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Abstract

Background: Antimicrobial Resistance is threatening our ability to treat common infectious diseases and overuse of
antimicrobials to treat human infections in hospitals is accelerating this process. Clinical Decision Support Systems
(CDSSs) have been proven to enhance quality of care by promoting change in prescription practices through
antimicrobial selection advice. However, bypassing an initial assessment to determine the existence of an underlying
disease that justifies the need of antimicrobial therapy might lead to indiscriminate and often unnecessary
prescriptions.

Methods: From pathology laboratory tests, six biochemical markers were selected and combined with microbiology
outcomes from susceptibility tests to create a unique dataset with over one and a half million daily profiles to perform
infection risk inference. Outliers were discarded using the inter-quartile range rule and several sampling techniques
were studied to tackle the class imbalance problem. The first phase selects the most effective and robust model
during training using ten-fold stratified cross-validation. The second phase evaluates the final model after isotonic
calibration in scenarios with missing inputs and imbalanced class distributions.

Results: More than 50% of infected profiles have daily requested laboratory tests for the six biochemical markers with
very promising infection inference results: area under the receiver operating characteristic curve (0.80-0.83), sensitivity
(0.64-0.75) and specificity (0.92-0.97). Standardization consistently outperforms normalization and sensitivity is
enhanced by using the SMOTE sampling technique. Furthermore, models operated without noticeable loss in
performance if at least four biomarkers were available.

Conclusion: The selected biomarkers comprise enough information to perform infection risk inference with a high
degree of confidence even in the presence of incomplete and imbalanced data. Since they are commonly available in
hospitals, Clinical Decision Support Systems could benefit from these findings to assist clinicians in deciding whether
or not to initiate antimicrobial therapy to improve prescription practices.

Keywords: Antimicrobial resistance, Infection, Machine learning, Supervised learning, Predictive modelling,
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Background

Antimicrobials are drugs that kill or stop the growth
of microbes (e.g. bacteria or viruses), thereby are com-
monly used to treat infections. Since their discovery in
1930s, the antimicrobial research community was con-
cerned about their misuse and the possible consequences
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that could arise. Despite all their efforts to disseminate
general awareness, Antimicrobial Resistance (AMR) has
been reported to be a leading public health and safety
threat [1, 2] with the inappropriate use of antimicrobials in
humans as one of the leading drivers [3]. New diagnostic
devices are being designed to detect infections, but they
are still highly specific, expensive and slow; obstructing
their adoption in hospital settings [4]. In scenarios where
clinicians suspect infection, concerns over the manage-
ment of the individual often promote a conservative ther-
apy (e.g. broad spectrum antibiotics) before the results of
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diagnostics tests are available. Such behaviour, focusing
only on the patient and not considering the long term con-
sequences of prescribed therapies, promotes the misuse of
antimicrobials and contributes to AMR [5-7].

Clinical Decision Support Systems (CDSSs) are
used widely to improve quality of care by promoting
behavioural change among clinicians in specific aspects
such as prescribing [8]. They can be defined as a computer
program designed to analyse data to help health care
professionals make clinical decisions. Most basic systems
include assessment, monitoring and informative tools
in the form of computerized alerts, reminders and elec-
tronic clinical guidelines [9]. More advanced diagnosis
and advisory tools usually rely on statistics and machine
learning to provide a higher level of data abstraction for
therapy advice [10] or risk assessment [11].

Over the last decade, there has been a significant surge
of interest in using clinical data for decision support
and therefore data mining and machine learning have
been widely applied for knowledge discovery in medicine
[12, 13]. This information is available in a variety of for-
mats including lab results, clinical observations, imaging
scans, free text notes and more. In particular, pathology
laboratory tests for a few biochemical markers are com-
monly requested by practitioners on patient admission to
hospital and at regular intervals during the stay of the
patient. Therefore, it represents a rich resource of obser-
vational data with the potential to facilitate assessment
and detection of infectious diseases, even at early stages.

A binary classifier is a computational model that pre-
dictively divides a dataset into two groups, positives and
negatives. They have been successfully applied to med-
ical problems in recent years. For instance, Decision
Tree Classifiers (DTC) are popular for their simplicity
to understand and construct from logical rules [14]. Sin-
gle and ensemble decision trees have been applied to
pathology laboratory data to enhance the diagnosis of
infections caused by Chlamydia pneumoniae [15] and
Hepatitis B/C viruses [16]. However, these studies used
a relatively high number of variables per patient (16
and 18) and discarded those in which inputs were miss-
ing, reducing the size of the datasets considerably (1495
and 10378 observations respectively). Consequently, the
accuracy of these tools was reported to be as low
as 60—-65%.

Another approach relies on Bayesian Networks which
represent a set of variables (nodes) and their depen-
dencies (arcs) using a graph. They have been used to
predict bacteremia using 214 clinical variables [10]. The
designed graph was utterly complex and provided an
area under the receiver operating characteristic curve
(AUCROC) of only 0.68. Furthermore, a comparison of
machine learning methods for neonatal sepsis detection
[17] in 299 infants using on average 17 clinical variables
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presented an AUCROC within the range 0.57-0.65. The
imbalance between sensitivity and specificity metrics was
also acutely problematic.

The integration of previous approaches in CDSSs is
restrained for three main reasons: (i) the studies are
focused on a single microbe; (ii) only blood infection
(i.e. sepsis) was targeted and (iii) the collection of such
high number of variables is laborious, if not intractable.
This paper retrospectively evaluates the performance of
different binary classifiers to detect any type of infec-
tion from a reduced set of commonly requested clinical
measurements.

Method

Selected pathology biochemical markers

After reviewing the scientific literature and discussion
with infectious disease experts, six routinely requested
biomarkers were selected (see Table 1) which are deemed
to provide sufficient information to evaluate the infec-
tion status of a patient by an expert physician. Note
that not all biomarkers are directly related to infection
(e.g. creatinine), however, previous studies have demon-
strated a relationship between these biomarkers and
infections [18, 19].

Selected supervised learning models

Supervised learning is the area of machine learning that
involves defining a mapping between data and an output
label [20]. Well-known supervised machine learning algo-
rithms for binary classification, restricted to those able to
provide a probability outcome, were evaluated and com-
pared. Not all classifiers provide probabilities inherently
(e.g. Support Vector Machines) but additional algorithms
exist to estimate them. A brief summary of the selected
algorithms is presented below.

Gaussian Naive Bayes

GNB is based on applying Bayes’ theorem with the
assumption of independence between every pair of fea-
tures. The likelihood function for each feature is assumed
to be Gaussian and despite this simplifying assumption,
it has worked quite well in many real-world situations

Table 1 Selected laboratory biochemical markers

Abbreviation Marker Unit
ALT Alanine aminotransferase iu/L
ALP Alkaline phosphatase iu/L
BIL Bilirubin umol/L
CRE Creatinine umol/L
CRP C-Reactive protein mg/L
WBC White blood count 10%9/L
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(e.g. spam filtering) [21]. In addition, they require a small
amount of training data to estimate the necessary param-
eters, are extremely fast compared to more sophisticated
methods and the generated models can perform online
updates.

Decision tree classifier

DTC is a simple algorithm for classifying observations
based on recursive partitioning given an attribute value.
They have been used in clinical domains since they are
easy to interpret and understand. Furthermore, the time
required to train them on large datasets is still reasonable.
However, they do not tend to work well if decision bound-
aries are smooth; that is, significant overlap between cate-
gories. Also, as a result of the greedy strategy applied, they
present high variance and are often unstable, tending to
over-fit.

Random forest classifier

RFC is an ensemble learning method for classification
based on DTCs. It constructs a set of DTCs trained with
different portions of the data and outputs the class that
is the mode of all the classifiers. They often correct the
DTCs habit of over-fitting the training set.

Support vector machine

SVM uses a kernel function to transform the training
samples to a new space with higher dimensionality [22].
The boundary found in the high dimensional space is
the hyperplane which maximizes the distance between
classes (i.e. maximum margin hyperplane) and can have
a non linear shape in the original data space. It employs
the principle of Structural Risk Minimization to general-
ize better than conventional machine learning methods
which employ Empirical Risk Minimization [23]. Though
SVMs do not directly provide probability estimates, they
may be calculated in the binary case using Platt scaling;
that is, logistic regression on the SVM’s scores [24].

Assembling data for infection inference

In hospitals, data is compartmentalized with many dis-
tinct measurements of patient health being stored sep-
arately. In this paper, pathology and microbiology data
for patients from all hospital wards at Imperial College
Healthcare NHS Trust were extracted. In the absence of a
single database linking pathology with microbiology data,
these two different data sources were combined to create
a unique dataset of profiles to perform detection of infec-
tion. Each profile (see Fig. 1) has the daily symptoms of a
patient represented by six selected laboratory tests (con-
stituting a patient’s feature vector), the infection condition
extracted from the microbiology data (Label) and addi-
tional information for further data cleaning such as the
patient identification number (PID).
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Fig. 1 Profile with metadata, feature vector and label
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Unfortunately, labels collected in such databases are
recorded for purposes other than retrospective data anal-
ysis and it is difficult to define a “ground truth” Ini-
tially, all profiles were labelled as culture-negative (C-).
Then, any profile available for a patient with less than
two days difference from a positive culture was assigned
to the culture-positive (C+) category. This assumption
comes from antimicrobial susceptibility tests taking from
24 to 48 hours and antibiotics often needing a period
of time to kill or stop bacterial growth. Assigning pro-
files to the culture-negative category by default clearly
produces mislabelled data. To tackle this issue, profiles
within those periods of time in which there is no culture
evidence (results for microbiology cultures are missing)
are discarded. In addition, culture-negative profiles were
removed if culture-positive profiles where present in a
single patient admission.

Challenges in clinical data: preprocessing

In machine learning applications, data preprocessing is
a common step that becomes critical when dealing with
data obtained from clinical environments. First, class
imbalance must be tackled since unequal class distribu-
tions arise naturally. Also, data corruption is frequent [25]
which can be classified as erroneous data, missing data
and imprecise data. The steps followed in data preprocess-
ing are briefly explained below.

Detection of outliers

The importance of outlier removal to develop robust pre-
dictive models has been demonstrated previously [26]. In
our data, outliers are mainly caused by two main factors:
susceptibility tests not requested or wrongly reported
(human errors) and inaccurate microbiology results (diag-
nostic device errors or limitations). To identify and dis-
card them the inter-quartile range rule (IQRxT) is applied
to each category independently where T represents the
threshold parameter. A threshold of T=1.5 is widely
accepted and T=3 is considered to discard only extreme
outliers.

Dealing with missing data

A large proportion of profiles are incomplete; that is, they
do not have results for the six selected biomarkers. The
notation Fy, is used to define the fraction of data in which
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profiles have exactly n biomarkers. Exclusively complete
profiles are manipulated to generate the predictive models
while incomplete profiles ({F,}>_;) are used to evaluate
the robustness of such models for different degrees of
missing variables. The statistical measure preferred for
inputation of missing values is the median.

Dealing with class imbalance

The issue of class imbalance has been addressed by
under-sampling the majority class (RANDy), over-
sampling the minority class (RANDgp) and using
Synthetic Minority Over-sampling (SMOTE) [27] which
blends both sampling methods to build classifiers with
better performance.

Data scaling

Since data scaling is a common requirement for many
machine learning algorithms and can favourably affect
model performance, two approaches have been consid-
ered: (i) data normalization which scales individual fea-
tures to have unit form and (ii) data standardization which
transforms features so they are normally distributed (zero
mean and unit variance).

Evaluating performance for model selection

Initially, the data is divided into cross-validation (CVS)
and hold-out sets (HOS) where the latter contains 25%
of all observations. The CVS is manipulated to train
and calibrate the models where data sampling and pre-
processing should always be performed within cross-
validation and using exclusively the observations within
the training set. Applying them (particularly sampling)
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before cross-validation is a common malpractice for
two main reasons: it leads to over-fitting problems, but
more importantly it generates artificial observations (non
real data) which are used in the testing fold for vali-
dation. As an example, RANDg just duplicates entries
and therefore the same observations would be seen dur-
ing training and testing, defeating the whole purpose of
cross-validation.

Ten-Fold Stratified Cross-Validation has been used in
this paper to assess how well the classifiers will gen-
eralize to an independent data set (see Fig. 2). Firstly,
the training set is sampled, preprocessed and used to
build the model. As outputs, we obtain a preprocessing
equation that will be applied to new observations and a
non-calibrated model. Models are validated using both
imbalanced and balanced (applying RANDy) versions of
the testing fold to ensure it is performing appropriately
(not over-fitting). Finally, to assess the translational util-
ity of this results into a clinical decision support system,
models are calibrated and validated in HOS and {F,,}i=1
with observations that are completely unseen during data
sampling/preprocessing and model training/calibration.

Model calibration

Properly calibrated classifiers provide a probability which
can be directly interpreted as a confidence interval. In
binary classification, among the samples to which a cali-
brated model gave a probability close to 0.8, approximately
80% actually belong to the positive class. Some models
(e.g. Logistic Regression) return well calibrated predic-
tions by default while others introduce bias (e.g. GNB
pushes probabilities to 0 or 1). They can be calibrated
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Fig. 2 High level diagram of the work-flow followed to build the models and obtain the results presented in this paper. First, data cleaning and
outlier removal is performed. The remaining observations are grouped as complete or incomplete profiles. The former is further split into
Cross-Validation Set (CVS) and Hold-out Set (HOS). Ten-Fold Stratified Cross-Validation is performed on CVS and two outputs are obtained in this
step: a preprocessing equation to transform new observations (T) and a calibrated model (M) which are later used. It is important to highlight that
sampling and preprocessing are performed using the training set while calibration is achieved from completely unseen observations. The
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using a dataset not seen during training [28]. In this paper
isotonic calibration was selected.

Evaluation metrics

There are many different metrics for assessing the perfor-
mance of classifiers [29, 30]. For binary classifiers, most
of them are based on four simple measures: the num-
ber of true positives (TP), the number of false positives
(FP), the number of true negatives (TN) and the num-
ber of false negatives (EN). Sensitivity, specificity and
overall accuracy are commonly used to demonstrate clas-
sifiers performance. Note however, that accuracy might
not be appropriate when the class sizes differ consider-
ably [31]. For detailed information of classifiers, receiver
operating characteristic (ROC) and precision-recall (PR)
curves are often presented [32, 33]. The ROC curve is
created by representing the true positive rate against the
false positive rate for different threshold settings while
the PR curve represents precision against recall. The area
under such curves is commonly used for comparison. It
is important to mention that precision is affected by class
proportions, and hence PR is conditioned too. On the con-
trary, sensitivity, specificity and ROC are agnostic to class
proportions. The definition and equations of previously
mentioned metrics are shown in Table 2.

Statistical analysis

The statistical significance of the differences between the
classifiers was determined using the non-parametric test
(Kruskal-Wallis one-way ANOVA on ranks) where the
significance level was set at p<0.05. Post-hoc analysis

Table 2 Evaluation metrics: descriptions and equations

Metric Description Equation

TP
SENS = =

Sensitivity Proportion of observed positives that
are correctly identified as such (i.e.

percentage of culture-positive profiles
correctly identified as positive). Also
called recall (REC) or true positive rate

(TPR).

Proportion of observed negatives that
are correctly identified as such (i.e.
percentage of culture-negative profiles
correctly identified as negative). Also
called true negative rate (TNR).

SPEC =

Specificity NP

ROC This curve illustrates the performance
of a binary classifier as its discrimnation
threshold is varied by plotting true
positive rate (TPR) against false positive
rate (FPR). It is related to cost/benefit
analysis of diagnostic decision making.

PR This curve represents precision against
recall where high scores for both shows
that the classifier is returning accurate
results (high precision) as well as
returning a majority of all positive results
(high recall).
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(Fisher’s LSD) was used to determine pairwise differences.
Analyses were performed with NCSS version 8.

Software

The Python programming language was used in this
research. Supervised learning models and performance
metrics from Scikit-learn [34] and sampling techniques
from Imbalanced-learn [35] were employed. Data han-
dling was done with Pandas [36, 37] and data visualization
using Matplotlib [38] and Seaborn [39].

Results

This study was conducted with data from the Imperial
College Healthcare NHS Trust, which comprises three
separate hospitals, totalling 1500 beds and serving a pop-
ulation of 2.5 million citizens. Combining pathology and
microbiology records over two years (2014 and 2015)
yielded over one and a half million profiles for more than
half a million different patients. From these data, 43,497
(2.7%) profiles for 12,099 (2.1%) patients were assigned
to the culture-positive category. Therefore, classes were
clearly imbalanced with culture-negative constituting the
majority.

Data insights

Laboratory tests frequency

The number of laboratory tests requested per biomarker
is explained for both categories (culture-negative and
culture-positive) independently in Table 3. The notation
F is used to categorize profiles according to the number
of biomarkers available. Hence, F, contains all profiles
with exactly two biomarkers. Obviously, some biomark-
ers are requested more frequently than others; from the
instances presented in Table 3, the corresponding pro-
portions are displayed for culture-negative (Fig. 3a) and
culture-positive (Fig. 3b) categories. The most requested
biomarkers are WBC and CRE for both categories. It is
worth stressing that CRP is requested more frequently
for infected patients, since it is often a good indicator
of infection. Its presence is almost double; from 11% in
culture-negative profiles to 18% in culture-positive pro-
files. Hence, although CRP would appear to be sufficient
for infection detection by looking at its distribution (see
Fig. 4), it presents two main issues: it is the least requested
of all biomarkers in the culture-negative category (11%)
and it does not provide any information regarding the
location of the infection.

Profile completeness

A common problem in previous studies was missing
data leading to incomplete profiles. Therefore, the pro-
portion of profiles with different levels of complete-
ness is displayed in Fig. 3c and d. More than 50%
of the culture-positive profiles are complete; that is,
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Table 3 Pathology biomarkers and profiles overview
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ALP ALT BIL CRE CRP WBC All Tests Profiles
C- Fi1 10858 236 327 53443 10477 191213 266554 266554
F 11654 492 889 81337 25959 94605 214936 107468
F3 51047 27921 28506 131058 113049 130870 482451 160817
Fa 135450 97665 101738 112962 36446 59607 543868 135967
Fs 412266 386171 409873 404555 58530 391120 2062515 412503
Fe 517397 517397 517397 517397 517397 517397 3104382 517397
Total 1138672 1029882 1058730 1300752 761858 1384812 6674706 1600706
C+ F1 40 5 7 412 267 1445 2176 2176
Fa 103 12 20 1458 1140 1983 4716 2358
F3 484 85 121 7671 7367 7621 23349 7783
Fa 2395 373 578 2308 1946 2096 9696 2424
Fs 5277 3043 5145 5165 3106 4674 26410 5282
Fe 23474 23474 23474 23474 23474 23474 140844 23474
Total 31773 26992 29345 40488 37300 41293 207191 43497

Bold numbers indicate total numbers of tests and profiles

contain results for the six biomarkers. In contrast, the
percentage of complete profiles drops to 28% for the
culture-negative category. Taking into consideration pro-
files with at least four biomarkers available ({F,,}2=4)
increases percentages to 65% (C-) and 71% (C+); that is,
approximately two thirds of all available profiles. Hence,
it is important to identify classifiers that are able to infer
infection likelihood for incomplete profiles to increase
usability in real-life clinical decision support systems.

Distributions of selected biomarkers

The density distribution for each biomarker is presented
in Fig. 4 for culture-positive and culture-negative cat-
egories. Most distributions are skewed (especially for
C+) and robust measures for central tendency (median)
and statistical dispersion (interquartile range) are used to
describe them. Outliers were removed by applying the
IQRx1.5 rule to both categories independently.

The distance between medians for each category is
clearly noticeable for CRP and appreciable to a lesser
extent in WBC and ALP. On the other hand, there is no
perceptible difference between the medians of culture-
positive and culture-negative profiles for the rest of the
biomarkers (ALT, BIL, CRE). Regarding statistical dis-
persion, CRP presents a huge contrast between the two
categories, followed by CRE and ALP. It is clear that
most biomarkers have an overlapping region between
both categories. Crearly, this is a very challenging area for
infection risk inference that could be slightly ameliorated
by relaxing the IQR threshold for the culture-positive
category.

Infection risk inference on complete profiles

A comparison of the best overall binary classifier for each
supervised model is presented in Table 4 where met-
rics are evaluated on a balanced version of the hold-out

18% | 13%

ALP

Frequencies C-

Frequencies C+

and culture-positive (C+) categories respectively

Completeness C-

Completeness C+

Fig. 3 Percentages representing the frequency of each biomarker (a and b) and the completeness of profiles (c and d) for both culture-negative (C-)
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Fig. 4 Distribution of measurements for each single biomarker
grouped in two categories: culture-negative (C-) and culture-positive
(C+). The inter-quartile range rule with threshold of 1.5 (IQRx1.5) has
been applied to each category independently to discard outliers

set after isotonic calibration. Standardization performed
consistently better than normalization and therefore only
these results are presented. The first two columns indi-
cate the sampling method and the algorithm evaluated
respectively. The metric scores from left to right are: area
under the ROC curve (AUCROC), area under the PR
curve (AUCPR where the subscript B indicates that classes
were balanced), sensitivity (SENS) and specificity (SPEC).

The performance of the classifiers can be seen to vary
according to the sampling technique used. In particular,
the classifiers generated using SMOTE present the highest
sensitivities. It is particularly notable for the GNB classi-
fier in which it rises from 0.482 (random over-sampling)
and 0.533 (random under-sampling) to a value of 0.725
when SMOTE is applied. This boost in sensitivity leads to
an increase in the AUCROC to 0.814. The SVM classifier
achieves a slightly better performance with an AUCROC
0f 0.830. Furthermore, both classifiers present equilibrium
between sensitivity and specificity which can be quan-
tified by the Geometric-Mean; 0.809 (GNB) and 0.825
(SVM). The performance of tree-based methods does not

Table 4 Sampling method: performance comparison

AUCROC AUCPRg SENS SPEC

RANDy GNB 0.763 0.871 0.533 0.992
DTC 0.798 0.891 0.601 0.993

RFC 0.791 0.892 0.583 0.993

SVM 0.792 0.894 0.593 0.991

RANDo GNB 0.742 0.860 0.482 0.991
DTC 0.810 0.876 0.688 0.932

RFC 0.801 0.901 0617 0.990

SYM 0.753 0.872 0.523 0.991

SMOTE GNB 0.814 0.872 0.725 0.903
DTC 0.779 0.881 0.636 0.963

RFC 0818 0.876 0.725 0.909

SYM 0.830 0.884 0.747 0912
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change significantly among sampling techniques, proba-
bly due to over-fitting. Note that DTC presents the highest
sensitivity when culture-positive observations are merely
duplicated using RANDg.

In further analysis, only models generated using the
SMOTE sampling technique and isotonic calibration are
considered. The models selected are: (i) GNB with pri-
ors of 0.5, since categories are balanced (ii) DTC with a
minimum number of samples in a leaf of 50 and a mini-
mum number of observations in a node in order to be split
of 200 (iii) RFC with 10 estimators (trees) (iv) SVM with
penalty factor of C = 1.0 and radial basis kernel where
y =0.1.

Infection risk inference on incomplete profiles

The behaviour of the selected models for different degrees
of missing inputs is compared in Table 5. Since they were
trained on complete profiles (Fg) and the biomarkers dis-
tributions are non-symmetrical (see Fig. 4) the statistical
measure preferred to input missing values is the median.
In particular, the median for each biomarker is extracted
from the observations used to train the model where both
categories (C+ and C-) are balanced.

Table 5 Missing data: performance comparison

AUCROC AUCPRg SENS SPEC

GNB Fe 0.814 0.872 0.725 0.903
Fs 0.802 0.874 0.664 0.939

Fa 0.803 0.874 0.669 0.938

F3 0.750 0.832 0.589 0.912

Fa 0.686 0.816 0.400 0.971

F1 0.569 0.767 0.145 0.994

DTC Fe 0.799 0.881 0.636 0.963
Fs 0.777 0.859 0.614 0.940

Fsa 0.769 0.839 0.652 0.886

F3 0.702 0.777 0.672 0.732

Fa 0617 0.722 0.583 0.652

F1 0.535 0.684 0.480 0.590

RFC Fe 0.818 0.876 0.725 0.909
Fs 0.806 0.874 0.682 0.930

Fa 0.805 0.867 0.707 0.903

F3 0.764 0.826 0.707 0.822

Fa 0.704 0.796 0.504 0.904

F 0.599 0.775 0.212 0.987

SYM Fe 0.830 0.884 0.747 0.912
Fs 0.816 0.885 0.687 0.944

Fa 0.809 0.874 0.694 0.924

F3 0.768 0.837 0.654 0.881

Fa 0.699 0.809 0453 0.949

Fy 0.591 0.785 0.186 0.996
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The scores obtained for {F,}°_, are very similar and
indicate that all classifiers perform without noticeable
loss in performance if at least four biomarkers are avail-
able. This is observable in Fig. 5 where sensitivity (solid
line) and specificity (dashed line) from Table 5 have
been graphically represented. Furthermore, the results
obtained for F3 are slightly inferior and the main drop
in performance materializes for F, indicating insufficient
information to perform infection inference. This is notice-
able primarily in the sensitivity score. In addition, there is
a clear trade-off between sensitivity and specificity where
the former represents a main barrier for incomplete pro-
files. As mentioned previously, the behaviour of DTC is
the least reliable. In this case, it shows an unexpected
increase in sensitivity when data is missing, likely due to
algorithm propensity to overfit, with a maximum of 0.672
for F3. The use of an ensemble approach (RFC) corrected
this issue. The best balance between sensitivity and speci-
ficity is obtained by the SVM where the former is the
highest amongst all algorithms (0.747) and is robust to
incomplete inputs. Also, it presents the highest AUCROC
(0.830). Since AUCROC and SENS are statistically signifi-
cant across classifiers (p-values< 0.01), the SVM has been
selected for further analysis.

Understanding the behaviour of the predictive model

In order to understand the response of the selected model
(SVM classifier) in real clinical settings, two different
types of scenarios have been considered: missing inputs
and imbalanced class distributions. The former has been
assessed through the ROC curves presented in Fig. 6.

0.6

0.4
GNB sensitivity

DTC sensitivity
RFC sensitivity
SVM sensitivity
GNB specificity
DTC specificity
RFC specificity
SVM specificity

0.2

F6 F5 F4 F3 F2 F1

Fig. 5 Sensitivity and specificity variation for different degrees of
missing inputs
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0.0
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Fig. 6 ROC curves for the selected SVM classifier on different degrees
of missing inputs. F4 indicates that four inputs are available

As expected from previous results, curves obtained for
{Fy,}g=4 are quite similar with an AUCROC of approx-
imately 0.8. Furthermore, they exhibit an appropriate
trade-off between specificity and sensitivity. Since the
classifier is intended to operate in scenarios where class
imbalance is common, the PR curves are shown in Fig. 7.
Note that the ROC curve is a good indicator of overall

0.8
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0.4

R50 pr curve (area = 0.884)
0.2 R60 pr curve (area = 0.891)
R70 pr curve (area = 0.845)
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0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall
Fig. 7 PR curves for the selected SVM classifier on different degrees of
imbalanced categories. R60 indicates that 60% of the observations are
culture-negative
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performance but does not reflect the effect of class imbal-
ance. The notation R80 indicates that 80% of observations
belong to the culture-negative category. In scenarios with
balanced classes the predictive model shows a good bal-
ance between precision and recall and an AUCPR of 0.884.
The model is robust against class imbalance and the drop
in AUCPR occurs for scenarios with the imbalance ratio
of 1/9 (90%) or higher.

For further understanding of the probabilities pro-
vided by the predictive model in an extremely imbal-
anced scenario, a total of 54077 observations were tested
(94% belonging to C- and 6% to C+ approximately). The
instances and density distribution for each type of classifi-
cation (true positive, true negative, false positive and false
negative) are shown in Fig. 8. A discrimination thresh-
old of 0.5, commonly used in binary classifiers, has been
applied to assign the predicted category (C- or C+).

Firstly, it is important to notice that extreme proba-
bilities generally correspond to correct predictions. In
particular, the probability ranges for true negative and
true positives are [0.1,0.2] and [0.85,1.0] respectively. The
number of false positives looks extremely high but it is
due to such acute class imbalance. Only 255 false positives
were obtained in a balanced scenario. Furthermore, this
type of error is easily identifiable since their probabilities
lie mostly within the range [0.55,0.7] without considerable
overlapping. The density distribution for the false nega-
tive predictions is spread across the range [0.1,0.4] and
overlaps slightly with the true negatives distribution. The
probabilities are distributed evenly and might correspond
to sporadic situations such as very early stage infections in
which symptoms are still not clear or cases in which the
correct therapy has been applied and therefore pathology
biomarkers have been properly controlled.

Discussion

In infectious diseases, antibiotic selection has been the
main focus of Clinical Decision Support Systems (CDSSs)
[40]. However, improving antibiotic selection does not

FP (4016)

00 01 02 03 04 05 05 06 07 08 09 1.0

Fig. 8 Probability density distributions for each type of prediction in

(2017) 17:168

the confusion matrix: TP, TN, FP and FN
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necessarily imply a reduction in antibiotic prescription, it
might even encourage it. Therefore, assisting clinicians by
providing the risk of infection for an individual patient,
and on whether or not to initiate antibiotic therapy, can
potentially reduce the misuse of antibiotics. The main rea-
sons obstructing inclusion in CDSSs were: (i) studies were
highly specific by tackling individual microbes and single
infections (sepsis is the most common) (ii) they required
a high number of variables whose collection is laborious
(iii) scenarios with missing data, which are very com-
mon in clinical environments, were completely ignored
(iv) there was a lack of thorough description and eval-
uation of the models to understand their behaviour and
support confidence.

Selection of clinical features

The first challenge while designing a model for classi-
fication is deciding which input parameters are to be
considered. Based on the recommendations of infection
specialists and clinicians, six generic biochemical markers
were selected which were found to be available, especially
for infected patients, on a daily basis. To diagnose bacte-
rial infections, Procalcitonin (PCT) has presented slightly
better diagnostic accuracy than C-Reactive Protein (CRP)
[41]. However, CRP was requested considerably more
often in our data and therefore was favoured for inclusion
in the study.

Liver failure is known to be associated with increased
risk of infection and therefore culture-positive sam-
ples [42]. Among the biochemical markers commonly
examined by clinicians to diagnose liver failure, we
have considered Alanine aminotransferase (ALT), Alka-
line phosphatase (ALP) and biliribin (BIL). In addition,
culture-positive samples are associated with high sever-
ity scores (SAPS II>43 and SOFA>4) [42]. From the
large amount of clinical features required to compute such
scores, bilirubin (BIL), white blood cell counts (WBC) and
creatinine (CRE) are common to this study. Since some
of the selected biochemical markers have different nor-
mal reference ranges according to age and gender, the
inclusion of such variables could potentially increase the
accuracy of the classifiers.

Addressing class imbalance

As commonly expected from clinical data, categories
were clearly imbalanced and different sampling tech-
niques were explored to tackle this issue. Simple methods
such as random under-sampling and/or over-sampling
have proven to be valid in other domains. Undoubtedly,
choosing an adequate sampling technique depends on
the data, but it is clear that under-sampling potentially
discards useful information and over-sampling replicates
observations which might lead to over-fitting. In fact,
Synthetic Minority Oversampling Technique (SMOTE)
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proved to be a better approach which outperformed pre-
vious techniques and enhanced the sensitivity of the
generated models.

Effect of missing inputs in prediction

Unfortunately, missing variables is a common problem in
clinical data. Since this is a retrospective study, we have
to deal with the fact that the data were not collected to
generate a predictive model. For these reasons, it is highly
desirable for a classification system to be robust to incom-
plete inputs. The SVM classifier is robust and operates
without noticeable loss in performance if at least four
biomarkers are present. DTCs are widely used in clinical
research and the results obtained in this paper outperform
those presented in similar studies [15, 16]. However, this
method is the most affected by missing biomarkers as a
result of the greedy strategy applied. In previous studies
RFC was selected as an ensemble method based on DTCs
[15-17] to tackle this issue. The unexpected increase in
sensitivity presented by DTC for scenarios with missing
data was corrected. However, performance was found to
be similar.

Selecting a suitable algorithm

From the obtained results, infection inference is feasible
using only the six selected biomarkers with an AUCROC
of approximately 0.8. In addition, sensitivity and speci-
ficity were both high and balanced in comparison to pre-
vious studies [17]. The best performance corresponds to a
SVM classifier with penalty factor of C = 1.0 and radial
basis kernel where y = 0.1. The main disadvantage of this
method is the large amount of computational resources
(memory and time) required. Conversely, despite the sim-
plicity of Gaussian Naive Bayes (GNB), the difference in
performance compared to complex algorithms is minimal.
It also has additional desirable properties, namely that it
requires a small amount of training data, it is very com-
putationally efficient and performs online updates. These
results were obtained from real observations (not synthet-
ically generated) which were completely unseen during
sampling, preprocessing and model calibration. The latter
is often ignored but necessary to guarantee that probabil-
ities use the whole spectrum [0,1] and are informative by
providing the degree of confidence in the prediction. The
Bootstrap aggregating technique was explored to build
ensemble classifiers based on GNB and SVM, but it did
not provide any significant improvement.

Translational utility

It is important to recognize that the evaluation in the
training phase is different from the evaluation of the final
model. The first phase is to tune the models’ hyperpa-
rameters and select the most effective and robust model
during training. The second phase is to evaluate the final
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model after the training. Ideally, the test data of this phase
reflects the class distributions of the original popula-
tion even though such distributions are usually unknown.
Since the SVM classifier presented a robust response (and
the highest sensitivities) in scenarios with missing data
and imbalanced categories, it has been selected for further
inclusion in the EPIC IMPOC (Enhanced Personalized
and Integrated Care for Infection Management at Point of
Care) decision support system to assist clinicians [43].

Limitations

Profiles were assigned to the culture-positive (C+) cat-
egory based on evidence of organism growth in the
microbiology samples. Since there was a lack of no-
growth evidence, remaining profiles were assigned to the
culture-negative (C-) category. This limitation was tack-
led through data cleaning and outlier detection. However,
providing no-growth evidence could boost performance
even further. Also note that all patients and possible types
of infection encountered in the hospital were considered.

Conclusion

In this study, we have shown that it is feasible to per-
form infection inference using six biomarkers with a high
degree of confidence (AUCROC> 0.8). To improve antibi-
otic prescribing and reduce patients’ unnecessary expo-
sure to antibiotics in hospitals, new mechanisms for sup-
porting clinicians decision making are urgently required.
Using our selected biomarkers, enough information was
available on a daily basis to perform such inference, even
in the presence of incomplete and imbalanced data. The
SVM model (C = 1.0 and radial basis kernel with y = 0.1)
was isotonically calibrated and thoroughly evaluated by
mimicking a wide range of conditions (some of them
extreme) in which the classifier would operate. Its
response was robust and validated for translational utility.
An empirical study to quantify the costs of different mis-
takes (false positives and false negatives) to understand
their consequences and effects on clinicians prescription
practices forms the basis of our future work. In addition,
missing data will be handled more efficiently by find-
ing correlations between biomarkers to determine more
suitable values other than the median. With further inte-
gration in a decision support system, this work holds
promise of alleviating inadequate prescription practices to
enhance infection management and contribute to halting
the progression of AMR.
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