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Enhancement of hepatitis virus
immunoassay outcome predictions in
imbalanced routine pathology data by data
balancing and feature selection before the
application of support vector machines
Alice M. Richardson1,2* and Brett A. Lidbury1,2

Abstract

Background: Data mining techniques such as support vector machines (SVMs) have been successfully used to
predict outcomes for complex problems, including for human health. Much health data is imbalanced, with many
more controls than positive cases.

Methods: The impact of three balancing methods and one feature selection method is explored, to assess the ability
of SVMs to classify imbalanced diagnostic pathology data associated with the laboratory diagnosis of hepatitis B (HBV)
and hepatitis C (HCV) infections. Random forests (RFs) for predictor variable selection, and data reshaping to overcome
a large imbalance of negative to positive test results in relation to HBV and HCV immunoassay results, are examined.
The methodology is illustrated using data from ACT Pathology (Canberra, Australia), consisting of laboratory test
records from 18,625 individuals who underwent hepatitis virus testing over the decade from 1997 to 2007.

Results: Overall, the prediction of HCV test results by immunoassay was more accurate than for HBV immunoassay
results associated with identical routine pathology predictor variable data. HBV and HCV negative results were
vastly in excess of positive results, so three approaches to handling the negative/positive data imbalance were
compared. Generating datasets by the Synthetic Minority Oversampling Technique (SMOTE) resulted in significantly
more accurate prediction than single downsizing or multiple downsizing (MDS) of the dataset. For downsized data
sets, applying a RF for predictor variable selection had a small effect on the performance, which varied depending
on the virus. For SMOTE, a RF had a negative effect on performance. An analysis of variance of the performance
across settings supports these findings. Finally, age and assay results for alanine aminotransferase (ALT), sodium for
HBV and urea for HCV were found to have a significant impact upon laboratory diagnosis of HBV or HCV infection
using an optimised SVM model.
(Continued on next page)
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Conclusions: Laboratories looking to include machine learning via SVM as part of their decision support need to
be aware that the balancing method, predictor variable selection and the virus type interact to affect the laboratory
diagnosis of hepatitis virus infection with routine pathology laboratory variables in different ways depending on
which combination is being studied. This awareness should lead to careful use of existing machine learning
methods, thus improving the quality of laboratory diagnosis.

Keywords: Analysis of variance, Hepatitis B, Hepatitis C, Machine learning, Random forests, Synthetic minority
oversampling technique

Background
Both HBV and HCV are of global significance as leading
causes of liver cancer (most common is HCC - Hepato-
cellular carcinoma). HCC ranks as approximately the
seventh highest cancer worldwide, responsible for the
third highest rate of cancer-related deaths, with 80% of
HCC associated with chronic HBV or HCV [1, 2]. Path-
ology data collected via the health system provides a rich
source of medical information on individual patients,
and provides further benefits as a powerful aggregated
database for complex modelling to investigate funda-
mental disease processes, as well as applied problems in
laboratory diagnostics. With powerful computing and a
variety of machine learning algorithms available and
given the worldwide impact of HBV and HCV on human
health, new diagnostic solutions through biomedical and
quantitative science collaboration, opportunities to ex-
plore fundamental human health problems as well as
systems-based issues, are possible.
Routine diagnostic pathology test results are an abun-

dant data source for these sorts of complex analyses of
aggregated patient physiological and biochemical re-
sponses to disease and infection events. Simple data
mining techniques, like decision tree ensembles, have
been applied previously to pathology laboratory data
collected for the testing of patients suspected of
Hepatitis B virus (HBV) or Hepatitis C virus (HCV)
infection, detected by immunoassay for hepatitis B
surface antigen (HBsAg) or serum anti-HCV antibody
respectively [3]. Whether the prediction results of this
previous study can be further optimised and improved
are the focus to this current study.
Support vector machines (SVMs) have received con-

siderable attention as a method of classification of large
multi-dimensional data sets [4], and they will be the
focus of this paper. The technique originated with re-
search in statistical learning theory, with the basic idea
to classify observations into two (or more) categories by
finding the plane (in multiple dimensions) that best sep-
arates the multi-dimensional cloud of data points. SVMs
are governed by choice of a small number of parameters,
namely the kernel and the cost function, and so “state-
of-the-art results can be achieved with relatively little

effort” [5], p.214. SVMs have been applied to a variety of
medical data including gene expression data [6]; and
cancer imaging data [7].
For the models to be worthwhile, challenges within

the data, such as imbalance between the number of in-
dividuals with positive versus negative immunoassay re-
sults, must be addressed. Classification of imbalanced
data has attracted a large body of research over time,
which has been reviewed recently [8]. These authors
identified two basic strategies for dealing with imbal-
anced learning with a number of examples from the
medical research literature: preprocessing techniques
including resampling and feature selection [9], feature
extraction [10] and cost-sensitive learning [11]; and
classification algorithms including ensemble methods
[12] and algorithmic classifier modifications [13]. SVMs
have been used to determine the effect of a variety of
balancing procedures on several publically available
data sets [14]. Though SVMs have been found to be
fairly robust to class imbalance [15], that study was
highly structured in terms of predictors.
Simple downsizing has been found to be effective for

a variety of data structures [16], and this study aims to
identify whether simple downsizing is useful for highly
imbalanced low-dimensional routine pathology data.
Multiple downsizing has also been found to be effective
in the context of high-dimensional data [10]: this study
aims to identify whether a smaller lower-dimensional
data set also benefits from multiple downsizing. Syn-
thetic Minority Oversampling Technique (SMOTE) is
the third method of data balancing investigated in this
paper [17]. It has been used in a clinical context, for ex-
ample to identify critically ill patients at risk of invasive
infection [18].
A variety of methods for predictor variable selection

within the SVM itself have also been proposed [19]. A
typical SVM analysis includes all available predictor
variables, but the presence of many predictors of low
value can slow the calculations within the SVM. In this
paper the effectiveness of random forests [20] as the
feature selection method will be investigated.
The aims of the study were both to use SVMs to iden-

tify predictors for the enhanced laboratory diagnosis
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of hepatitis virus infection, and to identify the type of
data balancing and feature selection that best assisted
this enhanced classification of HBV/HCV negative or
positive. Effective data balancing and feature selection to
address the challenge of imbalanced data will enhance
the timeliness and accuracy of models developed using
SVMs on pathology data to predict laboratory outcomes,
based on multiple biomarkers [21].

Methods
Data
The data set employed in this study originally comprised
18,625 individual cases (1 individual patient case per row)
of hepatitis virus testing over a decade from 1997 to 2007.
Data was provided by ACT Pathology, The Canberra
Hospital (TCH), Australia and has also been analysed

previously [3]. Patient identifiers were removed by TCH
staff prior to data access, with only a laboratory ID
numbers provided for the study. After data cleaning that
included the removal of rows with missing values, 9170
rows of complete data were available for HBV tested
patients (through HBsAg detection), and 7820 complete
data rows available from HCV patients (via anti-HCV
detection). Only the complete rows were used in the
experiments described herein: approaches to missing data
are described elsewhere [22]. The data access and analysis
had Human Ethics Committee approval from ACT Health
(protocol no. ETHLR.11.016) and The Australian National
University (protocol no. 2012/349). A description of
variables in the data set is shown in Table 1.
Serum HBsAg was classified as laboratory positive at ≥1.6

immunoassay units (IU) and HCV classified as positive

Table 1 Description of variables used in SVM analyses

Variable abbreviation Description and definition Measurement units

Response variables

HBsAg Hepatitis B Surface Antigen (marker of HBV infection) Positive (1) or
Negative (0)

HepC Patient antibody to HCV, indicating contact with virus (Both HBsAg and HepC detected by immunoassay)

Explanatory variables

Age Patient (case) Age Years

Sex Gender 1 = F, 2 = M M or F

ALT Alanine aminotransferase; an intracellular enzyme released after liver and other tissue cell damage U/L

GGT Gamma-glutamyl transpeptidase; an intracellular enzyme also relevant to liver damage U/L

Hb Haemoglobin g/L

Hct Haematocrit; formerly known as “packed cell volume” %

Mch Mean corpuscular haemoglobin pg/RBC

MCHC Mean corpuscular haemoglobin concentration g/L

MCV Mean corpuscular volume f/L

Plt Platelets; an agent in blood clotting × 109/L

WCC White cell count × 109/L

RCC Red cell count × 1012/L

Crea Creatinine; excreted by filtration through glomerulus and tubular section μmol/L

K Potassium; predominant intracellular cation whose plasma level is regulated by renal excretion mmol/L

ALKP Alkaline Phosphate; found in liver, bone, intestine and liver U/L

ALB Albumin; major component of plasma proteins g/L

TBil Total Bilirubin levels are reflective of the rate that the body recycles the red cells in the blood;
bilirubin is a breakdown product of old, spent red blood cells.

μmol/L

Sodium Sodium; predominant extracellular cation mmol/L

Urea Blood urea; often used to detect kidney related infections. mmol/L

RDW Red cell distribution width %

Neut Neutrophils; white blood cells, elevated by bacterial infection and early viral infection × 109/L

Lymph Lymphocytes; white blood cells, elevated by viral infection and some cancers × 109/L

Mono Monocytes; white blood cells, elevated by infection, inflammation, and some cancers × 109/L

Eos Eosinophils; white blood cells, elevated by allergy and parasite infection × 109/L

Bas Basophils; white blood cell, elevated in hypersensitivity reactions × 109/L
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at ≥1.0 IU. All other HBsAg and HCV results below this
assay cut-off were classified as negative (M. de Souza,
ACT Pathology, pers. comm.). No clinical notes were
provided with the immunoassay data, so clinical infection
status and symptoms were not known. Immunoassay
results were obtained from the Architect HBsAg and
anti-HCV platforms respectively (Abbott Australasia
Pty Ltd. Diagnostics Division, North Ryde, NSW).

Balancing
The high degree of imbalance in the data, with 172 out of
9170 (2%) rows HBV positive and 522 out of 7820 (7%)
HCV positive, can perturb the optimal performance of
support vector machines. We investigate simple downsiz-
ing, multiple downsizing, and SMOTE in this study.
Simple downsizing consisted in the current study of

taking the large set of negative outcomes and randomly
splitting it into subsets equal in size to the set of positive
outcomes. Each subset of negative outcomes was put
with the positive outcomes and the data analysis per-
formed on that dataset. Simple downsizing for this in-
vestigation led to 52 sets of HBV-negative data and 13
sets of HCV-negative data of equal size, for analysis with
the HBV-positive and HCV-positive data, respectively.
To implement multiple downsizing in the current

study, a number of (we used 11) random selections of
samples from the majority class were made and a classi-
fication rule was derived on each of the resulting bal-
anced training sets (note that the minority class was the
same in each training set). The 11 downsized classifiers
were combined by majority voting; the predictions for
observations in the testing set were obtained from each
of the downsized classifiers and observations in the test-
ing set were assigned to the predicted value with the lar-
ger number of votes. The multiple downsizing process
was repeated ten times to allow for a measure of vari-
ability, similar to the measure of variability available
across the 52 (for HBV) and 13 (for HCV) datasets to be
analysed using simple downsizing.
The implementation of SMOTE was also tested for

balancing the proportion of negative and positive out-
comes in the dataset. SMOTE involves increasing the
number of outcomes in the smaller group (in our case,
positive test result) by synthesising data. At the same
time, the larger group (in our case, negative test result)
is decreased in size by sampling from it. The same
number of SMOTE datasets (52 for HBV and 13 for
HCV) as were available for simple downsizing were
constructed using the DMwR library [23] in R [24].

Scaling
Scaling methods [18] were considered for this study.
However, these authors found that scaling and/or taking
logs did not contribute significantly to accuracy in their

experiment, so we will only report the results from raw
data analysis here. Furthermore default data are scaled
within the SVM to have zero mean and unit standard
deviation, so externally imposed scaling is not necessary.

Machine learning including predictor variable selection
We decided to investigate the usefulness of a two-step
process involving constructing a random forest (RF),
picking the top five variables in terms of mean decrease
in the Gini index [20] and using only those five variables
in the subsequent SVM. The same process was applied
to both the downsized data sets and the SMOTE data
sets.
We implemented the random forest (RF) analysis

where required using the randomForest library [25]. We
implemented the SVM analysis using the e1071 library
[26]. Accuracy rates were measured by use of a 70%
training, 30% testing split of the data [3, 27].
The order of work for downsizing and experimenta-

tion is shown in Table 2.

Analysis of variance
The results are drawn together using an analysis of vari-
ance [28] to identify the amount of variation in three
performance measures attributable to three factors. The
performance measures were: sensitivity (the number
positive and tested positive, divided by the number posi-
tive), precision (the number positive and tested positive,
divided by the number tested positive) and F score
(twice the product of precision and sensitivity, divided
by the sum of precision and sensitivity). The three fac-
tors were data balancing, predictor variable selection
and virus (HBV or HCV) analysed. The three data balan-
cing methods were simple downsizing, multiple down-
sizing, and SMOTE. There were two techniques of
predictor variable selection: none, and RF with the five
most important variables fed back into an SVM. The in-
teractions between pairs of the above factors were mod-
elled for HBV and HCV separately (9170 observations
for HBV and 7820 observations for HCV), to detect
settings of one factor that cause the accuracy rates to be-
have differently depending on the setting of another
interacting factor.
Finally, we use the best combination thus identified to

find the assays that combine to best diagnose presence
of HBV or HCV in the laboratory.

Results
Summary statistics
Summary statistics for patient demographics are shown
in Table 3. The difference in mean age between HBV
positive cases and controls was statistically significant
(t = 4.33, df = 183.06, p < 0.0001) though the clinical
difference of 5 years is not large and the ranges are similar
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(1 to 92 years for cases and 0 to 104 years for controls).
The difference in mean age between HBV positive cases
and controls was also statistically significant (t = 9.64,
df = 679.58, p < 0.0001) though again, the clinical differ-
ence of 7 years is not large and the ranges are also similar
(1 to 104 years for cases and 0 to 98 years for controls).
Means and confidence intervals of the three perform-

ance measures across the six different experimental
settings are shown in Table 4. The spread of the per-
formance measures is larger for HBV than HCV, which
validates the decision to present the analyses for HBV
and HCV separately. The means also show that
SMOTE is an excellent method to counteract imbal-
ance, except in terms of sensitivity to HCV.

Effect of balancing method
The effect of balancing method on the three perform-
ance measures is displayed in Tables 5 and 6. For HBV
(Table 5), method has a significant effect on precision.
Follow-up analyses when RF is used show the contrib-
utors to the significant method effect are MDS-
downsize (diff = 0.0038, p = 0.0001) and SMOTE-MDS
(diff = −0.0044, p < 0.0001). When RF is not used, the
contributors to the significant method effect are MDS-

downsize (diff = 0.0049, p = 0.0187) and SMOTE-
downsize (diff = 0.0049, p < 0.0001).
Similarly, for HBV, method has a significant effect of

sensitivity. Follow-up analyses when RF is used show the
contributor to the significant method effect is SMOTE-
downsize (diff = 0.0625, p = 0.0002). When RF is not
used, all three pairs of method are contributors to the
significant method effect.
Finally, for HBV method has a significant effect on F

score. Follow-up analyses show the contributors to the
significant effect are MDS-downsize (diff = 0.0082,
p = 0.0001) and SMOTE-MDS (diff = −0.0066, p < 0.0001).
For HCV, method has a significant effect on precision.

Follow-up analyses when RF is used show the contribu-
tors to the significant method effect are MDS-downsize
(diff = 0.134, p < 0.0001), SMOTE-downsize (diff = −0.0076,
p = 0.0038) and SMOTE-MDS (diff = −0.0209, p < 0.0001).
When RF is not used, all three pairs of method are contrib-
utors to the significant method effect.
Similarly, for HCV (Table 6), method also has a signifi-

cant effect on sensitivity. Follow-up analyses when RF is
used show the contributors to the significant method ef-
fect are SMOTE-downsize (diff = 0.0428, p = 0.0029)
and SMOTE-MDS (diff = 0.0582, p = 0.0002). When RF
is not used, the contributors to the significant method

Table 3 Summary statistics for patient demographics

Variable HBV positive (n = 172) HBV negative (n = 8998) p-value HCV positive (n = 533) HCV negative (n = 7287) p-value

Sex 34% female 47% female 0.0008a 36% female 45% female 0.0001a

Age mean (s.d.) 40.5 (13.9) 45.2 (18.7) 0.0001b 40.6 (14.4) 47.1 (19.2) <0.0001b

aTwo-sample test of proportions, bTwo sample t test, HBV Hepatitis B Virus, HCV Hepatitis C virus

Table 2 Workflow for SVM analyses

HBV

Extract 9170 individuals with HBV recorded of which 172 positive, 8998 negative

Split data into training (70%) and testing (30%) with 120 positive and 6300 negative in each split

Either Downsize the training data into 52 sets of 120 positive plus 120 negative

Or SMOTE the training data 400% oversampling and 100% under sampling leading to 52 sets of 3960 individuals with 1920 positive,
2040 negative

Or Multiply downsize the training data into 11 sets of 120 positive and 120 negative

Then either grow a random forest and pick the top five variables, apply SVM with the top five variables from the random forest

Or proceed straight to SVM

HCV

Extract 7820 individuals with HCV recorded with 533 positive, 7287 negative

Split data into training (70%) and testing (30%) with 373 positive and 5100 negative in each split

Either Downsize the training data into 13 sets of 373 positive, 373 negative

Or SMOTE the training data at 400% oversampling and 100% under sampling leading to 13 sets of 4797 individuals with 1492 positive,
1865 negative

Or Multiply downsize the training data into 11 sets of 373 positive and 373 negative

Then either grow a random forest and pick the top five variables, apply SVM with the top five variables from the random forest

Or proceed straight to SVM
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effect are SMOTE-downsize (diff = −0.2563, p < 0.0001)
and SMOTE-MDS (diff = −0.2777, p < 0.0001).
Finally, for HCV, method has a significant effect on F-

score. Follow-up analyses when RF is used show all three
pairs of method are contributors to the significant
method effect. When RF is not used, the contributors
to the significant method effect are MDS-downsize
(diff = 0.0184, p = 0.0001) and SMOTE-downsize
(diff = 0.0133, p = 0.0027).

Effect of feature selection via random forest
The effect of feature selection is also shown in Tables 5,
6. For HBV (Table 5), feature selection has a significant
effect on precision. When downsizing is used, the effect
is significant (diff = −0.0024, p = 0.0002). When SMOTE
is used the effect is also significant (diff = −0.0077,
p < 0.0001) but the effect when multiple downsizing is
used is not significant.
Similarly for HBV, feature selection has a significant

effect on sensitivity. SMOTE is the only method con-
tributing to this significance (diff = 0.4290, p < 0.0001).

Finally, for HBV, feature selection has a significant
effect on F-score (diff = −0.0066, p < 0.0001), and the
difference is not statistically significant according to
which method is employed.
For HCV (Table 6), feature selection has a significant

effect on precision, sensitivity and F score. All three
methods contribute significantly to the effect for all
three performance measures.
To test the ability of each approach to distinguish

positive from negative test results, the area under the re-
ceiver operating characteristic curve (AUC) was calculated
(Fig. 1). For HBV (Fig. 1a), the AUC values lie between
0.591 and 0.728 which indicate all approaches are good
but not excellent (defined by AUC > 0.8). For downsizing
and MDS, addition of predictor variable selection by RF
improved the AUC, but the reverse outcome was found
for SMOTE. The method that produced the greatest AUC
was MDS. For HCV (Fig. 1b), the AUC values lie between
0.638 and 0.723, a tighter range than for HBV. These
AUC values also indicate that all methods were good, but
not excellent as defined above. With no variable selection,

Table 4 Sensitivity, precision and F scores by virus, balancing method and feature selection

HBV mean (95% CI) SMOTE SMOTE RF Downsize Downsize RF MDS MDS RF

Fscore 0.056 (0.054, 0.057) 0.052 (0.050, 0.053) 0.056 (0.054, 0.057) 0.052 (0.050, 0.053) 0.065 (0.061 0.068) 0.059 (0.055, 0.063)

Precision 0.034 (0.032, 0.036) 0.026 (0.025, 0.027) 0.029 (0.028, 0.030) 0.027 (0.026, 0.028) 0.034 (0.032, 0.036) 0.031 (0.029 0.032)

Sensitivity 0.625 (0.605, 0.645) 0.611 (0.587, 0.634) 0.625 (0.605, 0.645) 0.611 (0.587, 0.634) 0.246 (0.231, 0.260) 0.675 (0.654, 0.680)

HCV mean (95% CI) SMOTE SMOTE RF Downsize Downsize RF MDS MDS RF

Fscore 0.187 (0.179, 0.196) 0.200 (0.196, 0.202) 0.174 (0.170, 0.178) 0.208 (0.200, 0.215) 0.192 (0.190, 0.195) 0.225 (0.220, 0.229)

Precision 0.134 (0.128, 0.140) 0.117 (0.115, 0.119) 0.103 (0.100, 0.105) 0.124 (0.20, 0.129) 0.115 (0.113, 0.117) 0.138 (0.134, 0.141)

Sensitivity 0.311 (0.296, 0.326) 0.668 (0.654, 0.682) 0.567 (0.545, 0.590) 0.625 (0.600, 0.650) 0.589 (0.579, 0.598) 0.610 (0.596, 0.623)

Downsize simple downsizing, Downsize RF Simple downsizing with random forest variable selection, MDS Multiple downsizing, MDS RF MDS with random forest variable
selection, SMOTE Synthetic Minority Oversampling Technique, SMOTE RF SMOTE with random forest variable selection, HBV Hepatitis B virus, HCV Hepatitis C virus

Table 5 Analysis of variance of F score, precision and sensitivity
by balancing method and feature selection for HBV

Precision source SS df MS F p

Method 0.0004 2 0.0002 13.088 0.000 (a)

Pre-processing 0.0013 1 0.0013 80.504 0.000 (a)

Method.Pre-processing 0.0004 2 0.0002 12.222 0.000 (a)

Sensitivity Source SS df MS F p

Method 1.6151 2 0.8075 159.98 0.000 (a)

Pre-processing 1.9877 1 1.9877 393.78 0.000 (a)

Method.Pre-processing 2.8062 2 1.4031 277.97 0.000 (a)

F score Source SS df MS F p

Method 0.0011 2 0.0006 10.838 0.000 (a)

Pre-processing 0.0025 1 0.0025 47.154 0.000 (a)

Method.Pre-processing 0.0003 2 0.0002 3.007 0.052

(a) = Significant at 0.0025 level with adjustment for multiple testing.
Method = simple downsizing, multiple downsizing or SMOTE. Pre-processing =
random forest variable selection or not. Method.Pre-processing = the interaction
between Pre-processing and Method

Table 6 Analysis of variance of F score, precision and sensitivity
by balancing method and feature selection for HCV

Precision source SS df MS F p

Method 0.0025 2 0.0013 32.843 0.000 (a)

Pre-processing 0.0011 1 0.0011 28.713 0.000 (a)

Method.Pre-processing 0.0064 2 0.0032 84.402 0.000 (a)

Sensitivity Source SS df MS F p

Method 0.0194 2 0.0970 114.86 0.000 (a)

Pre-processing 0.4375 1 0.4375 518.21 0.000 (a)

Method.Pre-processing 0.4162 2 0.2081 246.46 0.000 (a)

F score Source SS df MS F p

Method 0.0041 2 0.0021 25.546 0.000 (a)

Pre-processing 0.0114 1 0.0114 141.771 0.000 (a)

Method.Pre-processing 0.0019 2 0.0010 11.844 0.000 (a)

(a) = Significant at 0.0025 level with adjustment for multiple testing.
Method = simple downsizing, multiple downsizing or SMOTE. Pre-processing =
random forest variable selection or not. Method. Pre-processing = the interaction
between Pre-processing and Method
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SMOTE had the largest AUC, whereas with variable selec-
tion, MDS had the largest AUC. For any one approach,
addition of variable selection by RF improved the AUC.

Key predictor variables and clinical impact
The clinical question of which variables are the most im-
portant for predicting positive immunoassay results for
HBV and HCV is scattered due to the large number of
datasets that arise from downsizing, and the multiple
datasets generated under SMOTE that provided the

replication needed for the analysis of variance. So the
clinical question is addressed on the entire dataset in the
following manner. For HBV SMOTE was applied to the
entire dataset with an over-sampling fraction of 400%
and an under sampling fraction of 100%, after which a
RF was grown to establish the three most important
variables that were then fitted an SVM. For HCV an
identical SMOTE strategy was applied, but with an over-
sampling fraction of 100% and an under-sampling frac-
tion of 100%. The three most important variables were

a

b

Fig. 1 Receiver-operator characteristic (ROC) curves for a HBV and b HCV summarising the six models under consideration for improving prediction
for imbalanced data. The models are: Downsize = simple downsizing; Downsize RF = simple downsizing with random forest variable selection;
MDS = multiple downsizing; MDS RF = multiple downsizing with random forest variable selection; SMOTE = Synthetic Minority Oversampling;
SMOTE RF = Synthetic Minority Oversampling with random forest variable selection

Richardson and Lidbury BMC Medical Informatics and Decision Making  (2017) 17:121 Page 7 of 11



identified by RF and then fitted to a SVM using ten-fold
cross-validation, a cost parameter optimised over the
range {10, 100} and a scaling parameter, gamma, opti-
mised over the range {0.001, 0.1}.
For the entire HBV data set, the three most important

variables were ALT, Age and Sodium in decreasing
order. For HCV they were Age, ALT and Urea. By fitting
an SVM using three variables, it is possible to visualise
the results of the predictions (Fig. 2).

For HBV, Age, ALT and Sodium were the top three
predictors. Figure 2a shows values of Sodium and Age
on the x and y axes respectively, for a constant serum
ALT concentration of 35 IU/L. Black data points are
used in the construction of the SVM, red ones are not.
HBV positive cases are identified by crosses, and con-
trols by circles. The central coloured shape shows that
HBV infection will be predicted (HBV = TRUE) when
Age is between 25 and 65 years, and Sodium between

a

b

Fig. 2 a Hepatitis B virus (HBV) and b Hepatitis C virus (HCV) SVM plots post SMOTE to overcome HBV/HCV immunoassay class imbalance, and
random forest to identify the top three predictors of HBV or HCV positive/negative immunoassay class. For HBV and HCV SVM visualisation, the
SVM was sliced at ALT equal to 35 IU/L
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135 and 145 mmol/L. The ten-fold cross-validation ac-
curacy of this model is 64%, with individual accuracies
in the folds ranging from 55 to 69%. For HCV (Fig. 2b)
at the same constant ALT concentration, HCV infection
will generally be predicted when Age is below 60 years
and Urea is below 40 mmol/L, and when the combination
of the two is below around 60 (due to the sloping bound-
ary between the two coloured areas). The ten-fold cross-
validation accuracy of this model is 71%, with individual
accuracies in the folds ranging from 68 to 76%.
To summarise, the enhanced laboratory prediction of

HBV infection (as detected by HBsAg immunoassay),
after balancing to account for the class imbalance for
HBsAg negative versus positive results via SMOTE,
showed that balancing method, feature selection and
their interaction were statistically significant. Based on
raw data, the key predictors were Age, serum ALT and
sodium. Also, the accuracy rate of SVM was calculated
as approximately 64% for SMOTE data, and if high sen-
sitivity is a priority, inclusion of variable selection with a
random forest prior SVM is advantageous. For HCV la-
boratory diagnosis, balancing method, feature selection
and interaction were statistically significant, and based
on raw data the key predictors were Age, serum ALT
and Urea for SMOTE data. An accuracy rate of SVM of
approximately 71% for SMOTE data was achieved, and
as for HBV, if high sensitivity is a priority include vari-
able selection with SMOTE.

Discussion
Specific contribution
The contribution of this paper to the understanding of
optimisation for SVM modelling of routine pathology
blood test results, associated with HBV or HCV posi-
tive/negative results as response categories, will help
achieve such diagnostic laboratory alternatives where
resources are limited or absent. Utilising routine results
as presented here, such algorithms allow the early detec-
tion of HBV or HCV infection; hepatitis immunoassay is
a special test ordered as a results of other investigations,
and as such is not routinely requested, potentially miss-
ing cases of infection.

Comparison to existing literature
The interrogation of routine pathology data associated
with positive/negative HBV and HCV immunoassay data
has been performed previously through single decision
tree and tree ensemble analysis to examine the effect of
data balancing, feature selection, and other adjustments
to enhance HBV and HCV immunoassay prediction [3].
With significant data imbalance and the need for fea-

ture selection, the high rates of prediction accuracy, sen-
sitivity and specificity achievable in a Chinese cohort of
518 chronic HBV patients, compared to 303 HBV and

HCV negative controls [21], were not matched here.
The higher degree of balance between HBsAg positive
and negative test results clearly contributed to the higher
sensitivity and specificity values observed in that paper.
Comparable AUC values have been achieved by a simi-

lar study of pathology data [29], focusing on one or two
classification methods but including longitudinal data
which was not available for the current study.

Implications for practice
From the biomedical and diagnostic perspective, this
study emphasised the importance of age and alanine
aminotransferase (ALT) as of highest importance to ac-
curate hepatitis prediction, followed by Sodium for HBV
and Urea for HCV. Key variables detected by the current
study were scattered because of the multiple datasets
utilised in these analyses, but some predictor variables
emerge of potential diagnostic importance. Of note
among predictor variables was the strong association of
age to the positive detection of HBsAg, indicating sig-
nificantly higher HBV infection prevalence in patients
between 20 and 60 years old. This suggests that the
higher prevalence of risk-taking behaviour (e.g. intra-
venous drug use) for young adults, and into middle age,
is a key predictor for HBV infection, an observation re-
inforced by epidemiological studies of drug, alcohol
and other high risk behaviours across the general popu-
lation in Australia [30].
Given the extensive range of biochemical, cellular and

physiological data associated with HBV or HCV im-
munoassay, via simultaneously collected routine path-
ology results, support vector machines and the SMOTE
technique offer the opportunity to use an entire data
set to enhance the laboratory prediction of infectious
diseases, particularly where a large disparity exists be-
tween the number of negative and positive test results.

Limitations
Several considerations particularly arise in regards to
the limitations of this paper. First, only two datasets
have been examined, pertaining to HBV and HCV re-
spectively. The best methods identified in this paper
may not apply to laboratory diagnosis of other infec-
tions, or the same infections in other settings. Second,
a limited set of features (30 biomarkers) was available
for analysis and these models are naturally limited by
the features available.
Third, the balance in the datasets examined is ex-

treme, with little more than 2% of positive test results.
This degree of imbalance is common in the diagnostic
pathology context. One-class classification can be used
in such situations however researchers must be sure
that the method matches the research question [31].
The sparse literature on the use of one-class classification
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in medical research was noted in 2010 [32], and has
not expanded to a very great extent since then. The
availability of open source software is also a limitation
to the implementation of such methods in laboratory
settings.
Finally, the balancing methods that were examined

were simple downsizing, multiple downsizing and
SMOTE; and the feature selection method that was ex-
amined was the random forest.These were selected for
their durability in the literature to date and their trans-
parency for clinical use. Many other algorithms exist
and are in development: future work should investigate
the best of these new procedures.

Conclusion
This study examined the effect of balancing and feature
selection on the performance of SVMs used to predict
HBV or HCV infection status, as detected by specific
immunoassay. SMOTE has been shown to enhance pre-
diction accuracy considerably, compared to decision trees,
simple downsizing and multiple downsizing methods. The
effect of predictor variable selection has been shown to be
of smaller practical significance even though statistical
significance is achieved.
Better understanding of the behaviour of data mining

techniques will lead to enhanced laboratory prediction
of infections such as HBV and HCV once data mining
algorithms are embedded in the analysis of routine
pathology data.
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