the red points represent
the interpolated points
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Surface structure description

The heart is composed of a muscular contractile organ
(myocardium) surrounded by two layers of connective tis-
sue, endocardium and epicardium. The LV and right ven-
tricle (RV) are separated by endocardium and epicardium.
The cardiac LV has a thick muscular wall, and its struc-
ture can be approximated by a curved surface. Here,
we describe the curved surface of myocardial wall using
structure features, described by the normal directions of
points located on the myocardial wall. Fig. 3a shows the
extracted points from a slice, and B and C are two points
nearest to point A. As we know, a point with tangential

ﬁ
direction BC exists based on the Lagrange mean value
theorem. The normal direction of A can be approximated

as the perpendicular line to B_(t" when B and C are close to
A enough. That implies, dense sampled points can ensure
the accuracy of this approximation. An example of normal
direction estimation is presented in Fig. 3b.

Let S = (s1,52,..5,)" be the scene point set with #
points, and My = (m(l),mg,...m‘,),,)T be the model point
set with m points, where s;,i = 1,2,..,n and m](.),j =
1,2,..,m are two dimensional points. Supposing s; and s;

are the nearest two points of si, the normal direction vec-

tor of s; can be represented as vy = Hy [(1) _01] , where

Hi = s; — s;. Then, the surface structure description
Vs = [v1,--- ,va]T of scene point set can be presented as
0 -1

Vs=[H Hy ...H,,]T|:1 0 } (1)

For the model point set My, we denote its mapped
point set as M = (my, my, ..., my,) under a spatial trans-
formation. Following this, we will describe the surface
structure description Vs of M. Here, we employ the thin
plate splines (TPS) to be the spatial transformation. Let
Q= {ql, G2, s qc} be the control point sets with ¢ points,
q; = (gi-qp), j = 1,-++,c. The mapped model point
m; = (mix,my), i = 1,---,m, is expressed by TPS as

Fig. 3 lllustration of the normal directions of points. a 8.and C are two
points nearest to A; approximated normal direction perpendicular to
the line cross B and C; b normal directions of points
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follows:

c
0 0 0
Mix = ﬂ0x+alxmix+a2xml’y+z ij¢ (”ml _q/”)
j=1

Cc
miy = agy+arymy+azymi+Y_ wyd (|m)—qi),
j=1

(2)

where ¢ (r) = —r2log(r?) is the TPS basis function in 2D;
I m? —qj|| is the Euclidean distance between m? and gj; aox,
a1y, azy are affine coefficients; wj, and wy, j=1,--- , ¢, are
elastic coefficients in x and y axes respectively.

The Eq. (2) can be rewritten as:

aox A0y
M =[1|Mo]A+PW, A = | aix ayy |, 3)
A2x A2y
0 0
1 m(l)x my, Wix Wiy
1 m, m Woy W
[11Mo] = il A R
0 0
1 My My Wex Wey

where [1|Mp] is a m x 3 matrix; A is a 3 x 2 matrix; W is
a ¢ x 2 matrix. ® is # x ¢ matrix with ¢;;=¢ (| |m? — qu).
Let N be the left null space of [1|Q], whichis a ¢ x (¢ — 3)
matrix. A new (¢ — 3) x 2 matrix 7 is defined by satisfying
W=Nrt, which is used to represent the elastic parame-
ter. The transformation parameter 6 contains the affine
parameter A and elastic parameter W, which can be rede-
fined as & =[AN<]. Then, the mapped model point set M
is related to the model set M as

M=[1|My ®N]6. (4)

Assuming m; and m; are the nearest two points of m,
the normal direction of m; can be approximated as u; =

(mj —m;) (1) _01 :| Based on above analysis, it is known

m; =[1|My ®N]; 0, where [1|My ®N]; is the ith row of
the matrix [1|My ®N]. We denote B; as [1|My ®N];,
and the normal direction of m; can be expressed as u; =

Tk [(1) _01 ] where Ty = Bj — B;. Therefore, the surface

structure description Vi =[u1,--- , )" of the mapped
model point set under parameters 6 is
0 -1
Vu=[T1 T ... T,,,]Te[1 o ] (5)

Point set matching using GMMs

GMM is used for the point set matching to describe
point distribution [18, 19, 24]. Point set matching based
on GMM is a correlation-based approach, which repre-
sents point sets as probability densities. Gaussian kernel
is commonly used to estimate the probability density.
Bingjian et al. [19] minimized the discrepancy of
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two Gaussian mixtures to align two point sets. In
[19], they describe the gaussian mixture density
function as accumulation of k gaussian functions,
P @) =Yk i (xli, 07), Y5y i = 1, where ¢ (x| i, 07)
is a gaussian function with mean vector p; and variance o;.

As we know, when the number of Gaussian model is
large enough, almost any probability density can be well
approximated by this model. The GMM of the point set M
can be represented as a gaussian mixture density function
as:

_1y 1 1 AT g1 .
gmm(x,M)—%Z\/z_aexp —E(x—m,) o (x—my;); .
i=1

(6)

In this model, all variances are same to o; each point m;
in M is the mean of the ith gaussian function.

In the method presented by Bingjian et al. [19], only
spatial information is employed for point set matching,
instead of introducing additional information, such as the
object structure. Surface structure description is a kind of
structure features to represent the anatomical structure of
LV myocardial wall. Following this, we improve point set
matching accuracy by introducing the surface structure
feature to the gaussian mixture density. Based on a previ-
ous study [19], we expand the point set matching model
by introducing the discrepancy of the GMM of surface
structure features.

Similar to the GMM of point positions, the GMM of
surface structure features of Vy is defined as gmm (v, Vi),
where v and Vj; are similar to x and M in (6). We
select Ly distance to determine the similarity between two
Gaussian mixtures of surface structure descriptions, then
the discrepancy between two GMMs of surface structure
features is f (gmm(v, V1) — gmm(v, Vs))2dv. Putting the
discrepancy of all GMMs together, a new cost function of
point set matching is defined as,

dr, (S, M, Vs, Var) = / (gmm(x, M) —gmm(x, S))>dx

+8 / (gmm(v, Var) —gmm(v, vg))zdv-r%tmce(WTK\vy

(7)

The first term in Eq. (7) is the discrepancy of GMMs
based on point positions, and the second term is the
discrepancy of GMMs based on surface structure descrip-
tions of point sets. %WTK W is a penalty term to regular-
ize the transformation to be smooth, where the ijth entry
of matrix K is Kjj = ¢ (llgi—gjl), i,j=1,...,c. A and B are
coefficients to balance the terms in Eq. (7). For LV motion
estimation, the model set My is extracted from the end-
systole (ES) phase and the scene set S is extracted from the
end-diastole (ED) phase. The goal of LV motion estima-
tion is to find the parameter 6 of a spatial transformation
by minimizing the cost function (7).
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The Eq. (7) can be rewritten as:
dr, (S, M, Vs, Vi) = / (gmm(x, M))dx
-2 / gmm(x, M)gmm(x, S)dx+ / (gmm(x, S))?dx
+ 5 trace(WTKW) 44 f (gmm(v, Vs))2dv

—Zﬂ]gmm(v, Vi) gmm(v, Vs)dv+/3/(gmm(v, Van)2dv,
8)

The closed-form expression between two gaussian mix-
tures can be easily derived as:
{ (m; _S/) }

/ gmm(M)gmm(S)dx=— Z Z x,
)

11/1

based on the following formula:

_/d’(xlﬂb o1)¢ (x| 2, 02)dx =@ (0| u1—u2, 01+02), (10)

Following this, Eq. (8) can be formulated in detail,

1 EE ||/ —mij||
— i /
dr, (S M, Vs, Vi) = — E E < >
m= =

2 e ||mi_3j||2
- Z Zexp (—02
i=1 j=1
J N Isi—sill*\ 2 T
+ﬁ Z Zexp <_0'2 +§tmce (W I(W)
i=1 j=1
l|2e; — M}”
Y e (L
i=1 j=1
ZZ ( (7] )
i=1 j=1
||Vt_V]||
A Y e (),
i=1 j=1

(11)

Removing irrelevant terms in Eq. (11), the final cost

function J is:
lem |1 & [l —mj ||
;Z e |
i=1 ] 1

=) ()

u—v A
Z ( I }”) +§tmce<WTKW>,

(12)
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It is noteworthy that J is convex and is differentiable,
which implies that gradient-based optimization tech-
niques can be used to optimize J, such as the Quasi-
Newton method.

Optimization using the Quasi-Newton method
Quasi-Newton method represents one of the most effec-
tive ways to solve the nonlinear optimization problem,
with fast convergence speed and high accuracy. Here, we
derive the gradient of Eq. (12) in detail. We seperate J as
J = J; + J,, where J; is the sum of the first two items and
%WTK W, and J, represents the other two items.

m

1 1 [l — m;||>
]d_mZ mZexp( o2

i=1 j=1

(13)

m;—s A
Z <”l’”> +§tmce(WTKW),

122{ e |m wn) ”
m =1 =

23 (um—m|>
Then,
a _ o _ [1|Mo]T G (15)
90 %ﬁ | (®N)TG+ANTKNT

where G = ;—1{4 is a m x 2 matrix. J, can be written as

J= %II,V - %]2,1/: where

hv_zz (”””/”)

i=1 j=1
<|m wn)

Joy= Z Z €X,
Obtaining the derivatives of /1 , and J», is simple:

i=1 j=1
oy bi—wl?\ [ 2(T-T)" (T.~T))6
89"=ZZexp <_ 2 | U o2 ’

(17)

T
afz,vzi : exp lei—yI*\ (2T (T0-H)\
0 L o? 2

(18)

(16)
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Therefore, the derivatives of J, can be obtained as

%_ /3 a]l,v 2,3 8]2,1/

P _ZF 19
00 m? 30 mn 36 (19)
while the derivatives of Eq. (12) can be obtained as
aJ 0 )
l ]d ]v (20)
30 99 98’

Although Quasi-Newton method can solve the non-
linear optimization problem, it might be divergent in
high dimensional parameter space. In other word, Quasi-
Newton method cannot possibly find solutions when
there are too many control points. In order to resolve this
issue, the Stochastic Gradient Descent (SGD) algorithm
is employed to optimize Eq. (12) robustly. Furthermore,
considering that using SGD is not good at obtaining the
precise solution, Quasi-Newton method is performed fur-
ther to improve the accuracy of solution when SGD is
convergent.

Optimization using Stochastic Gradient Descent
Quasi-Newton method uses the full training set to update
parameters at each iteration, which tends to converge
to local optima easily in high dimensional parameter
space. SGD addresses this issues by following the negative
gradient of the cost function using only a single or a few
training examples [25]. By measuring gradient changes,
it is easy to construct a model of the cost function to
produce a superlinear convergence. SGD can follow the
negative gradient of the cost function after being exposed
to only a single or a few training examples, which can
overcome computation cost and lead to fast convergence.
Observing that our cost function defined above is dif-
ferentiable, the SGD algorithm can simply compute the
gradient of the cost function using only a single mov-
ing model point m;. Let f(0,i) be the part of J, which is
influenced by m;:

1 llm;—m; |
f(@,z)_;Zexp (—0_2)

j=1

ll/m;— S]” A T
( _ +§tmce(W I(W)

LB “ lui—ul*\ 28 « lls—v; 12
(B 22

j=1
(21)
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The five terms in Eq. (21) are denoted as fi, /2, /3, fa. f5,
respectively. Then, the derivatives of f(0,i) is af (9'1)

= %];1 + 3 % T+ 50 ] o+ 50 oa 7+ %];5 The derivative of each term is:

o 1| & [l — ;| 2
6 m B; -;exp T g2 U a2 -(mj—my)
m 2
2 [l —mj |
T ]
D5 (— 7 | mimmp
=1
2 1w llm;—s;1|> 2
i M ety Mo Rl
ofs A T
8—12:{03*2 ZNTKN‘L'] ,

o L W Al 0
e () ()

|12 T(T.0—H;
%:_¥ exp(nm v,n).<le (@0 H,)>’ )
j=1

96 o2 o

Based on the SGD procedure, Algorithm 1 represents
details of optimization using SGD.

Algorithm 1 Point set matching using SGD method

Input: the model set My, the scene set S, an initial param-
eters 6 and learning rate 7 ;
1: repeat
2. Compute the moving model point set M using 6.
3. Shuffle points in M randomly.
4: for i=1,2,..,mdo
5: 0:=0—n- %;
6: end for
7. Update the learning rate n .
8: until an approximate minimum is obtained

SGD algorithm is robust to obtain an approximate solu-
tion, but it is not good at finding an accurate solution.
To improve the solution accuracy further, Quasi-Newton
method is employed for the optimization of Eq. (12),
beginning at the optimal solution obtained by SGD.

Results and discussion

In order to confirm the improved performance of our
method, three cardiac datasets are used. The first dataset
included cardiac MR image sequences acquired from 33
subjects [26], the second set is composed of 14 inter-
subject heart slices [27], while the third set is the MIC-
CAI 2009s 3D Cardiac Segmentation Challenge dataset
[28]. In our study, the Quasi-Newton method and the
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combination of SGD and Quasi-Newton method are
employed to demonstrate the improved performance of
optimization of the cost function. The name following
“SSD" in this article represents the optimization used in
our method, and for example, “SSD_QN" denotes that
the Quasi-Newton method is used. To compare the per-
formance of our method with those of the previously
developed methods, GMM [19] and CPD [18] methods
are evaluated as well.

Cardiac MR image registration

Initially, we use a cardiac dataset [26] to evaluate the regis-
tration accuracy of our method. In this dataset, 33 cardiac
MR image sequences are provided. Each image sequence
consisted of 20 frames and the number of slices acquired
along the long axis ranged from 8 to 15. The distance
between slices ranged from 6 to 13 mm. The size of all
image slices is 256 x 256 pixels with a pixel-spacing of
0.93-1.64 mm [26].

We evaluate the registration accuracy of our algo-
rithm by registering cardiac images at the end-diastole
phase and the end-systole phase. The point sets of
LV at end-diastole and end-systole phases are regis-
tered. Here, these points are provided by experts [26]
in order to eliminate the effects of cardiac segmenta-
tion. The point set at end-diastole phase is the scene
point set, and the one at end-systole phase is the
model point set. The end-systole points are interpo-
lated along the long axis to make the slice numbers
equal to that in the end-diastole points. Afterwards,
these two point sets are matched using our algorithm
slice by slice. In Fig. 4, the interpolated model points
and scene points are presented, and they are extracted
from the slices in end-systole and end-diastole phases
respectively.

Average Perpendicular Distance (APD) between the
mapped model point set and the scene point set is com-
puted to evaluate our algorithm quantitatively. The APD

Fig. 4 An example of a scene point set and b model point set
extracted from images at end-diastole and end-systole phases
respectively
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represent the average distance between two point sets, as
shown in Fig. 5.

We use 10% control points to estimate the transforma-
tion function between end-systole and end-diastole slices.
Table 1 lists the APD results of 33 subjects using three
different algorithms. For each subject, the APD is aver-
aged registered results of all corresponding slices along
the long axis. Noted that the APD results of SSD_QN are
smaller than that of GMM and CPD for most subjects. It
implies that the registration accuracy can be improved by
introducing the surface structure features to the point set
matching.

Analyses conducted using the Quasi-Newton method
demonstrate the issue of divergence that appears with
large number of control points. We increase the number
of control points from 20? to 402, The APD results are
listed in Table 2, and we show that the results obtained by
applying the SSD_QN and GMM methods diverge when
too many control points used, while CPD is shown to be
robust in convergence. For the convergent SSD_QN, it
outperforms GMM and CPD in respect of APD for most
cases.

To demonstrate the improved performance of SSD_S
-GD_QN further, 50 control points are used to regis-
ter the slices between end-systole and end-diastole in all
samples. In Fig. 6, APD results obtained for 33 subjects
using CPD and SSD_SGD_QN with 50% control points
are presented. Since GMM is divergent, the APD results
obtained by this method are not provided in Fig. 6. For
the majority of cases, SSD_SGD_QN outperforms CPD,
which demonstrates the stability of SSD_SGD_QN in high
dimensional parameter space.

Registration of the inter-subject LV

Furthermore, we use a cardiac dataset provided by
the Danish Research Centre for Magnetic Resonance
(DRCMR) [27], comprising 14 gray scale 256 x 256
images. All images used are short-axis, end-diastolic car-
diac MR images, acquired using a whole-body MR unit

Fig. 5 APD schematic diagram. The red point set is the ground truth
and the sky blue point set is the mapped model set. The dis is
minimum vertical distance between two point sets
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Table 1 The APD (1072 mm) results of 33 subjects using three
methods

Cases SSD_QON GMM CPD
1 1.65 1.55 535
2 2.53 2.36 1.07
3 2.22 1.94 6.85
4 2.31 2.17 2.58
5 2.08 1.89 1.71
6 2.05 1.96 1.35
7 191 1.88 1.14
8 2.05 1.89 9.74
9 2.72 2.63 6.96
10 1.88 1.67 2.07
1 1.75 1.69 8.03
12 1.98 1.84 1.55
13 2.85 2.61 557
14 245 2.26 1.32
15 2.16 2.01 4.86
16 242 2.29 423
17 1.50 1.32 1.98
18 2.39 2.21 222
19 2.68 246 1.97
20 147 1.36 1.93
21 1.64 1.46 6.72
22 1.94 1.84 9.37
23 1.79 1.59 214
24 2.34 2.17 6.23
25 1.92 1.74 9.37
26 1.59 1.44 6.72
27 2.86 273 513
28 1.54 135 1.22
29 2.83 2.71 9.71
30 2.70 2.52 4.60
31 1.95 1.79 512
32 1.84 1.57 471
33 2.78 2.66 6.33
Mean 2.14 1.99 4.54

(The bold one is the optimal result)

(Siemens Impact) operating at 1.0 Tesla. The endocardial
and epicardial contours of the LV are manually annotated
by experts [27].

Case 1 represent a sence image, while all other cases
are model images. The contour marked in other cases are
mapped to the image of case 1 using SSD_QN, GMM, and
CPD. Afterward, the mapped contour is compared with a
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Table 2 The APD (x10~2 mm) results of 33 subjects using three methods with different number of control points
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202 control point

302 control point

402 control point

subject Method GMM SSD_QON CpPD GMM SSD_ON CPD GMM SSD_QN CPD
1 1.83 1.66 8.15 1.86 144 0.46 - - 547
2 2.85 275 3.06 274 2.51 0.97 - - 6.39
3 1.35 1.23 4.27 1.62 1.44 8.23 - - 9.49
4 148 1.29 513 1.40 1.21 6.95 - - 2.58
5 2.29 2.00 6.32 1.90 1.71 3.17 - - 841
6 143 1.09 1.98 1.33 1.09 9.50 - - 7.54
7 1.57 1.24 2.78 1.96 1.68 0.34 - - 8.14
8 2.09 1.69 547 244 2.04 439 - - 244
9 1.52 1.21 0.58 2.79 2.15 3.82 - - 9.29
10 1.66 1.46 9.65 1.74 1.09 7.66 - - 350
11 1.69 1.53 1.58 2.24 1.86 795 - - 1.97
12 2.31 2.07 1.71 1.50 1.29 1.87 - - 9.51
13 267 243 9.57 1.88 1.55 4.90 - - 6.16
14 1.48 1.26 4.85 2.38 1.67 446 - - 473
15 1.49 1.36 2.25 268 2.21 6.46 - - 352
16 2.21 1.97 1.42 1.76 1.37 7.09 - - 8.31
17 2.81 2.54 4.22 1.56 1.18 7.55 - - 5.85
18 247 2.03 9.16 1.93 1.24 2.76 - - 5.50
19 1.31 1.04 792 242 2.01 6.80 - - 9.17
20 1.71 1.54 9.59 1.29 0.67 6.55 - - 2.86
21 2.72 2.47 6.56 241 2.10 1.63 - - 7.57
22 2.29 2.06 0.36 1.51 1.29 1.19 - - 7.54
23 1.75 1.41 849 2.03 1.76 498 - - 3.80
24 2.26 2,15 9.34 2.01 1.78 9.60 - - 5.68
25 145 1.29 6.79 2.25 1.89 340 - - 0.76
26 235 2.01 7.58 1.52 1.22 5.85 - - 0.54
27 1.64 1.48 743 2.25 1.77 224 - - 531
28 261 2.39 392 132 0.98 7.51 - - 7.79
29 1.64 1.42 6.55 242 2.04 2.55 - - 9.34
30 1.46 1.19 1.71 267 2.17 5.06 - - 1.30
31 145 1.23 1.06 143 1.05 6.99 - - 569
32 2.26 2.05 1.32 1.89 1.56 8.91 - - 4.69
33 1.68 1.36 2.77 1.63 1.27 9.59 - - 0.12
Mean 1.93 1.69 4.96 1.96 1.58 579 - - 546

(The bold one is the optimal result, and -’ denotes divergence)

contour marked by an expert, to evaluate the registration
accuracy. We use the APD to evaluate the performance
of three methods, since it can be used to evaluate the
registration accuracy of three methods.

We locate the region of interest (ROI) in heart in the
original image, and employ the template matching [29]
algorithm (TMA) to extract epicardium and endocardium
profiles by constructing many typical LV templates.

The candidate template is generated by a particle, and the
optimal particle is obtained by matching the target and
the candidate templates. Following this, the point sets of
epicardium and endocardium are extracted around the
candidate template contour, as shown in Fig. 7.

In this experiment, 10% control points are employed to
ensure the convergence of SSD_QN. The APD results are
listed in Table 3. SSD_QN is shown to outperform GMM
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Fig. 6 The APD results using SSD_SGD_QN and CPD respectively

and CPD in all cases except case 13. In this case, many
noisy points are observed in the extracted myocardial
contour, which leads to the registration errors.

To visualize the registration results further, we present
the registration results obtained by three methods for case
2 in Fig. 8. The ground truth is marked by red points,
and the mapped contours estimated by three methods
are marked by green points. The outlines of endocardium
and epicardium, obtained using SSD_QN, are shown to
be close to the ground truth. Moreover, these outlines are
demonstrated to be smoother than those obtained using
GMM and CPD, which demonstrates the advantage of
surface structure feature for the description of the circular
structure of myocardium.

Furthermore, we use SSD_SGD_QN to demonstrate the
optimization performance in point registration. In Fig. 9,
the APD results obtained using SSD_SGD_QN, GMM,
and CPD with 202 control points are presented. Although
GMM is shown to converge in this experiment, its reg-
istration accuracy is not satisfactory. CPD is shown to
be converged, but the APD results obtained using this
method are shown to be larger than those determined
using SSD_SGD_QN and GMM.

Registration of cine MR cardiac images

In order to confirm the superior performance of our
method in the registration of cine MR cardiac images, we
analyze 15 cardiac cine MR validation datasets from the

Fig. 7 Extracted scene point set (a) and model point set (b)
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Table 3 The APD (x pixel) results of inter-subject registration
using three methods

Cases SSD_ON GMM CPD
2 1.07 1.16 1.20
3 0.79 0.87 1.19
4 1.32 1.38 1.82
5 1.80 1.94 1.85
6 1.56 1.66 1.74
7 1.45 1.49 1.73
8 1.08 1.25 1.67
9 1.66 1.71 1.69
10 1.57 1.71 1.82
1N 1.42 1.45 159
12 0.73 0.84 1.04
13 1.84 1.80 193
14 1.85 1.94 1.89
Mean 1.39 148 1.63
Std 0.38 0.37 0.29

(The bold one is the optimal result)

MICCAI 2009s 3D Segmentation Challenge for Clinical
Applications [28], provided by the Sunnybrook Health
Sciences Centre. Cine steady state free precession (SSEP)
MR short axis (SAX) images are obtained using 1.5T GE
Signa MRI, during 10-15 s breath-holds with a tempo-
ral resolution of 20 cardiac phases over the heart cycle,
and scanned from the enddiastolic phase. Six to 12 SAX
images are obtained from the atrioventricular ring to the
apex (thickness = 8 mm, gap = 8 mm, FOV = 320 mm x
320 mm, matrix = 256 x 256) [28].

Fig. 8 Registrationresults for case 2. a, b and ¢ show the sence slice
(case 1) and the mapped contours using three methods; d, e and f
show enlarged contours, respectively. From left to right: SSD_ON,
GMM, CPD. The red points mark the ground truth, and the green
points mark the mapped contours
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Fig. 9 Comparison of APD using SSD_SGD_QN, GMM and CPD with
207 control points for registration of inter-subject LV

This MR cardiac image dataset is used for MICCAI
2009s 3D Segmentation Challenge for Clinical Applica-
tions. Cardiac image segmentation is related to the image
registration, and the segmentation results of one slice
obtained in a single time point can be propagated to other
time points using deformable registration, which takes
advantage of the strong temporal correlation between
phases. Here, we analyze the transformation between
slices at the enddiastolic and endsystolic phases. Reg-
istrations are performed from enddiastole to endsystole
and vice versa. The LV contours extracted from the
endsystolic phase can be mapped to the enddiastolic
phase using the estimated transformation, representing
the segmented results of LV at enddiastole, and vice
versa.

For this analysis, we eliminate the surrounding organs
and locate the area containing LV. Considering that only
the contour of endocardium is provided in MICCAI 2009s
dataset, we segment the endocardium and extract the
boundary points of endocardium by edge detection. We
ignore the effects of the papillary muscles of endocardial
wall, as they are minor. Since the outline of endocardium
is irregular, we smooth out the border by using Savitzky-
Golay polynomial filter [30]. The original cardiac slice
and an automatically extracted endocardial outline are
presented in Fig. 10.

Two principal evaluation standards in the MICCAI
2009s 3D Segmentation Challenge for Clinical Applica-
tions are the APD, which measures the average distance

Fig. 10 An example of endocardium contour extraction
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Table 4 The APD (x mm) results of 15 subjects using three methods

Cases SSD_ON GMM CPD
SC-HF-I-05 142 1.40 1.45
SC-HF-I-06 1.30 1.36 1.35
SC-HF-I-07 2.90 2.90 3.06
SC-HF-I-08 1.44 1.55 1.60
SC-HF-NI-07 2.13 242 2.71
SC-HF-NI-11 1.16 127 122
SC-HF-NI-31 191 1.90 2.19
SC-HF-NI-33 2.16 222 246
SC-HYP-06 1.53 1.49 1.54
SC-HYP-07 2.83 2.84 3.01
SC-HYP-08 152 1.61 1.51
SC-HYP-37 1.80 142 1.34
SC-N-05 249 2.55 243
SC-N-06 251 2.46 258
SC-N-07 1.72 1.84 1.84
Mean 1.92 1.95 2.02
Std 0.56 0.57 0.64

(The bold one is the optimal result)

error between two point sets, and the Dice Metric (DM),
that shows the contour overlap proportion between the
mapped contour and the target contour. DM = Slzi%z’
where S; and Sy are endocardial surface areas obtained

Table 5 The DM results of 15 subjects using three methods

Cases SSD_ON GMM CPD
SC-HF-1-05 0.94 0.94 0.94
SC-HF-1-06 0.95 0.95 0.95
SC-HF-1-07 0.90 0.90 0.89
SC-HF-1-08 0.95 0.95 0.94
SC-HF-NI-07 0.93 0.92 0.92
SC-HF-NI-11 0.96 0.96 0.96
SC-HF-NI-31 0.93 093 0.92
SC-HF-NI-33 0.86 0.86 0.85
SC-HYP-06 0.90 0.91 0.90
SC-HYP-07 0.80 0.80 0.79
SC-HYP-08 0.93 0.93 0.93
SC-HYP-37 0.85 0.88 0.89
SC-N-05 0.77 0.77 0.77
SC-N-06 0.85 0.85 0.85
SC-N-07 0.92 092 0.92
Mean 0.90 0.90 0.89
Std 0.06 0.06 0.06

(The bold one is the optimal result)
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Fig. 11 lllustration of APD using three methods for case SC-HF-I-05. From left to right: SSD_QN, GMM and CPD. a, b and ¢ show the registration
results of an ES slice to the corresponding ED slice; d, @ and f show the registration results of an ED slice to the corresponding ES slice

manually by experts and by automatic methods, while
Ss represents the overlap area between S; and Sp. A
higher DM values indicates better registration results. The
forward registration (endsystole to enddiastole) and the
reverse registration (enddiastole to endsystole) are per-
formed respectively. All these DM values represent the
average of registration results in two directions.

We used 10 control points to estimate the transforma-
tion function between two heart slices, and 15 clinical cine
MR cases with four patient categories (heart failure, with
(HE-I) or without (HF-NI) ischemia, hypertrophy (HYP),
and normal (N)) are used to investigate the performance
of SSD_QN, GMM, and CPD.

In Tables 4 and 5, the APD and DM results obtained
using three described methods are presented. The APD
results obtained by SSD_QN are shown to be smaller
than those obtained by GMM and CPD in most cases,
except for one case. In the case of SC-HYP-37, the
extracted points are not able to outline the endocardium
wall, which led to the deviation of the normal direc-
tions of points. Consequently, registration accuracy using
SSD_QN decreased, which indicates that the initial seg-
mentation results affect the precision of registration.

For a detailed illustration of the registration results, the
mapped contour and the contour marked by experts using
the data from subject SC-HF-I-05 are presented in Fig. 11.
The first line shows the slices in the enddiastolic phase
and the mapped endsystolic contours using SSD_QN,
GMM, and CPD. The second line indicates the slices in
the endsystolic phase and the mapped enddiastolic con-
tours using three methods. The ground truths are marked

by green points, and the mapped contours are denoted
by blue points. Short red lines illustrate the minimum
distance between the points marked by the expert and
the mapped points. The shortening of the red lines indi-
cate a higher registration accuracy. The APD obtained
by SSD_QN is shown to be superior to that obtained by
GMM and CPD for forward registration. However, the
APD of the reverse registration obtained using SSD_QN is
larger than that obtained using GMM and CPD, because
the parameters used in our experiments are suitable for
forward, and not reverse registration.

The APD obtained by SSD_SGD_QN, GMM, and CPD
with 202 control points are compared as well in Fig. 12.
Similar to the previously presented results, GMM and
CPD are converged with these parameters as well, and the
APD obtained using SSD_SGD_QN is shown to be close
to those obtained using GMM and CPD.

Fig. 12 Comparison of APD using SSD_SGD_QN, GMM and CPD with

W SSD_SGD_QN EGMM CPD
207 control points for registration of the MICCAI 20095 cardic
segmentation challenge dataset

APD (*mm)

2
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Fig. 13 a, b and ¢ show displacement vectors of different slices of ED for case SC-HF-I-05

Finally, the displacement vector graphs estimated by
our algorithm SSD_QN with 10? control points are illus-
trated in Fig. 13. Displacement vectors of LV from endsys-
tole to enddiastole in three slices are shown, where red
points and blue points represent the model and the
mapped model points, and green arrows illustrate the
displacement vectors of these points. The estimated LV
motion is shown to coincide generally with the real
motion.

Conclusion

LV motion estimation is important in quantitative assess-
ment of myocardial function and dynamic behavior of
human heart, which is invaluable in the diagnosis of
cardiac diseases. In this paper, a novel point set match-
ing algorithm is proposed to estimate LV motion. The
main contribution of the proposed algorithm is introduc-
ing the structure feature of LV to point set matching.
The surface structure features of LV is described using
normal directions, and the GMM of surface structure
features is defined. By measuring the discrepancy of all
GMMs of two point sets, a new cost function of point
set matching is constructed. SGD and Quasi-Newton
method are combined to optimize the cost function.
Performance of our algorithm is verified using three car-
diac image datasets. The obtained results demonstrate
that when small amount of control points used, our
algorithm with Quasi-Newton optimization outperforms
GMM and CPD in LV motion estimation. When too
many control points used, our algorithm with the com-
bination of SGD and QN optimization is more robust
than GMM and CPD. The evaluation performed using
MICCALI 2009s 3D Segmentation Challenge for Clinical
Applications dataset demonstrate that the applicability
of our motion estimation method remains the same
when analyzing different cardiac diseases. The method we
develop and present here could be applied to clinically-
obtained data, to demonstrate its applicability in a clinical
environment.
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