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Abstract

Background: Rapid advancement of next generation sequencing technologies such as whole genome sequencing
(WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics. To identify
rare variants associated with human diseases or traits, an efficient genome-wide binning approach is needed. In this
study we developed a novel biological knowledge-based binning approach for rare-variant association analysis and then
applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer’s disease (LOAD).

Methods: For rare-variant analysis, we used the knowledge-driven binning approach implemented in Bin-KAT, an automated
tool, that provides 1) binning/collapsing methods for multi-level variant aggregation with a flexible, biologically informed
binning strategy and 2) an option of performing unified collapsing and statistical rare variant analyses in one tool. A total
of 750 non-Hispanic Caucasian participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort who had
both WGS data and magnetic resonance imaging (MRI) scans were used in this study. Mean bilateral cortical thickness of the
entorhinal cortex extracted from MRI scans was used as an AD-related neuroimaging endophenotype. SKAT was used for a
genome-wide gene- and region-based association analysis of rare variants (MAF (minor allele frequency) < 0.05) and potential
confounding factors (age, gender, years of education, intracranial volume (ICV) and MRI field strength) for entorhinal cortex
thickness were used as covariates. Significant associations were determined using FDR adjustment for multiple comparisons.

Results: Our knowledge-driven binning approach identified 16 functional exonic rare variants in FANCC significantly
associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In addition, the approach identified 7
evolutionary conserved regions, which were mapped to FAF1, RFX7, LYPLAL1 and GOLGA3, significantly associated
with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In further analysis, the functional exonic rare variants
in FANCC were also significantly associated with hippocampal volume and cerebrospinal fluid (CSF) Aβ1–42 (p-value < 0.05).

Conclusions: Our novel binning approach identified rare variants in FANCC as well as 7 evolutionary conserved regions
significantly associated with a LOAD-related neuroimaging endophenotype. FANCC (fanconi anemia complementation
group C) has been shown to modulate TLR and p38 MAPK-dependent expression of IL-1β in macrophages. Our results
warrant further investigation in a larger independent cohort and demonstrate that the biological knowledge-driven
binning approach is a powerful strategy to identify rare variants associated with AD and other complex disease.
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Background
Rapid advances in next-generation sequencing technolo-
gies and bioinformatics tools over the past decade have
made an important contribution to searching for disease
susceptibility factors and understanding the impact of the
genetic variation on human diseases [1, 2]. In particular,
since the completion of the human genome project,
whole genome sequencing (WGS) has been increasingly
used as a tool to understand the complexity and diversity
of genomes in disease by performing detailed evaluation
of all genetic variation [3, 4].
Late-onset Alzheimer’s disease (LOAD) is the most

prevalent form of age-related neurodegenerative disease
and dementia [5]. Abnormal proteins forming histologi-
cally visible structures, amyloid plaques and neurofibril-
lary tangles, damage and destroy neurons and their
connections [6]. With the increasing population of aging
adults, it is predicted that the number of AD patients
will triple in the United States by 2050 [7]. Models sug-
gest that delaying the onset of AD by 5 years through
early intervention could reduce the number of AD cases
by nearly 50% [8, 9]. To develop effective therapeutic
intervention to slow or prevent disease progression and to
effectively target potential disease-modifying approaches,
early biomarkers are needed to detect AD at pre-
symptomatic stages with high accuracy and monitor the
pathological progression. With an estimated heritability
of about 80%, genetic factors play an important role in
developing AD [10, 11]. Very recently, genetic associ-
ation studies have used next-generation sequencing
technologies to identify functional risk rare variants with
moderate to large effects on LOAD risk within TREM2,
ABCA7, UNC5C, AKAP9 and PLD3 genes [12–14].
For a rare-variant association analysis, gene- or

region-based multiple-variant tests have been widely
used due to improved power over single variant tests.
There exist several different approaches in multiple-
variant tests. Burden methods test the cumulative effect
of variants within a knowledge-driven region such as
genes and are easily applied to case–control studies as
they assess the frequency of variant counts between
these binary phenotypes. Burden tests, which collapse
variants to a single genetic score, are powerful when
the variants have the same effect direction with similar
magnitudes [15]. When this assumption is violated,
however, it can result in a significant loss of power.
Variance component tests, such as sequence kernel as-
sociation test (SKAT), were developed to overcome this
limitation [16]. SKAT is a score-based variance compo-
nent test that uses a multiple regression kernel-based
approach to assess variant distribution and test for as-
sociation. These are more powerful than Burden tests
in the presence of opposite association directions or
large numbers of non-causal variants [16].

A rare-variant study requires careful consideration, in-
cluding choice of variant collapsing or binning approach
for region-based association analysis. In this study, we
propose a novel biological knowledge-driven binning
approach (Bin-KAT) to identify trait- and disease-
associated rare variants. Bin-KAT is a comprehensive,
streamlined approach that unifies a genome-wide variant
binning function in BioBin [17–21] and a dispersion-
based association analysis tool such as SKAT [16, 22].

Methods
Study subjects and whole genome sequencing (WGS)
analysis
This study utilized data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort. The ADNI co-
hort consisted of cognitively normal older adults (CN),
mild cognitive impairment (MCI) and early AD. We
downloaded demographic information, raw MRI scan
data, whole genome sequencing data and diagnostic
information from the ADNI data repository (http://
www.loni.usc.edu/ADNI/) [23]. All participants pro-
vided written informed consent and study protocols
were approved by each participating sites’ Institutional
Review Board. WGS was performed by Illumina on
blood-derived genomic DNA samples obtained from
818 ADNI participants using paired-end 100-bp reads
on the Illumina HiSeq2000 (www.illumina.com). As
described previously in detail [24, 25], Broad GATK
and BWA-mem were used to align raw sequence data
to the reference human genome (human genome build
37) and call the variants.

Neuroimaging analysis
All available structural MRI scans at baseline acquired
following the ADNI MRI protocol were downloaded
from the ADNI data repository [26]. A widely employed
automated MRI analysis technique, FreeSurfer (http://
surfer.nmr.mgh.harvard.edu/), for automated segmenta-
tion and parcellation, was used to process MRI scans
and extract mean volumes and cortical thicknesses
(Euclidean distance between the grey/white boundary
and the grey/cerebrospinal fluid boundary) for all target
regions. In this analysis, we used the bilateral mean
value of the entorhinal cortex thickness as an AD-related
endophenotype as the entorhinal cortex is a region known
to be affected early in AD.

Knowledge-driven binning approach
As a variant binning tool, BioBin aggregates variants into
multiple user-selected features in a biologically informed
manner using an internal biological data repository
known as LOKI or the Library of Knowledge Integration.
LOKI integrates multiple public databases including
NCBI Entrez Gene, UCSC Genome Browser, Protein
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families (Pfam), Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG), Reactome, Genome Ontology (GO) and
others, into one centralized data bank. Using these rich
data sources, variants can be binned into various bio-
logical features such as genes, pathways, protein families,
evolutionary conserved regions (ECRs), regulatory re-
gions and others. The main utility of BioBin is a direct
access to a comprehensive knowledge-guided binning
approach for multiple biological features. Simultaneous
to variant binning, a user can perform a phenotypic as-
sociation analysis using selected burden tests (regression
or the Wilcoxon rank sum) or dispersion tests (SKAT)
directly within the framework of BioBin. Our knowledge-
driven binning approach (Bin-KAT) was applied to
determine the association of rare variants with LOAD-
related neuroimaging endophenotype, entorhinal cortex
thickness (Fig. 1), while adjusting for age, gender, years
of education, intracranial volume (ICV) and MRI field
strength. Functional exonic rare variants (minor allele
frequency (MAF) < 0.05) extracted from the WGS data
using ANNOVAR [27] were binned by five different
biological features, genes, KEGG pathway, protein fam-
ilies, regulatory regions and ECRs (Fig. 1). A minimum
bin size of 5 variants was used. Binned variants were
weighted inversely proportional to their MAF using
Madsen and Browning weighting [28].

Results
Genome-wide gene-based association analysis of
functional exonic rare variants with LOAD-related
neuroimaging endophenotype
In order to remove spurious association in disease
studies due to population stratification, a total of 750

non-Hispanic Caucasian ADNI participants who had
both WGS data and MRI scans were used in this study
[29]. The population demographics are shown in Table 1.
From the WGS-identified variants, ANNOVAR identi-
fied 205,136 functional exonic variants. Among 205,136
variants, 188,508 rare variants (MAF < 0.05) were se-
lected for the analysis. A genome-wide gene-based asso-
ciation analysis of rare variants with entorhinal cortex
thickness using a burden-based approach did not iden-
tify any genes that exceeded a genome-wide significant
threshold (FDR-corrected p-value < 0.05) (data not
shown). However, a dispersion-based approach (SKAT)
identified a gene, FANCC, which consisted of 16 func-
tional exonic rare variants, achieved a genome-wide
significant association with entorhinal cortex thickness
(p-value < 2 x 10−6; FDR-corrected p-value < 0.05)
(Fig. 2). To further investigate the effect of rare variants
in FANCC on phenotypic variation, we re-ran SKAT for
FANCC after removing one variant at a time and identi-
fied that rs1800361 out of 16 variants in FANCC had the
strongest effect on entorhinal cortex thickness (Table 2).
In addition, the functional exonic rare variants in
FANCC were also associated with hippocampal volume
and cerebrospinal fluid (CSF) Aβ1–42 (p-value < 0.05).
There were several genes marginally associated with

entorhinal cortex thickness. Top 10 genes including
FANCC were obtained based on SKAT p-values (Table 3).
In particular, five genes (RFX7, SORCS2, FAF1, ABCA5
and NCF4) were marginally significant within FDR-
corrected p-value < 0.1 (Table 3). To identify a functional
relationship between top 5 genes, we performed the In-
tegrated Multi-species Prediction (IMP) that combines
biological evidence from multiple biological databases

Fig. 1 Illustration of rare variant association analysis using Bin-KAT for neuroimaging genomics. First, rare variants were binned/collapsed based
on biological knowledge, such as exon, gene, pathway, protein family, evolutionary conversed regions (ECR) or regulatory region, using BioBin.
Then, statistical tests including a burden test and a dispersion test (SKAT), were incorporated into BioBin, called Bin-KAT [19]. Bin-KAT provides an
option of performing unified rare variant association analysis methods in one tool to identify biologically-informed bins significantly associated
with imaging endophenotypes of interest. VCF, variant call format
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and provides a probability score that two genes are
involved in a biological and functional relationship [30].
Figure 3 shows that FANCC, RFX7, FAF1 and ABCA5
are likely to be involved in the same biological process.

Knowledge-based binning approach for an association
analysis of rare variants
In addition to a gene rare variant analysis approach,
our biological knowledge-based binning approach based
on KEGG pathway, Pfam, ECRs and regulatory regions
was performed. None of biologically-informed bins was
significant when the burden-based approach was used
(data not shown). However, the dispersion approach
(SKAT) identified 7 evolutionary conserved regions,
which were mapped to FAF1, RFX7, LYPLAL1 and
GOLGA3, significantly associated with entorhinal cortex
thickness (FDR-corrected p-value < 0.05) (Table 4).

Discussion
In this study we developed a novel knowledge-driven
binning approach for rare-variant association analysis
and then applied the approach to whole genome sequen-
cing data to identify rare variants associated with a neu-
roimaging endophenotype related to LOAD. Our results
showed that (1) the novel binning approach is useful to
identify trait- and disease-associated rare variants; (2) a
dispersion-based test (SKAT) outperforms a regression-
based burden test [19]; and (3) quantitative traits (QT)
as phenotypes substantially increase detection power for
association analysis.

Table 1 Demographic characteristics of study population

CN EMCI LMCI AD

N 255 218 232 45

Gender (M/F) 129/126 120/98 148/84 28/17

Age
(mean (SD))

74.38 (5.47) 71.12 (7.46) 73.16 (7.27) 74.76 (9.25)

Education
(mean (SD))

16.4 (2.7) 16.0 (2.7) 16.1 (3.0) 15.7 (2.7)

APOE ε4
(absence/presence)

185/70 131/87 113/119 12/33

CN cognitive normal older subject, EMCI early mild cognitive impairment,
LMCI late MCI, SD standard deviation

Fig. 2 Manhattan plot of genome-wide gene-based rare variant
association analysis for a LOAD-related neuroimaging endophenotype,
entorhinal cortex thickness. –log10 p-value was plotted against the
chromosomal location of each gene. FANCC exceeded the genome-
wide significant threshold (FDR-corrected p-value = 0.05) (red line)

Table 2 Variant effects of FANCC on entorhinal cortex thickness.
P-values from SKAT were obtained by removing a rare variant
on FANCC at a time

Variant p-valuea Annotation

rs1800361 3.01E-04 nonsynonymous

rs145497019 1.20E-05 nonsynonymous

rs1800362 9.71E-06 nonsynonymous

rs1800368 9.71E-06 nonsynonymous

rs138629441 5.79E-06 nonsynonymous

rs143152201 3.19E-06 nonsynonymous

9:97869388 2.33E-06 nonsynonymous

FANCC 2.27E-06b

9:97887391 2.27E-06 nonsynonymous

rs1800367 2.27E-06 nonsynonymous

9:97876956 2.20E-06 nonsynonymous

rs140687953 1.87E-06 nonsynonymous

rs140781259 1.70E-06 nonsynonymous

9:97934335 1.66E-06 nonsynonymous

rs1800366 1.65E-06 nonsynonymous

rs121917783 1.59E-06 stop-gain

rs1800365 1.48E-06 nonsynonymous
ap-value from SKAT for FANCC after removing the variant
bp-value from SKAT for FANCC that contains every variant

Table 3 Top 10 genes associated with entorhinal cortex thickness

Gene p-value FDR-corrected p-value

FANCC 2.27E-06 0.033

RFX7 7.22E-06 0.052

SORCS2 1.95E-05 0.094

FAF1 3.60E-05 0.098

ABCA5 3.75E-05 0.098

NCF4 4.06E-05 0.098

RIN3 5.33E-05 0.110

MFSD2A 7.08E-05 0.128

GOLGA3 8.16E-05 0.132

CLN5 1.07E-04 0.156
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The biological knowledge-based binning approach
identified rare variants in FANCC (Fanconi anemia com-
plementation group C) as well as 7 evolutionary conserved
regions significantly associated with a LOAD-related neu-
roimaging endophenotype, entorhinal cortex thickness.
The entorhinal cortex (EC) is a region that is affected early
in the progression of AD and one of the first sites of tau
pathology, and the entorhinal cortex thickness was shown
to predict cognitive decline in AD [31, 32].
Although the relationship between Fanconi anemia

(FA) genes and AD has not been identified yet, there are
some genetic modulators playing a role in FA and AD
pathology. FA genes include several complementation
groups [33, 34]. FA proteins form the complexes with

each other against genotoxic stress for the survival of
the hematopoietic and germ cells [33]. In addition to
playing a role in the FA complex during homologous
recombination repair, FANCC has the other crucial
function in hematopoietic cells by protecting them from
apoptosis [33, 35]. FANCC has been shown to modulate
TLR and p38 MAPK-dependent expression of IL-1β in
macrophages [36]. FANCC −/− mice produce 2.5 times
more interleukin 1β (IL-1β) than wild type and in
human CD14+ cells [37]. In addition to these roles of
IL-1β and MAP kinases in the FA pathway, IL-1β and
p38 MAPK and JNK were significantly related to Aβ-
induced EC synaptic dysfunction by involving the recep-
tor for advanced glycation end products (RAGE) signal-
ing in microglia in AD mice model [38]. FANCC binds
and regulates the phosphorylation of the Stathmin-1
(STMN1) that is crucial for the spindle organization
during mitosis [39]. In addition, a microarray expression
study showed that STMN1 is differentially expressed
in AD and associated with calcium hemostasis in the
human brain [40].
The evolutionary conserved regions (ECRs) we identi-

fied to be associated with entorhinal cortex thickness
were also linked to the MAPK-p38 pathway [41, 42].
The ECRs are often required for basic cellular or meta-
bolic function; finding ECRs is a useful method for iden-
tifying functional sequences in a genome. Several ECRs
were identified to be associated with entorhinal cortex
thickness including FAF1, which was found to activate
the MAPK p38 signaling pathway [43]. FAF1 has also
been found to be overexpressed in the frontal cortex of
Parkinson’s disease (PD) as well as PD and AD patients
[44]. GOLGA3 (golgin A3) has been found to have up-
regulated expression in AD possibly by promoting cell
surface expression of the beta1-adrenergic receptor [45].
RFX7 plays an important role in the development of the
neural tube during embryogenesis [46], and is highly
expressed in various brain tissues [47]. Since the genes
we mentioned above were related to the pathways com-
mon with AD pathology, these genes may be a potential
target for future therapeutics to treat neurodegenerative
disease and cognitive decline.

Fig. 3 Functional networks based on top 5 genes associated with
entorhinal cortex thickness. The Integrated Multi-species Prediction
(IMP) performs a graphical search of a functional network to identify
the genes most likely to participate in similar pathways as query
genes including FANCC, RFX1, FAF1, ABCA5 and SORCS2. Nodes
represent genes and edges represent the predicted probability that
the connected genes are involved in the same biological process.
Large nodes represent query genes and the color of the edge signifies
the strength of the relationship confidence. Red edge represents
higher confidence scores between nodes

Table 4 Evolutionary conserved regions (ECR) associated with entorhinal cortex thickness

ECR Mapped gene p-value FDR-corrected p-value

ucsc_ecr:ecr_placentalMammals_chr1_band514 FAF1 1.72E-06 0.018

ucsc_ecr:ecr_placentalMammals_chr15_band358 RFX7 1.72E-06 0.018

ucsc_ecr:ecr_primates_chr15_band292 RFX7 5.81E-06 0.025

ucsc_ecr:ecr_vertebrate_chr1_band599 FAF1 7.22E-06 0.025

ucsc_ecr:ecr_vertebrate_chr1_band1917 LYPLAL1, LOC101929666, LOC101929713 7.22E-06 0.025

ucsc_ecr:ecr_vertebrate_chr12_band1255 GOLGA3 7.22E-06 0.025

ucsc_ecr:ecr_vertebrate_chr15_band428 RFX7 8.45E-06 0.025
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Conclusions
To conclude, our results warrant further investigation
in a larger independent cohort and demonstrate that
the knowledge-driven binning approach using Bin-KAT
is a powerful strategy to identify rare variants associ-
ated with AD and other complex disease. Bin-KAT has
previously shown to be successful in a multiple pheno-
type and multiple biological feature analysis [19]. This
software package is open source and freely available
from http://ritchielab.com/software/biobin-download.
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