
RESEARCH ARTICLE Open Access

Examining database persistence of ISO/EN
13606 standardized electronic health
record extracts: relational vs. NoSQL
approaches
Ricardo Sánchez-de-Madariaga1* , Adolfo Muñoz1, Raimundo Lozano-Rubí2,3, Pablo Serrano-Balazote4,
Antonio L. Castro1, Oscar Moreno1 and Mario Pascual1

Abstract

Background: The objective of this research is to compare the relational and non-relational (NoSQL) database systems
approaches in order to store, recover, query and persist standardized medical information in the form of ISO/EN 13606
normalized Electronic Health Record XML extracts, both in isolation and concurrently. NoSQL database systems have
recently attracted much attention, but few studies in the literature address their direct comparison with relational
databases when applied to build the persistence layer of a standardized medical information system.

Methods: One relational and two NoSQL databases (one document-based and one native XML database) of three
different sizes have been created in order to evaluate and compare the response times (algorithmic complexity) of six
different complexity growing queries, which have been performed on them. Similar appropriate results available in the
literature have also been considered.

Results: Relational and non-relational NoSQL database systems show almost linear algorithmic complexity query
execution. However, they show very different linear slopes, the former being much steeper than the two latter.
Document-based NoSQL databases perform better in concurrency than in isolation, and also better than relational
databases in concurrency.

Conclusion: Non-relational NoSQL databases seem to be more appropriate than standard relational SQL databases
when database size is extremely high (secondary use, research applications). Document-based NoSQL databases
perform in general better than native XML NoSQL databases. EHR extracts visualization and edition are also
document-based tasks more appropriate to NoSQL database systems. However, the appropriate database solution
much depends on each particular situation and specific problem.

Keywords: Relational database, NoSQL database, Normalized medical information, ISO/EN 13606 standard,
Electronic health record extract, Algorithmic complexity, Primary use, Clinical practice, Secondary research use,
Document-based task

* Correspondence: ricardo.sanchez@isciii.es
1Telemedicine and Information Society Department, Health Institute “Carlos
III” (ISCIII), c/Sinesio Delgado, 4 –, 28029 Madrid, Spain
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Sánchez-de-Madariaga et al. BMC Medical Informatics
and Decision Making  (2017) 17:123 
DOI 10.1186/s12911-017-0515-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-017-0515-4&domain=pdf
http://orcid.org/0000-0002-6151-3673
mailto:ricardo.sanchez@isciii.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Electronic Health Record (EHR) Knowledge Management
Systems (KMS) or EHR systems (for short) form an essen-
tial part of medical care today. However, creating, maintain-
ing and communicating EHR documents in those systems
is not at all straightforward. This is due to several factors
affecting technical, syntactic and semantic interoperability
between information systems, including the inevitable rapid
change and evolution of medical knowledge. In order to
achieve such goals, EHR systems and documents have been
normalized in several international standards such as ISO/
EN 13606, openEHR and HL7 [1–4].
The ISO/EN 13606 and openEHR standards define a

dual model that separates information and knowledge
into two levels of abstraction, thereby guaranteeing
semantic interoperability between systems operating EHR
documents [5].
Standardized EHR documents constitute information

files that need to be maintained and stored physically in
those systems. The special nature of medical knowledge
that requires the separation into two levels of the dual
model can have a profound effect on the way information
in EHR documents is structured and how it is stored
logically and physically in a database management system.
The dual model used by standardized EHR documents
requires the organization of the information following a
specific structure, and medical knowledge must also adopt
the structure constrained by the archetypes, i.e. special
data structures holding knowledge [1, 2, 6–8].
Standardized EHRs are a form of big data, from which

patterns may be extracted using Data Mining (DM) and
Machine Learning (ML) techniques to generate new
knowledge [9]. Standardized EHR extracts (see next subsec-
tion) may be extracted automatically from non-standardized
EHR repositories using standard technologies based on
W3C (World Wide Web Consortium) XML Schemas [10].
Cross-organizational EHR communication will consti-

tute a key component of future health care [10]. Previous
literature suggests that implementing a fully functioning
EHR system with participation of all healthcare organiza-
tions could lead to a USD 77.8 billion benefit for the
United States [11, 12].

Relational approach
For decades Database Management Systems (DBMS) have
been dominated by the relational model paradigm [13].
This model has a well-established theoretical background
which has been well studied and understood, and has long
guaranteed consistency and efficiency within database sys-
tems. However, the complex structure of the information
adopted by the normalized EHR documents may cause the
direct application of the relational model following this
structure (Object Relational Mapping, ORM) [14] to be
complicated and inefficient. Several improvements within

the relational model have been proposed and used. In this
paper we revise Node + Path [15], developed by openEHR,
and the Archetype Relational Mapping (ARM) [16].
The Object Relational Mapping (ORM) exhaustively

maps the structure of a standardized EHR extract XML
(eXtensible Mark-up Language) file to a relational data-
base [13, 17]. An EHR extract is defined as a unit of com-
munication of all or part of an EHR document and is also
an instance of the ISO/EN 13606 Reference Model (RM)
[18]. ORM implies the construction of many tables related
through foreign keys representing the complex structure
of the extract XML file and may damage performance.

Relational improvements
openEHR [3] promotes a Node + Path persistence solu-
tion that serialises subtrees of the whole extract XML
file into BLOBs (binary latge objects) in a few relational
tables, taking advantage of the semantic paths of the
normalized EHR extracts. This is a simple and flexible
solution, but its simplicity causes complex data retrieval
logic, thereby damaging complex queries [15].
Archetype Relational Mapping (ARM) [16] is another

interesting relational improvement. Node + Path uses a
general data storage structure that is independent of
archetypes. Another approach is to generate a database
model to design a persistence layer driven by archetypes.
This solution builds a new relational schema based on
mappings between the dual model archetypes and rela-
tional tables.

Non-relational NoSQL approach
All previous persistence solutions have been based upon
an underlying relational database system. However the
relational paradigm was recently questioned by NoSQL
(document-based) database systems. A NoSQL (Not Only
SQL) (SQL, Structured Query Language) database pro-
vides a mechanism for storage and retrieval of data which
is modelled on means other than the tabular relations
used in relational databases [19, 20]. A document-based
NoSQL database system stores documents in any format
like XML [21] or JSON (JavaScript Object Notation) [22]
as data [23]. NoSQL DBMSs do not substitute existing
relational DBMSs, but may be appropriate in specific situ-
ations. Many NoSQL databases store documents as entire
BLOBs. They have no schema and do not support either
joins or atomicity, consistency, isolation, or durability
(ACID) properties [24]. So they may be very inefficient if a
subpart of a document references parts of other such doc-
uments through an indirection link, because the whole
referenced document(s) must be processed sequentially
[25]. However if the main task carried out by the DBMS is
a document-based task, a non-relational database may be
appropriate. This is because NoSQL data stores allow
stored data to remain in a form that more closely

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 2 of 14



approximates its true representation [24]. And also be-
cause of the special persistence policies of EHR docu-
ments (see Discussion below).
In the specific case of standardized medical information,

our problem is not the lack of a schema. In fact we have a
complex and over specified schema. Recent research [26]
addresses the automatic discovery of a schema in document
stores in NoSQL applications in order to simplify data man-
agement and to combine both fixed-schema SQL and
flexible-schema NoSQL in a single data management system
[27]. Conversely, the ARM relational approach discussed in
Methods below attempts to directly manage standardized
medical information by simplifying its complex schema.

NoSQL current state-of-art
There are numerous whitepapers, blog entries and com-
mentaries on the advantages of NoSQL database systems
[28]. However, there has been little research on evaluating
the use of NoSQL databases in the healthcare domain [29],
particularly with realistic standardized healthcare data.
NoSQL databases might offer a solution to the big

amount of medical information bottleneck [30, 31].
There are over 150 different NoSQL databases, grouped

into the following four categories: (1) Key-value store, (2)
Document store, (3) Column-family, and (4) Graph
database [32]. Open source availability of NoSQL data-
bases reduces the overall cost considerably [29]. Within
one application, different classes of NoSQL databases can
be used simultaneously, which is known as polyglot persist-
ence. In general, each class of NoSQL database is designed
for a specific purpose [24, 23].
Restricting our description to document-store kind

MongoDB, it provides high performance data persistence
to support embedded data models which reduce I/O ac-
tivity, automatic horizontal scale-up, unstructured data
model (which suits EHRs), high available distributed sys-
tem, denormalized localized data reducing the need for
joins, 1/10 cost relative to relational SQL-based systems
and better performance than these systems [33]. It also
improves big data analysis performance on EHR systems
over SQL-based systems [34].
Other NoSQL document-store databases such as

CouchDB, used on normalized data, perform better than
corresponding relational systems on non-normalized (i.e.
simpler) EHR data, and are promising where ACID prop-
erties are not strictly required [35].

Objective
This research showcases several experiments which have
been carried out in order to directly compare the imple-
mentation of the persistence layer of an EHR system
using three different DBMS: one relational (MySQL) and
two NoSQL (document-based MongoDB and native XML
eXist). Three increasing size collections of 5000, 10,000 and

20,000 real standardized EHR extracts (provided by several
hospitals) have been stored, retrieved and queried on each
DBMS in order to calculate their response times (computa-
tional complexity as test collection size duplicates). Concur-
rency experiments have also been conducted in order to
compare the performance of relational MySQL and NoSQL
MongoDB DBMS from that perspective.
Node + Path and ARM improvements to the relational

model are also considered and discussed. Their perform-
ance is illustrated by results previously published in the
literature, using similar databases and queries. In this
way we get a general perspective of the most important
DBMS methodologies which have been used to persist
normalized medical information in current state-of-the-
art EHR systems.
This research covers an investigation into the appropri-

ateness of relational and NoSQL database systems under
different situations and perspectives. The emergence and
utility of NoSQL databases and its relationship to relational
systems has not yet been sufficiently discussed, in the con-
text of standardized medical information persistence.

Methods
In order to directly compare different EHR extracts data-
base persistence systems we have used examples of three
of the most important database system methodologies, i.e.
relational (MySQL), document-based NoSQL (MongoDB)
and native XML (document-based) NoSQL (eXist) .
These DBMSs have been tested against three databases

formed by 5000, 10,000 and 20,000 ISO/EN 13606 stan-
dardized EHR extracts containing alerts, problems and
pharmacy information for a lower number of patients
(so with a certain number of extracts per patient).
These extracts have been put together using information

from several Spanish hospitals (Fuenlabrada University
Hospital, Barcelona Clinical Hospital and A Coruña
University Hospital Complex) and primary health care cen-
tres. These centres work with us in the PITES (Plataforma
de Innovación en nuevos servicios de TElemedicina y
e-Salud) coordinated research project [36]. Information
comes from different departments of hospitals and health
care centres. It consists of heterogeneous information res-
iding in information systems from different manufacturers
and vendors. It has been normalized, homogenized and
centralized using archetype-based data transformation
technologies such as the LinkEHR studio tool [37, 38]. It
has also been properly anonymized using a solution devel-
oped by our Unit in previous work [39].
Queries of increasing complexity were performed on

these databases, against the information contained in the
problems list. Response times to these queries were
calculated, in order to compare the performance and the
algorithmic complexity of the three DBMSs methodolo-
gies (see below).

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 3 of 14



We also provide a short description of two separately
developed and related methodologies. Their figures will
be shown in the results section, in order to provide a
broad perspective and an insight into database persist-
ence on standardized medical information.

Building a relational MySQL database system to store and
query normalized EHR extracts
The relational model for database persistence [13, 17] is
a very well established and mature methodology, which
is paradigmatic. It is based on well-known formal relational
algebra and calculus, and it has guaranteed the precision
and consistency of RDBMSs (Relational DBMS) for a long
time. Recently, alternative methodologies (i.e. NoSQL data-
bases) have attracted the attention of practical database sys-
tem developers [20]. NoSQL approaches can be faster and
more scalable when data sizes are extremely large, or when
there are no internal document references that can damage
speed or data consistency. However, often these supposi-
tions will depend on each specific project. For this rea-
son, we have implemented a relational MySQL DBMS,
in order to achieve and evaluate the persistence of ISO/
EN 13606 standardized EHR extracts.
We have used JAXB (Java XML Binding) and JPA (Java

Persistence API) technologies in order to automatically
transform the XML schemas representing the ISO/EN
13606 standard into a MySQL relational database. These
XML schemas [6] indicate a standardized EHR extract
system the possibly permitted XML documents this
extract may adopt, i.e. its legal or valid instantiations.
Consequently, JAXB can take these XML schemas as
input in order to produce (as output) a Java class’s repre-
sentation of any such XML extract. These Java class files
may then be manually tagged with JPA codes, in order
to generate a MySQL relational database with the struc-
ture of these classes, i.e. the structure of the original
XML extract file. This database may be used to store,
query (using standard SQL) and retrieve EHR extracts.
This process is often called Object Relational Mapping
(ORM) [14] and is depicted schematically in Fig. 1.
ORM may suffer the so-called “Object-Relational Imped-

ance Mismatch”. This happens when an object is molded

to fit into relational structure [23]. This motivate us
to study its performance as the persistence level in an
EHR system.

Building a NoSQL MongoDB database system to store
and query normalized EHR extracts
As stated above new NoSQL DBMSs (such as MongoDB
[40]) have recently attracted the attention of database
system developers mainly in those document-centred
persistence applications, where a standard relational ap-
proach may not be efficient. As stated above this NoSQL
approach may provide faster access and more especially
in the case of very large databases. But it may be very
inefficient if document data contain references or links
to other similar pieces of documents in the database
[25], and these links affect database consistency. In gen-
eral, this NoSQL approach is adequate for a so-called
document-based application.
A NoSQL database system such as MongoDB can build

a database of EHR XML documents in a quite straightfor-
ward fashion. Normalized XML documents are provided
as input to the system in JSON format, i.e. they must be
previously transformed from XML to JSON. JSON may
follow the same structure as XML. In fact the MongoDB
system uses a proprietary slight variation of JSON called
BSON (for Binary JSON that enables binary serialization
on data), but there are programs which allow for easy
conversion. Given a BSON version of the original XML
extracts document collection, this is provided as input to
MongoDB, and a working database is constructed in a fast
and straightforward manner. BSON/JSON documents are
then stored directly as BLOBs maintaining their structure,
and they may be subsequently queried or retrieved.
MongoDB has its own DBMS including a complete set

of CRUD (create, read, update and delete) operations.
These operations are based on the tree structure of JSON/
XML and rely on the tree path from root node to leaf
nodes, where data may be stored. They may be translated
to and from standard SQL statements, performing virtu-
ally every important feature.
Since MongoDB is a document-centred database it

produces JSON/XML documents as output, which is an

Fig. 1 One way to perform ORM on standardized EHR extracts

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 4 of 14



important aspect as it is very appropriate for document-
based persistence tasks. Consequently if a CRUD oper-
ation is launched from a Java application, in order to
query the extracts database, and if a table-like output is
desired, the JSON output documents must be parsed
and processed (as a subsequent part of the query), in
order to produce such relational table-like results.

Building a native XML NoSQL eXist database system to
store and query normalized EHR extracts
EHR extracts are codified in XML format. Consequently,
a native XML DBMS such as eXist [41] should be evaluated
to implement the persistence layer of an EHR system. eXist
is an open source management system entirely built on
XML technology, also known as a native XML database. A
native XML database also provides a mechanism for stor-
age and retrieval of data, different from the tabular relations
used in relational databases. Consequently, it may be con-
sidered as a NoSQL database. Being a semi-structured data-
base, it stores data in the form of entire XML documents,
so it may also be considered a document-based NoSQL
database [19]. Considerations regarding the existence of
links in EHR extracts stored in MongoDB in the previous
section may also be applied to the eXist DBMS, considered
as a kind of document-based application.
The EHR extracts are loaded by the eXist DBMS directly

as XML files, maintaining their structure, and may be
subsequently queried and retrieved, using the XQuery lan-
guage, a W3C recommendation. The XQuery language is
able to produce XML-format files output. This means that
relational table-like output may be easily generated in the
form of XML-formatted files, contrary to MongoDB, which
produces entire JSON output that must be post-processed
to yield relational-like output (see previous section).

The openEHR node + path EHR extracts database system
We provide a short introduction to openEHR’s Node +
Path even though we have not used it, and later we will
show some results. openEHR has developed an optimization
over the ORM relational methodology based on the EAV
(entity-attribute-value) model [42]. The Node + Path persist-
ence [15] is based on the serialisation of information objects
(entire extract trees) into single blobs, requiring only one
column in a relational database table. Additional indexing
columns are added for attribute values in order to provide
some query ability. This basic approach may be im-
proved in two different ways: one (hybrid serialisation)
serialising only lower level elements of the object trees,
while storing transparently upper level objects (requiring
some object-relational mapping, i.e. new tables) and an-
other one (Node + Path approach) recording the path (as
in the archetype) of each blob in a two-column table of
<node path, serialised node value > with an index on the
path column. The two improvements may be combined in

a hybrid serialization Node + Path approach (see sche-
matic representation in [15]).
This approach has the advantage of a tabular relational

structure with less tables and join operations, and the
direct query of fine-grained data using the paths ex-
tracted from archetypes. However, issues still remain
about the uniqueness of data (archetype-based paths),
fast parsing and comparison of paths, and the processing
of complex queries.

The archetype relational mapping (ARM) persistence
solution
A different approach is adopted in the so-called ARM
process in order to optimize the ORM relational system
[16]. We will refer to it in this section since we will be
presenting some results later.
In the ARM process, a new relational database

schema, different from the direct relational schema used
in the ORM, is generated. This means that information
elements of an EHR extract as constrained and repre-
sented in the archetypes, are mapped into tables, key,
foreign key and common columns. The structure of the
information as stated in the archetypes is used to define
the new relational schema, using these mappings.
Using this methodology, archetypes are mapped into

tables, and archetype basic data types are mapped as com-
mon columns. If their occurrence in the archetype is 1, or
into standalone tables with two columns, if their occur-
rence is higher than 1: one is a foreign key column referring
identification and the other is a common column mapped
form the data item. Query data items are constrained as
indexed columns, in order to improve performance.
Consequently the simplified structure of the several

archetypes participating in a specific EHR extract is used
to build the relational schema used by that extract, in-
stead of using the general structure of the whole RM of
the dual model, as does the ORM approach.
As a result, the new simplified relational schema should

be much more efficient than the straightforward (and
complicated) ORM schema. This might have evident per-
formance improvements (see the Results section).
However, since some structural information from the

original extract is lost during the process of building the
simplified relational schema, it is not possible to recover
the original extract as it was before its storage. Thus we
can query the medical information present in the extracts
but we cannot recover them in their original state. This is
the main reason why ARM has not been implemented in
this research.

Other relational database improvements
Other relational DBMS improvements include column-
based systems [43, 44] such as for instance MonetDB [45]
and VectorWise technology [46]. Column-based database

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 5 of 14



systems are based on the fact that conventional row-
stored systems might need to read in unnecessary data,
when performing reads. On the other hand, column-
stored systems only need to read in relevant data, even
though writes require multiple accesses. Consequently,
these systems constitute an optimization for read-intensive
large data repositories. This improvement will be reasoned
later in the discussion.

Queries applied to the relational and NoSQL DBMSs
Table 1 shows six different queries that have been ap-
plied to the three size increasing databases of the three
DBMSs (one relational and two NoSQL) in our experi-
ments. Queries were performed on the extracts against
the problems information of each patient. Each patient’s
problem has a number of attributes such as name, initial
date, resolution date or severity.
Queries range in complexity from one patient to all

patients, from one problem to all problems for each
patient, and from the raw list of attributes to conditions
imposed on those attributes, such as dates being later
than a given date or severity being ‘high’. In general terms,
with the exception of Q6, the six queries are ordered by
increasing complexity.
The queries were originally designed in the context of

a Machine Learning application aimed at obtaining asso-
ciation rules held by the problems of the patients, i.e. a
research application, but some were later adapted to
clinical practice.
Queries Q1, Q3 and Q4 refer to problems and charac-

teristics of problems of a single patient and are thus to
be typically formulated in a scenario of clinical practice
i.e. primary use of medical information.
On the other hand queries Q2, Q5 and maybe Q6 relate

to problems and characteristics of problems of all the
patients of the whole database and are more appropriate
for secondary use of information (i.e. medical research).
Response times to queries were calculated in the rela-

tional database using MySQL 5.0.67 on Linux/SUSE.
This environment yields the time in seconds of queries

based on the server’s system clock. In the MongoDB
database a Java application was constructed to query a
MongoDB 2.6 database on Windows. The Log4j logging
tool was used to set transactions at the beginning and at
the end of each query to the server and total times were
computed based on the timestamps of these transac-
tions. The eXist 3.0RC1 DBMS was queried using its
Java client, which yields the execution time required by
each query. All values were calculated as the average re-
sponse times of five query executions.

Concurrency experiments
There are many indicators to assess performance of a
DBMS. One of them is the behaviour of querying the data-
base concurrently. In order to evaluate the ORM/MySQL
and the NoSQL/MongoDB DBMSs (the NoSQL/eXist
DBMS has not been included in these experiments, given
the isolated queries performance results presented below)
under a concurrency environment we have designed the
following experiments, inspired by the XMach-1 bench-
mark for XML data management [47].
A Java multithread application was constructed, with

three main threads representing three of the presented
queries competing for CPU (Central Processing Unit)
use. The queries selected were Q1, Q3 and Q4, for two
main reasons: first, these are medical practice queries,
which are more likely to be posed in a concurrent fashion
i.e. secondary research use queries will be performed in
isolation; and second, the XMach-1 benchmark recom-
mends the use of queries with short response times (90%
under 3 s) since it is rather easy to increase throughput
without response time limits. For this last reason, these
experiments were only performed in the small 5000 EHR
extracts database.
Three different priority levels were assigned to each

query, namely high, medium and low to Q1, Q3 and Q4
respectively, yielding a CPU use distribution of approxi-
mately 45%, 35% and 20%. Increasing time in milliseconds
wait and notify instructions were added to decreasing
priority threads in order to stabilize this distribution.
These experiments were executed five times during

10 min each. Thereafter the most executed (highest priority)
query average throughput and the average response times of
the three queries were calculated.

Indexing policies
Many DBMSs build structure and range indexes auto-
matically. For instance, in our experiments, the MySQL
system built 602 such indexes in that way. We only built
manually those indexes that would speed up execution
of some queries. For instance, the field representing the
unique identifier of a patient is a very important attribute
to be indexed in queries regarding one single patient, such
as Q1, Q3 and Q4. Other indexes constructed manually

Table 1 Six queries performed on relational and NoSQL
databases

Query

Q1 Find all problems of a single patient

Q2 Find all problems of all patients

Q3 Find initial date, resolution date and severity of a single problem
of a single patient

Q4 Find initial date, resolution date and severity of all problems of
a single patient

Q5 Find initial date, resolution date and severity of all problems of
all patients

Q6 Find all patients with problem ‘pharyngitis’, initial date > =
‘16/10/2007’, resolution date <= ‘06/05/2008’ and severity ‘high’

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 6 of 14



represent attributes demanded in our queries, such as spe-
cific problems of patients, initial and resolution dates or
severity of those problems (see Table 1).
In the MongoDB and eXist systems, we also tried to

construct the indexes manually. However, MongoDB
emitted an error message stating that those indexes had
already been constructed by the system. The eXist data-
base did not return such an error message, but adding
the indexes has not changed the response time of the
queries, so we assume that those indexes were also built
automatically by the system.

Results
Table 1 shows the six different queries performed on the
relational MySQL and on the two NoSQL DBMSs devel-
oped in the previous section.
Tables 2, 3 and 4 show response time in seconds of

the six queries in the three DBMSs with three different
database sizes, i.e. 5000, 10,000 and 20,000 normalized
EHR extracts.
At first glance one can see a strong linear increment

in response times of the three DBMSs as the size of the
database grows. This linear behaviour may be better
appreciated in the nine diagrams of Figs. 2 through 5
(notice the different vertical axes scales used throughout
most of these figures). Figure 2 shows queries Q1 and
Q4 almost linear complexity in ORM (up), MongoDB
(down left) and linear complexity in eXist (down right).
Figure 3 presents linear complexity in MongoDB and
eXist for queries Q2 and Q5 and unbounded response
time in ORM for these queries. Figure 4 shows almost
linear complexity for Q3 in MongoDB and linear com-
plexity in ORM and eXist. Finally Fig. 5 displays linear
complexity for Q6 in both ORM and MongoDB, and al-
most linear complexity in eXist.
However, the three DBMSs show very dissimilar slopes

in their linear behaviour (see slope column in Tables 2, 3
and 4). Whilst MySQL and MongoDB yield very similar
results in the small 5000 extracts database they diverge
considerably in the big 20,000 extracts database, the

relational being much slower than the non-relational.
eXist presents slower response times than MySQL and
MongoDB in the small 5000 extracts database, but inter-
mediate slopes, thus beating MySQL in the big 20,000
extracts database, with the exception of Q6, in which
ORM/MySQL behaves better.
Table 5 complements the response times of the three

DBMSs showing the time and space costs of storing and
retrieving EHR extract XML files on them. These storage
times include the indexes being constructed or updated.
The contrast between the fast time costs to store and
retrieve documents in the NoSQL databases and the low
response times in the relational database, and the compar-
able memory space costs of the NoSQL systems and the
relational database is evident. This table also shows the
average size in memory of one extract in the database and
the average size of one extract in XML format.

Results by other improved relational systems
We provide in Table 6, for illustrative purposes, the
results obtained by the two improved relational systems
(ARM and Node + Path) described in Methods above, as
they appear in [16]. Our Table 6 shows the most similar
queries from Table 5 in that work corresponding to three
of our queries from our Table 1, with their corresponding
response times.

Table 2 Response times in seconds of the six queries
performed on MySQL relational ORM database

ORM 5000 10,000 20,000 slope (*10−6)

Q1 0.0429 209.0284 1082.7872 72,182.95

Q2 101.6196 >10,000 >10,000 >>

Q3 0.1256 4.1982 12.6110 832.36

Q4 0.1843 400.6388 1598.7410 106,570.45

Q5 200.8954 >10,000 >10,000 >>

Q6 0.7362 65.1898 185.2420 12,300.39

Database size 4.8GB 9.7GB 19.8GB

Total extracts 5000 10,000 20,000

*stands for the multiplication sign

Table 3 Response times in seconds of the six queries performed
on MongoDB NoSQL database

MongoDB 5000 10,000 20,000 slope (*10−6)

Q1 0.0460 0.0570 0.1221 5.07

Q2 34.5181 68.6945 136.2329 6780.99

Q3 0.0480 0.0580 0.1201 4.81

Q4 0.0520 0.0610 0.1241 4.81

Q5 38.0202 75.4376 149.9330 7460.85

Q6 9.5153 18.5566 36.7805 1817.68

Database size 1.95GB 3.95GB 7.95GB

Total extracts 5000 10,000 20,000

*stands for the multplication sign

Table 4 Response times in seconds of the six queries performed
on eXist NoSQL database

eXist 5000 10,000 20,000 slope (*10−6)

Q1 0.6608 3.7834 7.3022 442.76

Q2 60.7761 129.3645 287.362 15,105.73

Q3 0.6976 1.7710 4.1172 227.96

Q4 0.6445 3.7604 7.3216 445.17

Q5 145.3373 291.2502 597.7216 30,158.93

Q6 68.3798 138.9987 475.2663 27,125.82

Database size 1.25GB 2.54GB 5.12GB

Total extracts 5000 10,000 20,000

*stands for the multiplication sign

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 7 of 14



Fig. 2 ORM (up) and NoSQL (MongoDB left, eXist right) response times to queries Q1 and Q4 for three database sizes

Fig. 3 ORM (up) and NoSQL (MongoDB left, eXist right) response times to queries Q2 and Q5 for three database sizes

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 8 of 14



Direct comparison with our results is not possible since
database sizes are different as is the total number of extracts.
This means that, for instance, since two comparable normal-
ized relational systems (optimized ARM and ORM, 5000
extracts database) have quite similar database sizes (2.90 GB
and 4.8 GB respectively), but the former holds a much larger
number of extracts (29,743), the size of the extracts used in
our developments (244.876 KB in XML format, see Table 5)
should be much larger than that of the normalized EHR
extracts used in the experiments reported in [16].

However, if we compare optimized relational system
ARM (Table 6) and non-relational MongoDB system
(Table 3) we can see that the latter beats the former in
both Q1 (Query 2.1) and Q3 (Query 3.1): interpolating
MongoDB Q1 and Q3 from the 10,000 and 20,000 ex-
tracts results to a hypothetic 30,000 extracts database
(similar to the 29,743 extracts ARM database) response
times would be 0.1872 and 0.1822 respectively (against
0.1910 and 0.2700 for ARM), even though ARM data-
base size is quite a bit smaller than the 20,000 extracts

Fig. 4 ORM (up) and NoSQL (MongoDB left, eXist right) response times to query Q3 for three database sizes

Fig. 5 ORM and NoSQL (eXist and MongoDB) response times to query Q6 for three database sizes

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 9 of 14



MongoDB database, but also than the 20,000 extracts
relational ORM database, i.e. the size of the ARM extracts
should be smaller. However, comparing Q6 with query
7.1, optimized ARM performs better than the interpolated
MongoDB database: interpolating MongoDB Q6 to 30,000
extracts would yield response time 55.0044. Notice from
Tables 2 and 3 that Q6 is also the query where non-
optimized relational ORM scores the best slope relation
with respect to NoSQL.

Results of the concurrency experiments
Tables 7 and 8 show the average throughput of Q1 (the
most frequent query) and the average response times of
Q1, Q3 and Q4 yielded by the concurrency experiments
described in Section 2.8. Q1 achieves much higher through-
put in the MongoDB setting than in the relational database.
It should be noted that all three queries yield much faster
response times in MongoDB than in MySQL. It seems that
concurrent execution favours MongoDB, since these quer-
ies execute faster concurrently than in isolation.

Discussion
Direct comparison of results
We observe from the results shown in Tables 2, 3 and 4
that the relational and NoSQL database systems use very
different storage and access philosophies. The very high
number of tables generated in the pure relational ORM
approach induces many expensive join operations, result-
ing in a higher computational cost as the size of the data-
base grows and showing a much higher linear slope. In
contrast, NoSQL time costs also seem to grow linearly
with database size, even though with a much flatter slope.
With the results obtained in Tables 2, 3 and 4 pure rela-
tional ORM does not seem practical since response times
grow (almost) linearly but at a prohibitive slope, and will

likely need improvements. On the other hand the much
flatter linearity of the NoSQL systems merits further
research, in order to decide the appropriateness of
document-based database approaches.
Direct comparison of Tables 3 and 4 show that MongoDB

performs considerably better than eXist in the six queries,
yielding a linear but considerably flatter slope in all
cases, and suggesting that document-based NoSQL da-
tabases such as MongoDB are a better solution than
native XML NoSQL DBMSs such as eXist in order to per-
sist and query ISO/EN 13606 standardized EHR extracts.
From Tables 7 and 8 we can see that a NoSQL MongoDB

database yields much higher throughput than ORMMySQL
and also query execution time is also much faster in the
former than in the latter, for the six types of queries.
In fact, MongoDB queries run faster in concurrency than

in isolation. This is because MongoDB query execution
contains a considerable amount of time consuming
administrative and communication tasks that are opti-
mized in an execute-once fashion in the concurrent
version, concentrating CPU execution time in the query
itself. From this point of view, MongoDB stands as a very
efficient, optimizable and effective database system.

Table-like vs. document-like results
Results in relational databases are always presented in a
table-like form, i.e. an SQL-like query always returns a
set of values in the form of a relational table or similar.
A whole document may also be reconstructed, but this
is a fairly slow task, at least in ORM. On the other hand,
a query in a document-based DBMS such as MongoDB
might return a whole document (or a modified or simpli-
fied document) as result (usually XML/JSON documents);
but this document may also be further processed, in order
to produce a relational table-like result.
However, when medical practitioners make primary

use of medical information (clinical practice), they tend
to visualize normalized medical information regarding a

Table 5 Shows space and time costs to store and retrieve XML
documents in the three DBMSs

Retrieval
time (ms)

Storage
time (ms)

Size in
memory (KB)

XML File
size (KB)

ORM/MySQL 6188.5 7569.7 960 244.876

NoSQL/MongoDB 14.0 35.0 390 244.876

NoSQL/eXist 4.9 90.9 250 244.876

Table 6 Shows illustrative data from three relational database
management systems presented in [16]

ARM paper IV(sec) ARM(sec) Node + Path(sec)

Q1 Query 2.1 0.221 0.191 24.866

Q3 Query 3.1 0.242 0.270 294.774

Q6 Query 7.1 14.582 1.293 41.217

Database size 1.60 GB 2.90 GB 43.87 GB

Total extracts 29,743 29,743 29,743

Table 7 Shows most frequent query throughput and response
times in concurrent execution in MySQL

ORM Throughput Response time

Q1 4711.6 0.0793

Q3 4711.6 0.1558

Q4 4711.6 0.9674

Table 8 Shows most frequent query throughput and response
times in concurrent execution in MongoDB

MongoDB Throughput Response time

Q1 178,672.6 0.0030

Q3 178,672.6 0.0026

Q4 178,672.6 0.0034

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 10 of 14



single patient. This favours use of the queries regarding
a single patient (Q1, Q3, Q4) which are about a thousand
times faster than the rest of the queries in NoSQL, and
the documents returned are ready for visualization.
Usually, document-based NoSQL queries perform opera-
tions (projections) directly on the original whole document,
using XPath-like paths that favour document generation
and visualization.
A MongoDB query might thus be considered as another

form or as a first step in document visualization. This
visualization might interact with under-development nor-
malized information visualization mark-up languages [48]
[49]. By the same token this visualization query may be
posed using a GUI presented to the user, or would be
added as another feature of the mark-up visualization
language.

Relational vs. NoSQL database systems
We distinguish in this subsection between clinical prac-
tice i.e. primary use of medical information, and research
oriented practice i.e. secondary use of it.
Regarding primary use, a probable clinical practice

scenario is that formed of several extracts from a single
patient, with which the medical professional is working
at any given time.
In this scenario, a quite small number of EHR extract

documents might be easily recovered from the database.
This is a clear example of a query returning whole ex-
tracts documents, i.e. not relational tables (the kind of
query best managed by a NoSQL system). In Table 1 the
most similar queries to this scenario would be Q1, Q4
and maybe Q3 (see queries applied in Methods above),
which perform better in the NoSQL databases (Tables 2
and 3). The whole extracts documents or their subsets
returned by the NoSQL system are to be retrieved and
visualized by the medical professional.
These documents will probably have links pointing to

subparts of other such documents. These links may indi-
cate causality or other (time) relationships between medical
episodes of the same patient, and the medical professional
may visualize their content navigating through them using
appropriate languages, and distinguishing between their
persistent or their event data [50].
When there exist links between documents, an update of

a referenced element will require a join operation in a rela-
tional system, something that NoSQL databases are unable
to do, compromising efficiency and consistency [25]. How-
ever, this might be a clear example of an application in
which the existence of links between different documents
and their subparts does not affect the core functionality and
consistency of the application (see building a MongoDB
database in Methods above). This is mainly because, if
there is an update of some of these data or elements during
such medical attention, a new extract should be generated

with new information (data elements) and their appropriate
links, without overwriting any previous data elements. This
is a strict requirement of medical information: clinical data
may not be overwritten, because somebody may have taken
medical decisions based on it. If we are to build a link be-
tween some existing element and the new generated data
element, this conforms to the usual behavior of documents
visualization and edition, during clinical practice.
The information pertaining to a single patient is most

easily isolated from the rest of the information in the
database using a document-based rather than a relational
system. However, it might be argued that sometimes a
query requires the whole database. For instance, a medical
professional might pose a query such as ‘show me the diag-
noses given to patients with symptoms A, B and C’. This
query requires the entire patients’ database, not just the
documents pertaining to a single patient. This situation,
which should be common enough, is usually dealt with by
treating it as segregated knowledge, which is pre-packaged
for the medical practitioner’s use, avoiding whole database
time-consuming queries.
In relation to secondary or research use of medical

databases, the existence of links between parts of the EHR
XML documents should be transparent to the underlying
database technology, be it relational or document-based.
More or less complicated ‘epidemiological’ queries may be
performed on a NoSQL or on a relational database, often
obviating these links. In the case of MongoDB implement-
ing an extremely big database, its apparent flatter linear
behaviour would favour it versus a relational approach, in
which joins of ever growing relational tables would pro-
duce high-slope linear complexity.
From the results of this research, it is evident that direct

ORM should be improved. ARM improves ORM in two
ways: (a) it diminishes relational table size by using arche-
types that subdivide such tables into subparts, each corre-
sponding to a different archetype (this is very important
because relational systems perform expensive joins whose
complexity grows very rapidly with table size) and (b) by
designing a new relational model it is also able to diminish
the number of different tables that represent extracts know-
ledge. However, assume that we are able to diminish table
size by 10 times, using 10 different archetypes, then as soon
as our database is big enough again (10 times bigger)
we will be back in the situation of ORM. In other
words, the number of different archetypes does not grow
as fast as database size. Regarding (b), it is not clear in
[16] how the original structure of the extract should be
recovered, since the new relational model has strongly
changed and simplified it.
This hypothesis is confirmed in [51]. The NoSQL systems

evaluated in [51] show simpler linear complexity (as does
MongoDB) while the MySQL relational system time re-
sponses grow much faster, even though this particular

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 11 of 14



system holds non-normalized, simpler data. This fact
confirms the fundamental results suggested by Tables 2
and 3, and will have severe consequences as the size of
the database gets bigger. Notice also that the sizes of the
databases presented in that work are not extraordinarily big
(in fact the relational MySQL database is quite small; the
largest NoSQL databases are not as big as expected, in
order to hold 600,000 records/extracts), i.e. if a next-step
bigger database were tested some NoSQL systems would
probably perform better than the simple non-normalized
relational MySQL system presented (see Fig. 1 and Table 1
in [51]).
The fact that query Q6 in Table 3 (NoSQL) is outper-

formed by optimized ARM (query 7.1 in Table 5), see re-
sults by other improved relational systems in Results
above, is consistent with the result derived from Tables
2 and 3. Q6 is the query with by far the lowest rela-
tional/non-relational slope ratio and is thus also con-
sistent with the hypothesis (confirmed by Q1 and Q3 in
section 3.1) that relational systems are in general algo-
rithmically more complex than non-relational systems
and that for very big databases NoSQL outperforms (opti-
mized) relational systems.
However, one limitation of this study is the availability

of direct results for queries similar to Q2 and Q5 (sec-
ondary or research use; and considering Q6 as a non-
pure secondary-use query, i.e. in the middle between
primary and secondary use) applied to the ARM system.
[16] does not provide such results. We rely at the moment
on the results provided by Tables 2 and 3 and [51], as well
as the results in [16] discussed above, to maintain our
hypothesis until such experiments are performed.
While ARM improvements are considerably ‘algorithmic’,

the optimization presented in column-based relational
databases such as VectorWise is more hardware-oriented.
Consequently, even though column-based systems need
not simplify the relational model as does ARM, they are still
more vulnerable to database size growing.
The linearity of NoSQL (MongoDB) and relational (in

this case object-relational PostgreSQL) performance as
database size grows is confirmed in other results in the lit-
erature such as those shown in Fig. 5 in [24]. This figure
also shows clearly the considerably steeper linear slope of
the relational approach relative to its NoSQL counterpart.
The different scalability of the DBMSs is another

factor playing an important role: relational systems scale
vertically (scaling-up) i.e. if the research database grows,
the whole relational model must reside in the same
machine. NoSQL systems scale horizontally (scaling-out),
however, i.e. as the database grows it may be distributed
among several machines [23]. This opens up the possibility
for several CPUs to work simultaneously, thereby speeding
up the execution time of ‘epidemiological’ queries several-
fold.

Conclusions
This research work has three main conclusions:

(a) (Non-optimized) relational model-based databases
and NoSQL document-based databases both behave
(almost) linearly as database size grows. However
one of the former presents a much steeper slope than
two of the latter. This fact has important consequences
regarding database size: if it is not very big, (improved)
relational databases perform reasonably well, but if
it is extremely high i.e. for instance in ‘epidemiological’
queries on secondary use (research), NoSQL databases
will in many cases constitute a better solution. By
the same token, document-based NoSQL solutions
such as MongoDB perform considerably better than
(document-based) native XML NoSQL databases
such as eXist.

(b) Standardized medical information visualization and
edition is a document-based task, performed in a very
small subset of the whole database. To this end,
NoSQL systems fit better for several reasons, including
information manageability and intuitive processing, but
also database consistency is not compromised.

(c)Document-based NoSQL systems such as MongoDB
surpass relational systems such as MySQL under a
concurrent execution regime, both in throughput
and in query execution time. In addition, MongoDB
behaves considerably better in concurrency than in
isolation. It optimizes query execution in concurrency
and stands as an impressive database system from this
perspective.

A fourth global corollary may also be proposed, i.e. that
there is not a ‘better’ persistence solution. It depends
strongly on the specific situation and problem to be solved.
For instance we could implement an efficient relational
system in a not very big database using optimized ARM,
but then reject it and instead use a NoSQL approach, if we
needed to recover the EHR extracts in their exact original
form, i.e. not just query their medical information. There
are many different persistence situations and scenarios and
an appropriate solution should be adopted for each particu-
lar case. There are several pros and cons, but in many cases
a trade-off solution is best.

Additional files

Additional file 1: SQL program. Program written in SQL performing the
six queries on the MySQL database. (SQL 15.3 kb)

Additional file 2: Java program. Program written in Java performing the
six queries on the MongoDB database, using the MongoDB query
language, and further processing the JSON result in order to produce
relational table-like results. (JAVA 32.6 kb)

Additional file 3: XQuery program. Program written in XQuery
performing the six queries on the eXist database. (XQUERY 5.51 kb)

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 12 of 14

dx.doi.org/10.1186/s12911-017-0515-4
dx.doi.org/10.1186/s12911-017-0515-4
dx.doi.org/10.1186/s12911-017-0515-4


Abbreviations
ACID: Atomicity Consistency Isolation Durability; ARM: Archetype Relational
Mapping; BLOB: Binary Large Object; BSON: Binary JSON; CPU: Central
Processing Unit; DBMS: Database Management System; DM: Data Mining;
EAV: Entity Attribute Value; EHR: Electronic Health Record; JAXB: JAva XML
Binding; JPA: Java Persistence API; JSON: JavaScript Object Notation;
KMS: Knowledge Management System; ML: Machine Learning; NoSQL: Not
Only SQL; ORM: Object Relational Mapping; PITES: Plataforma de Innovación
en nuevos servicios de TElemedicina y e-Salud; RDBMS: Relational DBMS;
RM: Reference Model; SQL: Structured Query Language; W3C: World Wide
Web Consortium; XML: eXtensible Mark-up Language

Acknowledgements
The authors would like to thank Dr. Dipak Kalra, leader of the EHRCom task force
that defined the ISO/EN 13606 standard and his team from University College
London for their kind permission to use the ISO/EN 13606 W3C XML schema.

Funding
This research has been partially supported by projects PI12/00508 “Plataforma de
innovación en nuevos servicios de Telemedicina y e-Salud: Definición, diseño y
desarrollo de herramientas para interoperabilidad, seguridad del paciente y ayuda
a la decisión (Innovation platform in new services based on Telemedicine and
e-Health: definition, design and development of tools for interoperability, patient
security and support to decision) – PITES-ISA”, PI15CIII/00003 “Plataforma
de innovación en Telemedicina y e-Salud: TIC para los retos de I+i en
servicios de salud (Platform for Innovation in Telemedicine and e-Health:
ICT for the challenges of I + i in health services) – PITES-TIiSS”, PI12/01476,
PI12/01558, PI12/01399 “Continuidad de la asistencia basada en estándares
de tecnología y conocimiento: arquitectura tecnológica para usos primario
y secundario de la información (Continuity of care based on technology
and knowledge standards: technological architecture for primary and secondary
information uses.) – CAMAMA2” and PI15CIII/00010 - PI15/00321 - PI15/00831
“Modelo normalizado de historia clínica electrónica compartida para la asistencia
sanitaria y social integrada. Factibilidad y utilidad de un repositorio de uso
secundario en cáncer de mama (Standard model of shared electronic health
record for integrated helath and social care. Feasibility and usefulness of a
repository for secundary use for breast cancer patients.) – CAMAMA 3” from
Fondo de Investigación Sanitaria (FIS) Plan Nacional de I + D + i.

Availability of data and materials
The data that support the findings of this study is available from Fuenlabrada
University Hospital, Barcelona Clinical Hospital and A Coruña University Hospital
Complex, but restrictions apply to the availability of this data, which were used
under license for the current study, and so are not publicly available. Data are
however available from the authors upon reasonable request and with
permission of Fuenlabrada University Hospital, Barcelona Clinical Hospital and A
Coruña University Hospital Complex.
Additional files 1, 2 and 3: 3 additional files (described in the Additional files
section) are provided in the Harvard Dataverse publicly available database. These
files have the following data citation in the Harvard Dataverse:
Sánchez-de-Madariaga, Ricardo; Muñoz, Adolfo; Lozano-Rubí, Raimundo;
Serrano-Balazote, Pablo; Castro, Antonio L; Moreno, Oscar; Pascual, Mario,
2017, “Supplementary files for Examining database persistence of ISO/EN
13606 standardized Electronic Health Record extracts: relational vs. noSQL
approaches”, doi:10.7910/DVN/UIGSA8, Harvard Dataverse, V1.

Authors’ contributions
The original idea for this paper is by authors RSM and AM. All authors (RSM,
AM, RLR, PSB, ALC, OM, MP) made substantial contributions to the design of
the study, its implementation, analysis and interpretation of the results. RSM
designed and wrote the manuscript. AM, RLR, and PSB revised it critically.
ALC conducted the experiments carried out in the study. OM and MP made
critical suggestions about the analysis and interpretations of the results. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
All data processed in the present work were dissociated (anonymized)
according to articles 3 and 11 from the LOPD (Spanish Data Protection Law,
developed in the decree 1720/2007); therefore its treatment with scientific
purposes has not needed the informed consent of the persons concerned
nor, consequently, the approval of an ethics committee.

No secondary analysis was performed on these data.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Telemedicine and Information Society Department, Health Institute “Carlos
III” (ISCIII), c/Sinesio Delgado, 4 –, 28029 Madrid, Spain. 2Medical Informatics,
Hospital Clínic, Unit of Medical Informatics, University of Barcelona, Barcelona,
Spain. 3Department of Computer Science, Autonomous Univerity of
Barcelona, Barcelona, Spain. 4Doce de Octubre University Hospital, Madrid,
Spain.

Received: 13 October 2016 Accepted: 31 July 2017

References
1. Kalra D, Lloyd D. ISO 13606 electronic health record communication part 1:

reference model. ISO 13606–1. Geneva: ISO; 2008.
2. Kalra D, Beale T, Lloyd D, et al. Eds. Electronic health record communication

part 2: archetype interchange specification. ISO 13606–2. Geneva: ISO; 2008.
3. Kalra D, Beale T, Heard S. The openEHR foundation. Stud Health Technol.

Inform. 2005;115:153–73.
4. Health Level seven. Health Level Seven International. http://www.hl7.org.

Accessed Aug 2017.
5. Beale T. Archetypes constraint-Bbased domain models for future proof

information systems, OOPSLA, 2002, Workshop Behav Semant, 2002.
6. University College London. UCL Centre for Health Informatics &

Multiprofessional Education (CHIME). ISO EN 13606 Schema.
7. EN13606 Archetype Definition Language files. https://www.msssi.gob.es/

profesionales/hcdsns/areaRecursosSem/Rec_mod_clinico_arquetipos.htm.
Accessed Aug 2017.

8. ISO 21090:2011 Health informatics Harmonized data types for information
interchange.International Organization for Standardization. Geneva,
Switzerland. 2011.

9. Wassan JT. Modeling stack framework for accessing electronic health records
with big data needs. International Journal of Computer Applications. 2014;106:1.

10. Duftschmid G, Wrba T, Rinner C. Extraction of standardized archetyped data
from Electronic Health Record systems based on the Entity-Attribute-Value
Model. International Journal of Medical Informatics 79 (2010).

11. Walker J, Pan E, Johnston D, Adler-Milstein J, Bates DW Middleton B. The
Value of Health Care Information Exchange and Interoperability. Health
Affairs-Millwood Va then Bethesda Ma (24) p W5.

12. Yasnoff WA, Humphreys BL, Overhage JM, Detmer DE, Brennan PF, Morris
RW, Middleton B, Bates DW, Fanning JP. A Consensus Action Agenda for
Achieving the National Health Information Infrastructure. J Am Med Inform
Assoc. 2004;11(4):332–8.

13. Codd EF. A relational model for large shared data banks. Comm ACM. 1970;
13(6):377–87.

14. Ireland C, Bowers D, Newton M, Waugh K. Understanding object-relational
mapping: a framework based approach. Int J Adv Softw. 2009;2:202–16.

15. Node+Path persistence. https://openehr.atlassian.net/wiki/spaces/dev/
pages/6553626/Node+Path+Persistence. Accessed Aug 2017.

16. Wang L, Min L, Wang R, et al. Archetype relational mapping – a practical
openEHR persistence solution. Medical Informatics and Decision Making.
2015;15:88.

17. Ullman JD. Principles of database and Knowledge-Base systems (two
volumes) computer science press. New: York; 1988.

18. International Standard for Standardization. ISO/TR 20514:2005 Health
Informatics – Electronic Health Record – Definition Scope and Context.
2005. https://www.iso.org/standard/2039525.html. Accessed Aug 2017.

19. NoSQL. https://en.wikipedia.org/wiki/NoSQL. Accessed Aug 2017.
20. SQL vs. NoSQL. the differences. https://www.sitepoint.com/sql-vs-NoSQL-

differences/. Accessed Aug 2017.

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 13 of 14

http://dx.doi.org/10.7910/DVN/UIGSA8
http://www.hl7.org
https://www.msssi.gob.es/profesionales/hcdsns/areaRecursosSem/Rec_mod_clinico_arquetipos.htm
https://www.msssi.gob.es/profesionales/hcdsns/areaRecursosSem/Rec_mod_clinico_arquetipos.htm
https://openehr.atlassian.net/wiki/spaces/dev/pages/6553626/Node+Path+Persistence
https://openehr.atlassian.net/wiki/spaces/dev/pages/6553626/Node+Path+Persistence
https://www.iso.org/standard/2039525.html
https://en.wikipedia.org/wiki/NoSQL
https://www.sitepoint.com/sql-vs-NoSQL-differences/
https://www.sitepoint.com/sql-vs-NoSQL-differences/


21. Tim Bray SM, Paoli J Maler E. Extensible markup language (xml) 1.0 second
edition w3c recommendation. Technical Report RECxml-20001006, World
Wide Web Consortium, October 2000.

22. Javascript object notation (JSON). http://www.json.org. Accessed Aug 2017.
23. Kaur K, Rani R. Modeling and querying data in NoSQL databases. 2013 IEEE

International Conference on Big Data.
24. Kaur K, Rani R. Managing data in healthcare information systems: many

models, one solution. Computer. 2015 March:52–9.
25. Why You Should Never Use MongoDB. Blog of Sarah Mei. http://www.

sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/.
Accessed Aug 2017.

26. Wang L, Hassanzadeh O, Zhang S, et al. Schema management for
document stores. Proceedings of theVLDB Endowment. 2015;8(9):922–33.

27. Liu ZH, Hammerschmidt B, McMahon D, et al. Closing the functional
and performance gap between SQL and NoSQL. SIGMOD. 2016:227–38.

28. Parker Z, Poe S and Vrbsky SV. Comparing NoSQL MongoDB to an SQL Db.
Proceedings of the 51st ACM Southeast Conference. Savannah, Georgia.
2013. ACM p1–6.

29. Ercan MZ, Lane M. Evaluation of NoSQL databases for EHR systems. 25th

Australasian Conference on Information Systems. 8th–10th Dec 2014.
Auckland, New Zealand.

30. Jin Y, Deyu T and Xianrong Z. Research on the Distributed Electronic
Medical Records Storage Model. IT in Medicine and Education (ITME). 2011
International Symposium on: IEEE. 2011. p 288–292.

31. Schmitt O and Majchrzak TA. Using Document-based Databases for Medical
Information Systems in Unreliable Environments. 9th International ISCRAM
Conference. 2012. Vancouver, Can Underwrit.

32. Abramova V, Bernardino J. NoSQL Databases: MongoDB vs. Cassandra.
Proceeedings of the International C* Conference on Computer Science and
Software Engineering. Porto, Portugal. 2013. ACM. P 14–22.

33. Madhava V, Sreekanth R, Nanduri S. Big data electronic health records data
management and analysis on cloud with MongoDB: a NoSQL database.
International Journal of Advanced Engineering and Global technology.
2015;3(7):946–9.

34. Xu W, Zhou Z, Zhou H, Zhang W, Xie J. MongoDB Improves Big Data
Analysis Performance on Electric Health Record System. S. Ma et al. (Eds.).
LSMS/ICSEE. 2014. Part I, CCIS 461, p 350–357.

35. Miranda Freire S, Teodoro D, Wei-Kleiner F, Sundvall E, Karlsson D, Lambrix P.
Comparing the performance of NoSQL approaches for managing archetype-
based electronic health record data. PLoS One. 2016;11(3):e0150069.

36. Monteagudo JL, Pascual M. Muñoz A, et al. Telemedicine and e-Health
innovation platform. Telemedicine. Intech: PITES; 2012.

37. Maldonado JA, Moner D, Boscá D, et al. LinkEHR-Ed. A multi-reference
model archetype editor based on formalsemantics, Int. J. Med. Inf. 78
(August (8)) (2009) 559–570.

38. Maldonado JA, Costa CM, Moner D, et al., Using the research EHR platform
to facilitate the practical application of the EHR standards, J. Biomed. Inf. 45
(August (4)) (2012) 746–762.

39. Somolinos R, Hernando ME, Muñoz A, et al. Service for the pseudonymization
of electronic healthcare records based on ISO/EN 13606 for the secondary use
of information. IEEE Journal of Biomedical and Health Informatics 19–6, pp.
1937–1944. 2015.

40. MongoDB. https://www.mongodb.com/. Accessed Aug 2017.
41. eXist database. http://exist-db.org/. Accessed Aug 2017.
42. Dinu V, Nadkarni P. Guidelines for the effective use of entity-attribute-

value modeling for biomedical databases. Int J Med Inform. 2007;76:
769–79.

43. Abadi DJ, Madden SR, Hachem, N. Column-stores vs row-stores: how
different are they really? SIGMOD 2008. Vancouver, Can Underwrit.

44. Harizopoulos S, Liang V, Abadi DJ, Madden S. Performance tradeoffs in read-
optimized databases. VLDB’06. Seoul. Korea.

45. Boncz PA, Kersten ML, Manegold S. Breaking the memory wall in MonetDB.
Comm of the ACM. 2008;51(12):77–85.

46. Żukowski M, Boncz P. From x100 to vectorwise: opportunities,
challenges and things most researchers do not think about.
Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data (ACM): 861–862.

47. Böhme T, Rahm E. XMach-1: a benchmark for XML data management.
University of Leipzig. 2000. https://dbs.uni-leipzig.de/en/projekte/XML/
XmlBenchmarking.html. Accessed Aug 2017.

48. Sánchez-de-Madariaga R, Muñoz A, Somolinos R, et al. Normalized medical
information visualization. In: Cornet R et al, editors. Digital Healthcare
Empowering Europeans. European Federation for Medical Informatics
(EFMI). IOS Press; 2015. p. 215–217.

49. Sánchez-de-Madariaga R, Muñoz A, Cáceres J, et al. ccML, a new markup
language to improve ISO/EN 13606-based electronic health record extracts
practical edition. J Am Med Inform Assoc. 2013;20:298–304.

50. EHR Information Model. openEHR. http://www.openehr.org/releases/RM/
latest/docs/ehr/ehr.html. Accessed Aug 2017.

51. Miranda Freire S, Sundvall E, Karlsson D, Lambrix P. Performance of XML
databases of epidemiological queries in archetype-based EHRs.
Scandinavian Conference on Health Informatics 2012, Linköping, Sweden.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Sánchez-de-Madariaga et al. BMC Medical Informatics and Decision Making  (2017) 17:123 Page 14 of 14

http://www.json.org
http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/
http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/
https://www.mongodb.com/
http://exist-db.org/
https://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html
https://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html
http://www.openehr.org/releases/RM/latest/docs/ehr/ehr.html
http://www.openehr.org/releases/RM/latest/docs/ehr/ehr.html

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Relational approach
	Relational improvements
	Non-relational NoSQL approach
	NoSQL current state-of-art
	Objective

	Methods
	Building a relational MySQL database system to store and query normalized EHR extracts
	Building a NoSQL MongoDB database system to store and query normalized EHR extracts
	Building a native XML NoSQL eXist database system to store and query normalized EHR extracts
	The openEHR node + path EHR extracts database system
	The archetype relational mapping (ARM) persistence solution
	Other relational database improvements
	Queries applied to the relational and NoSQL DBMSs
	Concurrency experiments
	Indexing policies

	Results
	Results by other improved relational systems
	Results of the concurrency experiments

	Discussion
	Direct comparison of results
	Table-like vs. document-like results
	Relational vs. NoSQL database systems

	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

