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Abstract

Background: Hearing Aids amplify sounds at certain frequencies to help patients, who have hearing loss, to
improve the quality of life. Variables affecting hearing improvement include the characteristics of the patients’
hearing loss, the characteristics of the hearing aids, and the characteristics of the frequencies. Although the two
former characteristics have been studied, there are only limited studies predicting hearing gain, after wearing
Hearing Aids, with utilizing all three characteristics. Therefore, we propose a new machine learning algorithm that
can present the degree of hearing improvement expected from the wearing of hearing aids.

Methods: The proposed algorithm consists of cascade structure, recurrent structure and deep network structure.
For cascade structure, it reflects correlations between frequency bands. For recurrent structure, output variables in
one particular network of frequency bands are reused as input variables for other networks. Furthermore, it is of

deep network structure with many hidden layers. We denote such networks as cascade recurring deep network
where training consists of two phases; cascade phase and tuning phase.

Results: When applied to medical records of 2,182 patients treated for hearing loss, the proposed algorithm
reduced the error rate by 58% from the other neural networks.

Conclusions: The proposed algorithm is a novel algorithm that can be utilized for signal or sequential data.
Clinically, the proposed algorithm can serve as a medical assistance tool that fulfill the patients’ satisfaction.

Keywords: Hearing Aids, Hearing improvement, Neural networks, Deep learning, Cascade structure, Recurrent

structure

Background

As individuals have longer life expectancies, the quality
of life has become more and more important nowadays
as well as auditory rehabilitation of hearing impaired
persons. In the recent years, the need of hearing aid(-
HA)s for patients with hearing loss is spreading widely
however, the satisfaction levels of HAs are quite diverse
among individuals. One of the many causes that affect
the satisfaction levels is the composite interactions be-
tween the variables that affect the outcomes of HAs.
Walden et al [1] investigated the correlations between
the patients’ demographic information and hearing test
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results in 50 patients that were successfully using HAs,
and determined that age is a major variable for success-
ful HA use. In a study of acute hearing loss, 83 patients
were classified into four levels in a range of 1 to 4 ac-
cording to their degrees of recovery. The factors that af-
fected the hearing recovery were analyzed using
nonparametric statistical analysis methods. The results
indicated that the presence of tinnitus and/or dizziness,
duration of hearing loss, pure tone audiometry patterns,
degree of hearing loss, and age have statistically signifi-
cant effects on recovery [2]. Although other studies have
also reported the reasons for HA failure and methods to
improve HA outcomes, studies with large number of pa-
tients for HAs have not been investigated.

For successful use of HAs, a highly reliable prediction
model attributing to specific characteristics of HAs and
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frequencies is essential. Although there are algorithms
for fitting of HAs developed by various HA manufactur-
ing companies, objective information on the degree of
hearing improvement obtained by different HAs in pa-
tients are sometimes inaccurate or concealed. Mulrow
et al. [3] proposed a logistic regression model for vari-
ables such as age, education, functional limitations, and
the degree of hearing loss using data from 176 patients
but this model showed low accuracy of training data
and testing data (75-88% and 54—84%, respectively).
Cvorovic et al. [4] presented a multiple linear regression
model with 541 Swiss patients that showed sudden sen-
sorineural hearing loss symptoms as a diagnosis model
[4]. However, this model has limitations as it was limited
to sudden sensorineural hearing loss, the validity of the
model was not verified, and its applicability in the clinical
field was not evaluated.

Figure 1 shows the unaided pure tone audiometry of
two patients with different category and type of hearing
loss. In Fig. 1a, the patient has sensorineural and convex
type hearing loss. Sensorineural hearing loss occurs due
to abnormalities in the cochlea or disorders in the
nerves that connect the inner ear with brain. In addition,
due to convex type, the patient has hearing loss in
medium frequency bands (1KHz, 2KHz). The threshold
of medium frequencies is higher than that of low fre-
quencies and high frequencies by at least 15 dB. Thus,
the patient is unable to hear sounds such as cell phone
bell. Figure 1b shows the audiometry for patient with
conductive hearing loss. For this patient, all sound
thresholds from low frequency bands to high frequency
bands exceed 65 dB and the degree of hearing loss is se-
vere. In both cases, a model that can reflect patient
information, clinical evaluations, and hearing aid infor-
mation is required for HA fitting suitable for each pa-
tient. If the hearing gain by HAs can be predicted
individually after HA fitting, it will be possible to adjust
and regulate the hearing gain sequentially. This will then
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enable the use of HA to reach to its optimal hearing gain
resulting in high satisfaction levels.

Therefore, the purpose of this study was to develop a
new model that can present the expected degrees of
hearing gain followed by HA fitting based on the vari-
ables that can affect the outcomes of HAs. This model is
expected to fulfill the patients’ expectation levels, motiv-
ate the patients to use and manage HAs, and help to
maximize the hearing improvement through application
of HAs in the clinical fields.

Neural networks general

The proposed algorithm is based on neural networks.
Neural networks are machine learning algorithms used
for prediction or classification. It is known to show high
prediction performance even in cases where the relation-
ships between input variables and target variables have
not been defined or are complicated [5]. Out of various
neural networks the one that is most frequently used is
the Multilayer Feedforward Network which is composed
of three layers; input layer, hidden layer, and output layer
[6]. Each of the nodes in a neural network are connected
in the forward direction, from the input layer to hidden
layer and from hidden layer to output layer. With selec-
tion of appropriate numbers of the hidden nodes and
output nodes, it is known to show high prediction per-
formance [5, 7, 8]. Given the structure of a neural net-
work, the learning process begins with the given dataset.
For # instances, x = {x; | x,€R% i=1,2, ..,n} and k tar-
get variables, y=1{y; | y,€R, j=1, 2, ..., k}, the learning
process of a neural network is to estimate the weight
w that connects each nodes. The estimation of w is
calculated in the direction of reducing the error,
which is the difference between output variable f
={f; IfeR, j=1,2, ...,k} and target variable y. Thus,
the objective is to minimize the sum of squared er-
rors and the optimization problem is:
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min (f-y)" (f-y).

In this study, we propose a novel neural network that
have three structural characteristics: cascade, recurrent,
and deep network structure. Previous studies concerning
each of the three structures are reviewed as the
following.

Cascade structure

When a neural network obtains high prediction per-
formance, selecting an appropriate number of hidden
nodes is important. Although the number of hidden
nodes is selected by trial-and-error, in general, there has
been extensive studies in determining the number of
hidden nodes through algorithm. One of the representa-
tive algorithms is a cascade-correlation neural network
which selects the optimal number of hidden nodes by
adding a single hidden node at each step in the training
process. In addition, it achieves faster training process
than general neural networks [9, 10].

Recurrent structure

Neural networks in recurrent structures are frequently
utilized for the prediction of time series or sequential
data. For instance, in predicting k target variables, y
=[y1, ¥2 ... yi], that has characteristics of time-series,
the output variables are correlated with each other. In
such case, higher performance can be obtained by utiliz-
ing previous step ¥, as an input variable for prediction
of t-time step y,. This is well consistent with the concept
of Recurrent Neural Network that combines a general
neural network with the notion of time series. In recur-
rent neural network, hidden nodes are utilized as stor-
ages that preserve the information in previous training
step [11, 12].

Deep network structure

In Recent works, it has shown that piling up many layers
in a neural network leads to improvements in prediction
performance. The basic concept of deep neural networks
is to pile up many hidden layers between the input layer
and the output layer [13]. However, if a neural network
becomes deep with many layers, it leads to difficulty in
learning weights and thus the overfitting problem [5].
To solve the overfitting problem, the Restricted Boltz-
mann Machine and the Deep Belief Network can be
used. The Restricted Boltzmann Machine is a model
made by removing connections between layers from
Boltzmann machine and updates the entire parameters
by piling up hidden layers one by one [14]. The Deep
Belief Network is a model that piles up pre-trained
layers with unsupervised learning [15].
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In this study, we proposed a novel neural network al-
gorithm by incorporating advantages of three neural net-
work structures described above.

Methods

The proposed algorithm is a type of neural network that
can be applied to signal data in which output variables
are closely correlated with each other. In the case of
neural networks with many output variables, learning of
weight w is difficult because there are many connections
to hidden nodes. On the contrary, if neural networks are
independently configured for each output variable, it
would be difficult to determine the number of hidden
nodes. To circumvent the difficulty, we propose a neural
network algorithm that reflects the structural advantages
of the cascade-correlation network, recurrent neural net-
work, and deep neural network explained above. The
proposed algorithm is a Cascade Recurring Deep Net-
work (CRDN) that is suitable for predicting signal or
time series data in which output variables are closely
correlated. Figure 2 shows the structure of the CRDN.
Cascade structures refer to configuring neural networks
in progressive order for each output variable, and recur-
rent structures refer to reusing one output variable as an
input variable for another network. Also, deep network
structures refer to piling up k + 1 hidden layers for k out-
put variables. CRDN consists of two phases; cascade
phase and tuning phase. In cascade phase, a neural net-
work for one output variable is configured and suffi-
ciently trained. Then the trained network is used as base
leaner for constructing the next neural network and the
process progressively carried out for other output vari-
ables. In tuning phase, the errors in the output values
from cascade phase are corrected.

Cascade phase

Cascade phase is step for training output variables in
stepwise fashion. When we predict a specific output
variable, other correlated output variable is utilized as an
input variable. It is known that for training neural net-
works increase in the number of nodes leads to higher
computational cost and difficulty in training the weight
w [5]. Therefore, in cascade phase, for predicting many
output variables, we first construct a feedforward neural
network for one output variable and the trained network
is used as base leaner for constructing the another
neural network. The base learner is updated as the out-
put variables are changed. Such processes have an ad-
vantage of drastically reducing the training time by
reusing previously trained feedforward neural networks.
Cascade phase progresses in bi-directional order; inclin-
ing step, which is a learning process in the forward dir-
ection, and declining step, which is a learning process in
the reverse direction.
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Fig. 2 Cascade Recurring Deep Network: The proposed algorithm consists of two phases; Cascade Phase and Tuning Phase

Inclining step

Inclining step is a process where output variables are
learned progressively. When we have k target variables,
Y={y;| yjeR", j=1, 2, ..., k}, and k output variables, F
={f; IfieR”, j=1,2, .., k}, we can construct a neural
network to predict y;. There may be several dimensions
of each target variable, but we only consider case of one
dimension (m = 1) to easily describe the problem. For in-
clining step, firstly we construct a neural network net;
that predicts y;. Output f; is obtained by [f}, wh)] =
net;( W, &, y1) where w is trained weight matrix of
neural network for predicting y;, w® is randomly
configured weight matrix for initialization, and x"
=[xy, %9, ..., x4] is input vector for predicting y;. When
the neural network net; has been sufficiently trained, we
construct neural network rnet, that predicts y,. For train-
ing net,, the output value f; is added to input vector x.
Since the two target variables y; and y, affect each other,
weight matrix w' that has been previously trained is
utilized as a base learner. Then, output value f, is ob-
tained by [f, w?] = net, (W, 2, y,) where w? s
trained weight matrix for predicting ys, 22 =[xy, %9, ..o
x4 f1] is input vector for predicting y,. Then, neural net-
works for the remaining output variable are learned in
the same manner. In general, the final predicted value f;
is calculated by

[fk: w<k>] — nety (w<k-1>, £0) yk)

where w® is resulting trained weight matrix for nety,

&% =[x, %, ..., %4 fic_ 1] is input vector for net;.

Declining step

When all neural networks have been learned through
the inclining step, learning in the reverse direction is
carried out in the same manner.

[fk—la w(k"”} = nety, <w(k)7 £k, yk)

where w® is trained weight matrix in final inclining
step, %Y =[xy, %y, ...r X, fi] is input vector. When the
declining step has been carried out for all output vari-
ables, the cascading phase is completed. The final output
values f* = [fi,fs, ....fi] reflect the correlations between
all adjacent variables.

Tuning phase

Tuning phase is the step for correcting the errors in the
final output values from cascade phase by constructing a
error-correction network. The final output values F*
= [fufo - fi] in cascade phase are input nodes and tar-
get variables Y= [y, ¥, ..., y&] are output nodes for the
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error-correction network. The constructed network is a
type of auto associative neural network in which input
nodes and output nodes are similar to each other. The
necessity of tuning phase can be justified as following. In
cascade phase, the output variable f; of <™ neural net-
work net is utilized as an input variable of the (k + )t
neural network. Since every output variable accompany
errors the input variable f contains errors that must be
corrected. It is known that error-correction networks
can improve prediction performance in deep neural net-
works [16, 17].

Experiments

Data

A total 2,182 patients that were diagnosed with hearing
loss and treated with hearing aids at the Department of
Otolaryngology, Ajou University Hospital, Suwon, Re-
public of Korea between January 2001 and February
2016 were enrolled in the study. Among them, 45 pa-
tients who were either younger than 2 years old, totally
deaf (100 dB or higher), or had no pure tone audiome-
try(PTA) data with or without HAs were excluded from
the study. Following the approval from the Institutional
Review Boards of the Ajou University School of Medi-
cine, a retrospective chart review was done, and all pos-
sible factors related to hearing or outcomes of HAs were
collected. The analysis factors were divided into three
categories; patient information, clinical evaluation, and
HA information as shown in Table 1. From the patient
information category, age, sex, duration of hearing loss,
and presence of tinnitus or dizziness were used as vari-
ables. Also, pure tone hearing threshold without HAs,
degree of hearing loss, type of hearing loss, and word
recognition scores(WRS) were used as variables in the
clinical evaluation category. As for variables of HA, dur-
ation of hearing impairment without HAs, site of HAs

Table 1 Data Description

Input Variables

Patient Age, Sex, Underlying Diseases, Experience of
Information Hearing Aids, Side of Hearing Aids

Clinical Unaided Pure Tone Audiometry, Unaided
Evaluations Hearing in noise test, Threshold per frequency,

Category of hearing loss, Degree of hearing loss,
Type of hearing loss, Tinnitus status, Average air
conduction hearing threshold, Average bone
conduction hearing threshold, Mean word
recognition score

Hearing Aid(HA)
Information

Models of HA, Number of channels, Types of
Has, Tinnitus treatment option, Frequency
Transposition, Type of microphone, Ventilation,
Feedback cancellation

Target Variables

Hearing gain PTA after wearing HAs (250Hz, 500Hz, 1KHz, 2KHz,

4KHz, 8KHz)
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(left, right, or both), program design of HAs(digital,
analogue, programmable), types of HAs (behind the
ear(BTE) type, in the ear(ITE) type, in the canal (ITC)
type, completely in the canal(CIC) type) were analyzed.
Types of hearing loss were divided into five groups; as-
cending type, descending type, flat type, concave type,
and convex type using low (0.25, 0.5 kHz), mid (1,
2 kHz), and high frequency (4, 8 kHz) thresholds in PTA
before using HAs. The ascending type was defined in
cases where the threshold of low frequencies was at least
15 dB higher than the average threshold of high frequen-
cies, and the descending type was defined in cases where
the threshold of high frequencies was at least 15 dB
higher than the threshold of low frequencies. In cases of
flat type hearing loss, differences between the thresholds
of all frequencies were smaller than 15 dB. The concave
type hearing loss was diagnosed when the threshold of
medium frequencies was at least 15 dB lower than that
of low and high frequencies. Lastly, in the convex type,
the hearing thresholds of medium frequencies were at
least 15 dB higher than that of low and high frequencies.
The degrees of hearing loss without wearing HAs were
classified into mild (25 ~ 39 dB), moderate (40 ~ 59 dB),
high (60~79 dB), and severe (80~ 100 dB) degrees
based on the hearing thresholds (average dB of 0.5,1,2,
and 3 kHz) in PTA.

To check the hearing gain, PTA and WRS tests were
done before and after 8 to 12 weeks of HA fitting, which
were compared and analyzed. These results were used as
output variables of the proposed algorithm. The PTAs
were done using hearing thresholds from 0.25 to 8 KHz,
and the average of hearing thresholds of 0.5,1,2, and
3 kHz were calculated. For WRS, patients were provided
with test word sounds at their most comfortable listen-
ing level and instructed to repeat or write down the
words and numbers that were accurately heard and
understood. These results were then converted into per-
centages as WRS. Although the most comfortable listen-
ing levels before and after using HAs were not the same
in some cases, the WRS were still compared due to the
fact that they were values under the most comfortable
threshold condition.

Correlation in target variables

To apply the proposed algorithm, we checked existence
of correlation between target variables which are hearing
gains. Figure 4 shows the Pearson correlation coeffi-
cients between the target variables. From the Fig. 3, it
shows that low frequency bands, 250Hz and 500Hz have
a high correlation with 0.77. Also, we can see that two
adjacent frequency bands show correlations of at least
0.57 (from 4 KHz and 8 KHz). For two bands, 250Hz
and 8 KHz, which are far away from each other, it shows
a positive correlation of 023 indicating that all
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Cascade Recurring Deep Network
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Fig. 3 Pseudo code for Cascade Recurring Deep Network

frequencies bands are correlated with each other. There-
fore, we can infer that adjacent frequencies are highly
correlated and that the all frequency bands have positive
correlations.

Experimental settings

To compare the prediction performance of the proposed
algorithm that reflect correlations between frequencies,
a neural network in the structure as shown in Fig. 5 was
designed. To predict frequencies, neural network solves
a regression problem. The structure of neural network
net; is a three layered Perceptron structure ([Input
Layer]-[Hidden Layer]-[Output Layer]) having 31 input
nodes, 20 ~ 30 hidden nodes on average, and one output
node [7]. In other words, it has Multi-Layer Perceptron
structure of [Input: 31]-[Hidden: (20 ~ 30)]-[Output: 1].
Cascade Recurring Deep Network has the structure de-
scribed in Fig. 2. In the inclining step of the cascading
phase, the neural network is learned in the direction
from the low frequency (250 Hz) to the high frequency
(8 KHz). In the declining step, the neural network is
learned in the reverse direction from the high frequency
(8 KHz) to the low frequency (250Hz). For instance, in
the first inclining step, neural network net,sog, for pre-
dicting frequency band of 250Hz is sufficiently trained.
Then, network netsgor, for predicting frequency band of
500Hz utilizes netysor, as a base learner. For training
netsoon,, the output variable fy50z, of netysop, is utilized
as an input variable and the weight w®**®, which has
been sufficiently trained, is utilized as the initial weight
for netsoon,. The process progressively carried out up to
frequency band of 8KHz. In the declining step, the final

network netgiyy, in the inclining step is used as a base
learner, and similar process to inclining step is carried
out in reverse direction from frequency band of 8KHz
down to 250Hz. In the tuning phase, neural networks
are trained by setting the final outputs in cascade phase
fas0t2 f500Hz -+ foxre s input node and target variables
Yo50Hz V500Hz -+ Yextz as output nodes. Through the
cascading phase and tuning phase, we can construct a
neural network that incorporates all the effects of other
frequency bands on one particular frequency band.
Fig. 4a shows neural networks, MLP;, that predict each
of six frequency bands, where the networks are inde-
pendent Multi-Layered Perceptron for one output. Fig-
ure 5b shows neural network, MLP¢, that predicts 6
frequency bands at once. Six MLP;s and MLP¢ only con-
sider patient information and clinical evaluations as
input variables. For comparison of prediction perfor-
mances, the optimal number of hidden node was se-
lected in between 20 to 30 for each networks. The
percentages of randomly sampled training, validation,
and test sets were 40, 30, and 30%, respectively. The
whole experiments were repeated 10 times. The predic-
tion performance was measured with Mean Absolute
Percentage Error (MAPE) where smaller values imply
higher prediction performance [18]. MAPE is expressed
in percentages and is given as the following:

yif

Ji

1 n
MAPE = —Z % 100

n=

where, n is the number of entire data, y; is target values,
f; is output values.
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Results and discussion

Results for validity of CRDN

Figure 6 shows comparison of MAPE of three types of
neural networks (CRDN, 6MLP;, and MLPg) by fre-
quency bands. CRDN shows the lowest error rates in all
frequency bands (Avg. 9.2%). On the contrary, six MLP;s
and MLP¢ showed error rates of 21.8 and 16.8% on aver-
age respectively. We could deduce that CRDN, which re-
flects every correlation between target variables, shows
highest performance, followed by MLP¢, which can re-
flect some proportion of correlations between target

variables. In addition, the error rates of inclining and de-
clining in CRDN are 13.1 and 10.7% on average respect-
ively. If we compare the error rate of CRDN (Avg. 9.2%)
that had been trained up to the last step, tuning phase,
we could deduce that considering adjacent frequencies
more often leads to improvement in performance.

The low error rate of CRDN has meaningful implica-
tions in clinical aspects. Since hearing tests only select
representative frequency bands, it is difficult to measure
the actual thresholds in PTA of adjacent frequency
bands. It only approximates the thresholds with median

a
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Fig. 5 Comparison model: a 6MLP;s: MLP with a single output node, b MLPg: a single MLP with 6 output nodes
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of measured PTA of adjacent frequency bands. For in-
stance, a 4 K-dip from noise-induced hearing loss not
only has high thresholds in PTA for 4KHz but also af-
fects adjacent frequency bands. Since CRDN structure
considers such influence, it is bound for successful
results.

Results for utility of CRDN

To verify the utility of CRDN, the proposed algorithm
was applied to actual patients. We show cases of patients
with sensorineural hearing loss and patients with con-
ductive hearing loss. Figure 7a and b represent the re-
sults of hearing gain with CRDN for each case.

Case I: patients with sensorineural hearing loss

Figure 7a shows a case of a patient with sensorineural
hearing loss with convex type who have hearing loss in
frequency bands (1KHz, 2KHz). Sensorineural hearing
loss occurs due to abnormalities in the cochlea or

disorders in the nerves that connect the inner ear with
the brain.

For convex type, the threshold of medium frequencies
is higher than that of low frequencies and high frequen-
cies by at least 15 dB. In such cases, the patients with
hearing loss cannot hear the sounds of daily conversa-
tions. To resolve the hearing loss, we applied CRDN to
patients with sensorineural hearing loss. The expected
degrees of hearing gains with CRDN was fitted with ac-
tual hearing gain, and the results show high satisfaction
levels.

Case II: patients with conductive hearing loss

Figure 7b shows a case of a patient with conductive
hearing loss. Conductive hearing loss results from
damage to the path for delivery of sounds from the
external ear to the middle ear. In the case of this pa-
tient, all sound thresholds from low frequency bands
to high frequency bands exceed 65 dB and the degree
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of hearing loss is severe. Since the hearing thresholds
for daily conversations are 20 ~ 70 dB, the patient has
difficulties in daily life. The CRDN provided outstand-
ing hearing gains by amplifying the frequencies to ap-
propriate levels.

Although the patients have different characteristics of
hearing loss, patient information and clinical evaluations
for both cases, CRDN can provide suitable hearing gains
for individual patients. On the basis of results, CRDN
can serve as a medical assistance tool that fulfill the pa-
tients’ satisfaction levels, and helps to maximize the
hearing improvement through application of HAs in the
clinical fields.

Conclusion

In this study, we propose a novel neural network al-
gorithm that provides expected degrees of hearing
gain for patients with hearing loss who wear hearing
aids. The proposed algorithm is a Cascade Recurring
Deep Network that reflects correlations between ad-
jacent frequencies. This is a deep network that piles
up same number of hidden layers as that of target
variables such that it can be utilized for signal or se-
quential data. Also, it takes the structural advantages
of cascade-correlation networks and recurrent neural
networks.

In algorithmic perspective, CRDN has novelty in fol-
lowing aspects. CRDN has a scalable structure that can
be applied to various signal or sequential data, and
achieves faster training time since it progressively piles
up the layers. CRDN reuses neural networks that pre-
viously have been trained and it not only achieves fast
training time but also reflects the correlations between
output variables. In addition, since CRDN uses weights
that previously have been learned, it can reduce the
time of learning weights in predicting new output vari-
ables. In the experiments, the mean error rate of
CRDN in six frequency bands (250Hz, 500Hz, 1KHz,
2KHz, 4KHz, 8KHz) was 9.2%. When compared to
other neural network models that does not reflect cor-
relations between frequencies, it showed that the mean
error rate can be reduced by 58%. In this paper, we
only compared performance of CRDN with two types
of MLP. As an extension of the comparison, we can
consider other machine learning algorithms such as
support vector machine, regularized regression ana-
lysis, etc.

In clinical perspective, since CRDN provides more ac-
curate information on expected hearing gain after wear-
ing hearing aids, it can reduce the gap between expected
and actual experience of wearing hearing aids. Therefore,
it can serve as an effective medical assistance tool. Fur-
ther works include applying the proposed algorithm to
other types of signal or sequential data.
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