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Abstract

Background: Identifying patients with certain clinical criteria based on manual chart review of doctors’ notes is a
daunting task given the massive amounts of text notes in the electronic health records (EHR). This task can be
automated using text classifiers based on Natural Language Processing (NLP) techniques along with pattern
recognition machine learning (ML) algorithms. The aim of this research is to evaluate the performance of traditional
classifiers for identifying patients with Systemic Lupus Erythematosus (SLE) in comparison with a newer Bayesian word
vector method.

Methods: We obtained clinical notes for patients with SLE diagnosis along with controls from the Rheumatology
Clinic (662 total patients). Sparse bag-of-words (BOWs) and Unified Medical Language System (UMLS) Concept
Unique Identifiers (CUIs) matrices were produced using NLP pipelines. These matrices were subjected to several
different NLP classifiers: neural networks, random forests, naïve Bayes, support vector machines, and Word2Vec
inversion, a Bayesian inversion method. Performance was measured by calculating accuracy and area under the
Receiver Operating Characteristic (ROC) curve (AUC) of a cross-validated (CV) set and a separate testing set.

Results: We calculated the accuracy of the ICD-9 billing codes as a baseline to be 90.00% with an AUC of 0.900, the
shallow neural network with CUIs to be 92.10% with an AUC of 0.970, the random forest with BOWs to be 95.25% with
an AUC of 0.994, the random forest with CUIs to be 95.00% with an AUC of 0.979, and the Word2Vec inversion to be
90.03% with an AUC of 0.905.

Conclusions: Our results suggest that a shallow neural network with CUIs and random forests with both CUIs and
BOWs are the best classifiers for this lupus phenotyping task. The Word2Vec inversion method failed to significantly
beat the ICD-9 code classification, but yielded promising results. This method does not require explicit features and is
more adaptable to non-binary classification tasks. The Word2Vec inversion is hypothesized to become more powerful
with access to more data. Therefore, currently, the shallow neural networks and random forests are the desirable
classifiers.
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Background
Electronic health record (EHR) phenotyping patients still
relies heavily on International Classification of Diseases,
Ninth Revision (ICD-9) and ICD-10 billing codes. ICD
codes, however, have been known to be prone to errors
due to a variety of problems in the coding and billing
workflows [1–3]. This is problematic as clinicians use
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varying synonyms and abbreviations for the same condi-
tion and these error rates have been reported to range
from 17.1 to 76.9% [1].
Classically, departing from ICD-9 codes would neces-

sitate the usage of natural language processing (NLP)
in order to extract features suitable for machine learn-
ing (ML) from the clinical notes in the EHR. Generat-
ing these features is not a straightforward step in this
process as overtraining on specific datasets’ features are
common, confounding variables can be prevalent, and
the importance of specific words or phrases need to be

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-017-0518-1&domain=pdf
http://orcid.org/0000-0003-0585-3507
mailto: caturner3@g.cofc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Turner et al. BMCMedical Informatics and DecisionMaking  (2017) 17:126 Page 2 of 11

considered. The task of identifying patients with certain
criteria based on clinical notes in EHR can be a daunting
one given the massive amounts of text notes. This phe-
notype classification task can be automated using NLP
techniques along with pattern recognitionML algorithms,
referred to as an NLP classifier. The key to finding these
patterns is translating plain text into quantifiable enti-
ties that could be used as features for ML. The aim of
this research is to evaluate combinations of NLP tech-
nique; and ML algorithms alongside a newer inversion-
based method which utilizes word vectors based on
Word2Vec, which does not have the problem of feature
generation [4].
The classic technique for transforming textual data into

features is Bag-of-Words (BOWs) [5], which maintains
word frequencies. BOWs, while proven to be powerful
for classification, can result in large number of terms
and hence features, and does not consider negation [6].
Another well documented method is to use UnifiedMedi-
cal Language System (UMLS) Concept Unique Identifiers
(CUIs) with ML [7]. Using CUIs in place of BOWs has
become increasingly popular, in medical contexts, for
assimilating synonyms in order to better represent and
annotate textual data [8]. CUIs, when generated through
a pipeline such as the clinical Text Analysis and Knowl-
edge Extraction System (cTAKES), are able to detect
negation in order to more accurately engineer relevant
features [9, 10]. A textual note saying a patient does
not have lupus would result in the concept for lupus
being deducted by a count of one. In this same context,
BOWs would increase the count of “lupus” and “not” by
one, creating a malformed feature set when compared
to CUIs. Although CUI-based methods are a significant
improvement over plain term frequency, they still do not
consider the sequence of terms or concepts in a docu-
ment. A relatively recent method seen in clinical NLP
systems and pipelines is the utilization of word vectors
[11, 12]. Vectorization of sentences is being used more
frequently as part of natural language and ML tasks with
techniques such as Word2Vec and sentence2vec. Often,
Word2Vec is used to create word clusters by averaging
word vectors into clusters, referred to as word aver-
aging, in order to be used in ML algorithms [12]. A
relatively new technique that uses these word vectors,
derived from Word2Vec, breaks the classification pro-
cess into an ensemble of sentence classifications for a
larger document. This technique is known as Word2Vec
inversion.
The goal of this paper is to apply these methods

to the phenotyping of SLE from clinical notes, and
evaluate the performance of the different approaches.
We detail the process in which we engineered our
data for each of these different NLP techniques with
justifications for each of the techniques we selected.

Following is the evaluation of why specific techniques out-
performed others and strongly outperformed the various
baselines.
In order to evaluate these different techniques, we

acquired data from the Medical University of South
Carolina (MUSC) Rheumatology Clinic to function as a
use case: the data obtained is for classifying Systemic
Lupus Erythematosus (SLE), where the controls largely
include patients with other rheumatological diseases.
Clinicians’ diagnosis of SLE here is through the satisfac-
tion of the American College of Rheumatology (ACR)
classification for SLE and the more recently published
Systemic Lupus Collaborating Clinics (SLICC) classifi-
cation criteria [13–15]. The utility here is that one can
identify patients for recruitment into SLE research stud-
ies through the use of these criteria. Therefore, diagnosis
of SLE relies on the patient’s history of symptoms, phys-
ical examination findings, and results of blood and urine
testing. These findings are then documented in their EHR
clinical notes. As predescribed, clinicians look for spe-
cific criteria when evaluating SLE to aid in diagnosis,
particularly ACR criteria [13, 14] and SLICC classifica-
tion criteria [15]. Classification of SLE requires fulfill-
ment of at least four ACR criteria (Table 1). The SLICC
criteria allow for lupus nephritis to be the sole clin-
ical criterion in the presence of ANA or anti-dsDNA
antibodies [15].
We begin by describing the type of data utilized for

this experiment. We then describe the different natural
language techniques in order to transform the data and
the machine learning algorithms applied to the different
forms of transformed data. After this we detail, ana-
lyze, and discuss our results from the classification task.
Concluding, we compare the strengths and weaknesses
between the algorithms.

Table 1 1997 Update of the 1982 ACR revised criteria for the
classification of SLE [13, 14]

Short description

1. Malar rash

2. Discoid rash

3. Photosensitivity

4. Oral ulcers

5. Nonerosive arthritis

6. Pleuritis or Pericarditis

7. Renal disorder

8. Neurologic disorder

9. Hematologic disorder

10. Immunologic disorder

11. Positive antinuclear antibody
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Methods
EHR clinical notes
Following IRB approval, we acquired a dataset of 662
patients from the Rheumatology Clinic, 322 patients diag-
nosed with SLE and 340 controls. The diagnoses of all
SLE patients in our data set were confirmed by trained
rheumatologists. All SLE patients met 1997 classification
criteria for SLE [13], while controls were confirmed as not
meeting those criteria. These 662 patient records contain
a total of 250,434 clinical notes. In order to remove noise
introduced by notes that were not relevant to rheuma-
tology, such as referrals for other problems or simple lab
visits, we applied a filter to include only relevant clinical
notes using the stem word “rheumatol”. A simple Python
script was used to aggregate clinical notes for each patient
into larger patient-centric documents. Bootstrap resam-
pling, randomly selecting a sample to add to the pipeline
from the class with less instances was used to achieve a
balanced dataset with an equal number of patients and
controls in both training and testing data sets [16]. One
hundred patients were set aside to be used as an external
testing data set. ICD-9 code data on these patients were
used as a simple baseline classifier for lupus patients. At
the institution of study, MUSC, ICD-9 codes are entered
by the physician. The ICD-9 code for SLE is 710.0.

Natural language processing
We used several NLP methods to transform the clinical
notes into features for machine learning algorithms. In
order to extract CUIs from the notes, we utilized cTAKES
[9]. The cTAKES system is a pipeline composed of com-
ponents and annotators, including the utilization of term
frequency-inverse document frequency to identify and
normalize CUIs. This pipeline is a bottom-up NLP sys-
tem which starts with sentence boundary detection and
tokenizing and works up to part-of-speech tagging and
named entity recognition. In conjunction with cTAKES,
we utilized the Yale cTAKES Extension for Document
Classification (YTEX) which adds components to the
cTAKES pipeline: the pipeline adds long-range negation
detection and a database consumer which adds database-
reading functionality to catalyze the process of note pro-
cessing and UMLS concept extraction and annotation
[7, 10]. The CTAKES/YTEX pipeline ends with an
exporter which retrieves curated the CUIs.

Bag-of-Words
BOWs in its simplest form is an orderless representa-
tion of word frequencies in a document. In the con-
text of this patient classification problem, the word
counts from each note are combined for each patient
and normalized into a term frequency matrix prior
to classification. The Python natural language toolkit
(nltk) and native Python String library [17, 18] were

used for this step. Python’s String library was used
to parse out punctuation. Stop words were removed
using nltk. This was followed by stemming using nltk’s
SnowballStemmer [17].

Concept unique identifiers
In order to extract CUIs from the notes, we utilized
cTAKES [9]. The Yale cTAKES Extension (YTEX), was
used to export cTAKES annotations intomachine learning
formats [10]. The end product is a CUI frequency feature
matrix.

Word2Vec
Word2Vec is an NLP system that utilizes neural networks
in order to create a distributed representation of words
in a corpus [19]. While the BOW and CUI pipelines
produce word frequency and CUI frequency for each doc-
ument respectively, Word2Vec creates vectors for each
word present in a document. These vectors have a smaller
distance between them for related words, for example,
Athens and Greece and pluralities or tense switches,
such as alumnus and alumni or walking and walked [19].
In order to map words to vectors, Word2Vec uses an
underlying shallow neural network in addition to tech-
niques seen in deep learning tasks. This unsupervised task
takes each individual sentence for a given corpus and,
in the neural network, encodes the context of each of
the words in the sentence, much like the deep learning
autoencoders seen in restricted Boltzmann machines and
Stacked Denoising Autoencoders [20, 21]. This is done
through the usage of skip-grams, which calculates the
probabilities of occurrence of words within a certain dis-
tance before and after a given word. Inter-relating these
probabilities creates similar word vectors for those with
higher probabilities.

Data processing andmachine learning
The data resulting from the BOW and CUI pipelines were
normalized and processed through scikit-learn’s Extra-
TreesClassifier using a random forest classifier [22] in
order to extract variable importance and reduce fea-
tures, through usage of the gini index and a feature
subset to 100. The resulting matrices were subjected
to five different classifiers: neural networks, random
forests, naïve Bayes, support vector machines, and
Bayesian inversion (Fig. 1). Bayesian inversion is con-
ducted by using separate distributed language repre-
sentations for each label, or phenotype, in a dataset
and using the higher prior probabilities for determining
the class label [4]. Here this is implemented with
Word2Vec.

Neural networks
Both BOW and CUI data were passed through a shallow
standardmulti-layer perceptron neural network (1 layer of
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Fig. 1 Data Flow and Feature Engineering Pipeline This pipeline shows the flow of data through our clinical pipeline. This pipeline shows how the
data is bootstrapped, subsetted and filtered in order to obtain higher quality notes for use in the proceeding feature selection and classification. If
CUIs are to be utilized, then the cTAKES/YTEX pipeline is used to create the initial features through usage of the Collection Processing Engine within
the cTAKES suite. This data is output as a sparse matrix which we convert in order to conform to the style of the other feature engineering
techniques so each algorithm can be used independently of the data it is being given. If CUIs are not being used, then a stemming process is
undergone as this is needed for both BOWs and the inversion method. In the case of using BOWs, punctuation and stop words are additionally
removed in order to reduce bias in the dataset. If the inversion method is to be used, then we leverage Word2Vec to create two Word2Vec models
which are fine-tuned according to which phenotype they represent. All feature sets are subjected to normalization and feature selection through
scikit-learn’s ExtraTreesClassifier’s variable importance to prep for classifier usage [22]

250 nodes). The neural networks were implemented using
the Theano Python library [23–25].
Random forests
The random forest algorithm has been used effectively
with BOWs and other high-dimensional data in

the past [26]. This algorithm was applied to both
BOW and CUI data in our experiment. Random for-
est was implemented using scikit-learn, a Python
library which supplies customizable machine learning
techniques [22].
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Naïve Bayes
Naïve Bayes was chosen as a baseline classifier for the NLP
output, and was applied to both BOW and CUI pipeline
data [27]. Naïve Bayes was also implemented using scikit-
learn [22].

Support vectormachines
Support vector machines (SVM) were selected because
they are not prone to error with high-dimensional datasets
and have been previously shown to be useful in text-based
classification problems [28]. Support Vector Machines
were also implemented using scikit-learn [22].

Word2Vec Bayesian inversion
Previous work with Word2Vec for text classification
focuses mostly on averaging the values of all sentences in
a document for use in ML [29]. In departure from this
typical method, this experiment created a training corpus
for each of the lupus and control phenotypes. As seen in
Fig. 1, each corpus started with an unlabeled Word2Vec
model based upon all of the training data and was then
fine-tuned by adding the SLE patients to one corpus and
the controls to the other. This effectively created two neu-
ral networks one for SLE-positive patients and one for
SLE-negative patients [4, 19]. Each neural network was
highly specialized for their respective training corpus.
The testing step for this algorithm broke up a patient’s
notes by sentences and sentence-by-sentence predicted
the log-likelihood that the sentence belonged in each cor-
pus. With two networks for prediction, each sentence has
two probabilities associated with it, one for each label.
Whichever probability is highest is the label assigned to
that sentence. Once this is done for all the sentences for
a single subject, then whichever label is the most repre-
sented is the label assigned. The parameters utilized with
the Word2Vec model were built-in dimension reduction
to 500 features, context window of 5, and a minimum
sentence word count of 20.

Evaluation
Each of the above classifiers was subjected to 5-fold cross
validation (CV) repeated 20 times in order to select our
models and generate AUCs. When conducting our fea-
ture selection for each NLP/algorithm combination, the
variable importance feature selection was only fitted on
the training data for the current CV fold. The validation
set within each fold and the testing set were not used as
part of the fitting process. 5-fold cross validation was per-
formed 20 times on the training/validation sets for each
algorithm in order to generate the cross-validated accu-
racy and AUC estimate and the 95% confidence intervals
[30]. The cvAUC package in R along with a wrapper script
were used to produce the AUCs and confidence intervals
[31, 32]. The ICD-9 codes classification was rule-based,
hence did not require training or confidence intervals, i.e.

patients with an SLE ICD-9 code (of 710.0) were classi-
fied as SLE. All classifiers were evaluated using the test
data set.
The test dataset is evaluated for each NLP classifier. The

classifiers used the 5-fold cross validation results in order
to optimize parameters on the validation set associated
with its fold. That trained model is then used in to classify
the test set.

Results
The algorithms were each tested with a varying set of
parameters in order to tune the algorithms. The neural
network performed best with one hidden layer of 250
nodes. The testing varied between 1 and 5 hidden layers
with the nodes per layer varying from 10 to 1000. The
implemented random forest performed the best with the
with 300 trees in the forest (100 and 500 were also tested).
Support vector machines worked best with a linear kernel,
having also tested radial basis function, polynomial, and
sigmoid kernels.
The results produced from these aforementioned

methodologies are as follows: The algorithms with the
best AUC and accuracy, shown in Tables 2 and 3 are
neural networks with CUIs, random forests with BOWs
and CUIs, and theWord2Vec Bayesian inversion. The test
AUCs can also be examined in Fig. 2. ICD-9 codes as a
sole metric performed better than expected in the origi-
nal hypothesis. Additionally, the ICD-9 billing codes and
Word2Vec Inversion had similar accuracies and AUCs.
The naïve Bayes algorithm performed poorly, as expected.
Last, the Support Vector Machines did not provide as
accurate results as hoped, but generated a promising
AUC with CUIs. Additionally, we performed a permuta-
tion/randomization test with our random forest classifier
in order to show that our results are well outside the 99%

Table 2 Table showing each machine learning technique and its
5-fold Cross-Validation accuracy and its test set accuracy with
each NLP classifier

Technique Data form CV Acc. CV CI (α = 0.95) Test Acc.

ICD-9 billing codes N/A 89.655 N/A 90.00

Word2Vec inversion N/A 89.653 [89.281, 90.025] 90.039

Neural network BOWs 84.138 [80.887, 87.630] 87.100

CUIs 94.138 [89.539, 92.358] 92.10

Random forests BOWs 95.172 [93.875, 94.539] 95.250

CUIs 95.345 [94.889, 95.318] 95.00

Naïve Bayes BOWs 85.000 [80.141, 83.859] 82.000

CUIs 81.207 [76.087, 79.013] 77.55

Support vector machines BOWs 86.724 [83.031, 86.469] 84.750

CUIs 90.862 [90.470, 92.230] 91.35
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Table 3 Table showing each machine learning technique and its
AUC from the test set and its respective 20x repeated
Cross-Validation AUC and confidence interval with each NLP
classifier

Technique Data form CV AUC CV CI (α = 0.95) Test AUC

ICD-9 billing codes N/A 0.897 N/A 0.900

Word2Vec inversion N/A 0.963 [0.956, 0.971] 0.905

Neural network BOWs 0.902 [0.897, 0.908] 0.925

CUIs 0.960 [0.957, 0.964] 0.974

Random forests BOWs 0.981 [0.979, 0.984] 0.987

CUIs 0.987 [0.985,0.989] 0.988

Naïve Bayes BOWs 0.841 [0.815, 0.868] 0.841

CUIs 0.805 [0.777, 0.833] 0.805

Support vector machines BOWs 0.923 [0.911, 0.934] 0.923

CUIs 0.980 [0.975, 0.985] 0.980

confidence interval for AUC scores resulting from ran-
dom chance. The distribution of AUCs built through the
scrambling of labels in the original dataset resulted in a
mean AUC of 0.500 with a confidence interval of (0.499,
0.501) at the 95% confidence level and a mean AUC of
0.500 with a confidence interval of (0.498, 0.501) at the
99% confidence level.

Discussion
Data quality
BOWs’ nature of being error-prone and curation needs
were reflected in our results. During our initial study

Fig. 2 External AUC Curves This graph depicts the AUC of each
technique as it performed on the external testing set, generated
using the pROC package [42]

with BOWs, some of the top words for classification were
capturing writing styles by SLE researchers, as well as
identification numbers for these researchers. This was
an egregious problem because these researchers were
working with confirmed SLE patients and classifying
based off of this would mean that the results were not
generalizable to a more general population. We manu-
ally removed a large portion these identifiers, styles, and
location-based terms and our top words reflected a more
general series of words which partially aligned with our
top CUIs, as evidenced in Tables 4 and 5. Also, evi-
denced in the tables are how some artifacts still remained
after multiple iterations, such as “843identificationremov”
which was used as an early attempt at de-identifying
the data.
We hoped the CUIs seen in Table 5 would contain a

subset of ACR criteria 1 that are not lab test specific.

Table 4 Top 25 word stems for BOWs according to the variable
importance extracted from scikit-learn’s ExtraTreesClassifier and
stemmed using nltk’s SnowballStemmer [17, 22]

Rank Word VIMP

1 C3 0.0311

2 Sle 0.0225

3 Graviti 0.0172

4 Sole 0.0126

5 Phurin 0.0113

6 Epitheli 0.0084

7 C4 0.0065

8 Yet 0.0065

9 Lymph 0.0063

10 Hemlymph 0.0059

11 Educ 0.0059

12 Resolv 0.0054

13 912 0.0054

14 Fatigu 0.0050

15 Thrombocytopenia 0.0047

16 2500 0.0047

17 Need 0.0047

18 Naugl 0.0047

19 Clot 0.0043

20 Screen 0.0042

21 Antidoubl 0.0040

22 Beat 0.0040

23 Acut 0.0038

24 843identificationremov 0.0038

25 Pregnanc 0.0036

A graph of the degradation of variable importance for these word stems can be
found in Fig. 3
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Table 5 Top 25 CUIs according to the variable importance
extracted from scikit-learn’s ExtraTreesClassifier [22]

Rank CUI Description VIMP

1 C0042014 Laboratory: Urine Examination 0.0307

2 C0699177 Plaquenil 0.0258

3 C0024141 Systemic Lupus Erythematosus 0.0236

4 C0194073 Kidney Biopsy 0.0208

5 C0024204 Lymph Node 0.0179

6 C0008031 Nonspecific Chest Pain 0.0166

7 C0018966 Heme 0.0158

8 C2711450 Enlargement (Morphological Anomaly) 0.01502

9 C0014597 Epithelial Cell 0.0111

10 C0023516 Leukocytes 0.0100

11 C0003243 Antinuclear Antibody (ANA) 0.0094

12 C0002170 Alopecia 0.0089

13 C0024202 Lymph 0.0085

14 C1267547 Entire Mouth Region 0.0084

15 C0009780 Connective Tissue 0.0083

16 C0229671 Serum 0.0068

17 C0042036 Urine 0.0065

18 C0014060 St. Louis Encephalitis 0.0062

19 C0038999 Swelling 0.0061

20 C1269549 Entire Zygoma 0.0060

21 C0036749 Serositis 0.0060

22 C0033684 Proteins 0.0059

23 C0014239 Endoplasmic Reticulum 0.0059

24 C0009782 Connective Tissue Disorder 0.0058

25 C0024143 Lupus Nephritis 0.0058

CUI descriptions were extracted from MetamorphoSys [7]. A graph of the
degradation of variable importance for these CUIs can be found in Fig. 4

The only CUI directly discovered in our feature selec-
tion is C0003243, which is ANA, criteria 11 in the list
of ACR criteria seen in Table 1. What is unknown how-
ever is whether positive antinuclear antibody or negative
antinuclear antibody is what is being found as it is not
believed that cTAKES/YTEX’s negex would function as
negative counts for negative antinuclear antibody and
positive counts for positive antinuclear antibody. Lupus
nephritis, as indicated by SLICC to be indicative of a
positive SLE diagnosis in the presence of positive ANA,
was the 25th most important CUI according to Table 5,
showing that CUIs are capturing data pertinent to the
classification of SLE [15]. Additionally, the table revealed
further data quality issues when considering other dis-
eases common to the Rheumatology Clinic as CUIs for
both Rheumatoid Arthritis and History of Rheumatoid
Arthritis were present, creating a confounding problem
when considering the classification of SLE. This becomes
problematic in classification as Rheumatoid Arthritis (RA)
and SLE share an amalgam of symptoms. It is worth noting
that there exists a CUI for lupus erythematosus in addition
to the CUI for SLE, but the CUI for lupus erythemato-
sus was not flagged in our clinical text, while the CUI for
SLE appeared repeatedly. Other issues noted with the CUI
approach are misinterpreted acronyms and abbreviations;
for example, “SLE” seems to have been misinterpreted in
some instances as St. Louis Encephalitis. This is not sur-
prising since “SLE” appears as a synonym in some of the
UMLS ontologies for CUI C0014060, which stands for St.
Louis Encephalitis. Similarly, “ER” appears as a synonym
for C0014239 the CUI for Endoplasmic Reticulum in the
UMLS. “ER” has been used frequently in the rheuma-
tology clinical notes in the context of Emergency Room
visits. As for “Heme”, the term is sometimes used as abbre-
viation for hematology, and lupus patients often have
hematological abnormalities. Similarly, “enlargement” is
mentioned repeatedly in clinician’s notes in reference to

Fig. 3 Variable Importance by Word Stem This graph depicts the degradation of variable importance from the top 50 word stems
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Fig. 4 Variable Importance by CUI This graph depicts the degradation of variable importance from the top 50 CUIs

lymph nodes or spleen enlargements, which are common
findings in lupus.

Classification
ICD-9 billing codes have been proven to be ineffective
classifiers in the past [1–3]. Table 2 shows that ICD-9
reached an AUC of 0.897 with an 89.655% accuracy on the
cross validated set. On the external test set, ICD-9 per-
formed, effectively, the same, reaching a 90% accuracy and
a 0.900 AUC. Predescribed, ICD-9 codes’ error rates were
lowest at 17.1%, but the results show a lower error rate
than this. It is believed that this lower error rate is due
to the limited number of representative ICD-9 codes used
for SLE at MUSC. The AUC and accuracy for the ICD-
9 billing code classification have similar values because
there is no probability in determining SLE status from an
ICD-9 code. This is because of the pre-described method
for determining whether or not a patient has SLE: If a
patient had at least one mention of the SLE ICD-9, then
they were classified as having it.
We also utilized the naïve Bayes classifier as a baseline

algorithm alongside the ICD-9 billing codes. One of the
main assumptions for the naïve Bayes algorithm is that the
features in a dataset are independent [33]. BOWs is inher-
ently independent as feature counts functioning as data
forces each feature to act independently. In the past, this
has made naïve Bayes a favorable classifier for text cate-
gorization [27]. However, it has been seen recently that
naïve Bayes is performing worse than other algorithms on
these datasets because the sheer amount of training data
has favored other algorithms ahead of this now considered
baseline [27, 34]. This expected outcome supported our
hypothesis as naïve Bayes with BOWs achieved an accu-
racy of 85.000% on the cross validated dataset, AUC, with
82.000% accuracy on the external testing set, AUC.
BOWs with our dataset had the best success with ran-

dom forests and text classification has proven to have

great success with random forests in the past [35, 36]. This
is because the random forests algorithm is able to over-
come some of the pitfalls with the BOWs representation of
a textual dataset. Random forests can do this because it is
an ensemble technique, composed of many decision trees,
which takes advantage of how decision trees overfit to
training data by bagging a group of trees together and tak-
ing the mode classification for each patient. The ensemble
does not produce the same tree every time because each
tree in the ensemble makes its decision based upon a
subset of features [37].
CUIs with our dataset had the best success with neu-

ral networks, which have been historically proven to work
well with textual datasets [38]. It is worth noting that
the neural network we used only contained one hidden
layer, so the network is considered to be very shallow.
Deep neural networks are the typical use case for finding
hidden patterns within data for purposes of classification
[39–41]. However, our results suggested that deep neural
networks were not viable for either BOWs or CUIs for this
dataset. We believe this is because our dataset is not large
enough for deep neural networks to discern hidden pat-
terns within data. Shallow neural networks, on the other
hand, proved to be exceedingly viable for predicting SLE
with CUIs as the input. This is because rather than having
the neural network find all the patterns in a dataset, CUIs
contain intrinsic patterns so the neural network does not
have to discover all the patterns by itself, but, rather, find
patterns using these designed concepts.
Chosen because of proven success with non-clinical

datasets [4], Word2Vec Bayesian inversion proved to be
an effective classifier for this data. We are the first to try
this with clinical EHR data. Because the neural networks
that make up this inversion algorithm are embedded into
Word2Vec itself, we cannot peer into the system to extract
which words are more indicative of this corpora ensem-
ble classification. BOWs were seen as having multiple
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iterations of steps to remove bias from the textual dataset
and extra time usage in removing or substituting punctu-
ation, which removes a lot of generalizable classification
power unless this is consistently done. This detriment
is very undesirable as it leaves BOWs to only be useful
in a very specific context; here, BOWs would only be
useful within MUSC without this iterative removing,
as mentioned in the Data Quality section. CUIs were
seen as having a large overhead in their creation, a heavy
detriment on time. This Bayesian inversion, however,
does not need any form of time-consuming or error-
prone preliminary steps as the inversion method only
underwent stemming, as evidenced in Fig. 1. Additionally,
Word2Vec’s usage of contexts around words creates a
more robust model which can adapt to any dataset. This
inversion classifier is also adaptable to classifications that
are not strictly binary. When creating specific corpora
for this dataset, one Word2Vec model learns what is
indicative of SLE through word probabilities while the
other model learns what is indicative of non-SLE through
word probabilities. This is easily expanded if, for example,
we wanted to add another phenotype to this classification
task. With labeled data for RA, for example, three models
could be made: one for SLE, one for RA, and one for
controls. Manual curation of the data outside of labeling
would not be needed to add the RA data to the dataset
for the inversion method since the inversion uses its
internal neural network in order to create and learn its
own features without any user input or curation. We only
focused on the results of the inversion method for the
word vectors as the word averaging technique produced
poor results in early empirical stages. The Word2Vec
model can be tuned in multiple ways as there are several
variables to fine-tune, as outlined in the methods: feature
set size, context window, and sentence word count.

Future work
In its current state, our pipeline is performing very
well with the large amount of clinical notes used.
The results could be more refined, however, by break-
ing the notes for each patient down into document
zones and using this data to better classify patients.
For example, a family history section may influence
a classifier when the data coming in at that point
was only referring to a family member. This data is
still important as if there is any genetic component
(or analogous component for other document zones),
then that data is still valuable and can be used in the
classifier.
Additionally, lab tests, as described in the ACR criteria

(Table 1) engineered into their own features would only
serve to aid in classifiers, at least in the neural network
and random forests cases, as they are clearly indicative of
diagnoses in some cases [15].

There exist several improvements we suggest to the
usage of this Word2Vec Inversion method. In its cur-
rent state, the inversion method treats every sentence
as an equal weighting into learning specialized corpora.
While we attempted to filter to only relevant notes with
the “rheumatol” filtering, there are still sentences that are
being utilized for evaluation which add little to nothing
to classification power, while detracting from the classi-
fication power of other sentences. The inversion method
could also be combined with other methods in order to
create more refined classifiers. For example, the probabil-
ity that a given sentence belongs to a specific label could
be simply added as a feature to the BOWs feature vector
in order to combine the two algorithms into one.

Conclusions
In examining the varying NLP classifiers for classifying
and processing the SLE patients based on EHR notes,
we have determined the relative effectiveness of sev-
eral different algorithms. Neural net- works with CUIs
and random forests with BOWs or CUIs are all equally
powerful in classification tasks for unstructured clinical
notes, especially when compared to baselines such as uti-
lizing ICD-9 billing codes and a naïve Bayes algorithm.
The Word2Vec Bayesian inversion technique is shown to
be powerful in the cross-validated results, however the
accuracy and AUC in the external set were slightly dimin-
ished. Nevertheless, this method has less overhead than
that required for generating CUIs, less dependencies and
testing than that of BOWs and CUIs, and is more eas-
ily scalable beyond binary classification tasks. Word2Vec
Bayesian inversion is a promising methodology especially
when combined with other classifiers and warrants fur-
ther research to refine and improve its output.
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