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Abstract

Background: Clinical data repositories (CDR) have great potential to improve outcome prediction and risk
modeling. However, most clinical studies require careful study design, dedicated data collection efforts, and
sophisticated modeling techniques before a hypothesis can be tested. We aim to bridge this gap, so that clinical
domain users can perform first-hand prediction on existing repository data without complicated handling, and
obtain insightful patterns of imbalanced targets for a formal study before it is conducted. We specifically target for
interpretability for domain users where the model can be conveniently explained and applied in clinical practice.

Methods: We propose an interpretable pattern model which is noise (missing) tolerant for practice data. To
address the challenge of imbalanced targets of interest in clinical research, e.g., deaths less than a few percent, the
geometric mean of sensitivity and specificity (G-mean) optimization criterion is employed, with which a simple but
effective heuristic algorithm is developed.

Results: We compared pattern discovery to clinically interpretable methods on two retrospective clinical datasets.
They contain 14.9% deaths in 1 year in the thoracic dataset and 9.1% deaths in the cardiac dataset, respectively. In
spite of the imbalance challenge shown on other methods, pattern discovery consistently shows competitive
cross-validated prediction performance. Compared to logistic regression, Naïve Bayes, and decision tree, pattern
discovery achieves statistically significant (p-values < 0.01, Wilcoxon signed rank test) favorable averaged testing
G-means and F1-scores (harmonic mean of precision and sensitivity). Without requiring sophisticated technical
processing of data and tweaking, the prediction performance of pattern discovery is consistently comparable to the
best achievable performance.

Conclusions: Pattern discovery has demonstrated to be robust and valuable for target prediction on existing
clinical data repositories with imbalance and noise. The prediction results and interpretable patterns can provide
insights in an agile and inexpensive way for the potential formal studies.
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Background
Data analytics on clinical data repositories
Healthcare Information Systems (HIS) such as
Cardiovascular Information Systems (CVIS) have been
available for decades [1]. The main function is to store
and access patient records with deeper information than
Electronic Medical Records (EMR). Integrated with
EMR, Radiology Information Systems (RIS), Laboratory
Information Systems (LIS), etc., HIS and CVIS have

been useful for monitoring reporting, operating, sched-
uling and managing purposes with graphical user inter-
faces (GUI) such as dashboards.
With the emerging technology and availability of

clinical registries and clinical data repositories [2],
advanced predictive data analytics has great potential to
add value to clinical research and improvement of
clinical outcomes [3]. Traditional clinical studies, either
retrospective or perspective, require tremendous efforts
in design, data collection and sophisticated processing
before any hypothesis can be tested or a target can be
predicted. Mining existing massive practice data from
repositories offers a promising way to create value and
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provide insights without too much extra overhead of a
traditional clinical study. The challenge lies in the noises
of practice data and imbalance of prediction targets of
major clinical importance, such as bleeding after percu-
taneous coronary intervention (PCI) [4], or cardiac death
[5]. Because data directly available from clinical data
repositories is not subject to strict inclusion/exclusion
criteria or sample matching to balance cases and
controls [6], typical data mining methods for prediction
(classification) are not designed to handle such chal-
lenges. The dilemma is that with rich existing data,
domain users desire to generate initial data-driven
hypotheses and get insights whether a specific clinical
target of interest is predictable and what attributes
(predictor variables) should be considered, before they
take on the more involving way of a formal clinical
study. As imbalanced target prediction is more challen-
ging, it is also a realistically meaningful challenge which
offers high practical value for outcome prediction and
quality improvement in the real-world distribution of
cases and control.
We aim to bridge the gap between sophisticated prep-

aration to handle the imbalanced noisy data properties
and first-hand data-driven insights for predicting targets
of interest directly on existing data. In this regard,
domain users can generate meaningful hypotheses and
gain insights of their targets of interest with respect to
predictability, and discover informative patterns of
potential predictors to distinguish the targets from the
others. The patterns discovered in this way are compar-
able to the best achievable discoveries requiring a series
of sophisticated data processing, such as up-sampling
with tweaking, before typical prediction methods can be
applied. As a result, more involving clinical studies can
be potentially guided for what data samples to include/
exclude and what predictors (variables) to collect, for
example, in a case report form (CRF) for a formal study.

Model interpretability for domain users
Model interpretability is also highly desired in the
clinical context for domain users. Technically speaking,
the ability to draw classification boundaries on data is
valid interpretability, but we specifically aim at clinical
interpretability. In particular, it requires a prediction
model can be explained by clinical domain practitioner,
and applied, for example to select characteristics of
patient cohorts that are expected to be consistent with
the model predictability, to conduct his/her formal
follow-up study. Therefore, interpretability throughout
this paper represents a domain specific challenge rather
than a technical one.
While domain users are gradually accepting more

sophisticated prediction models in the clinical domains
[7–13], we exclude the following models which are not

considered domain interpretable in our scope: support
vector machine (SVM) and artificial neural networks
(ANN) which do not generate explainable rules for
domain users [11, 14], random tree and random forest
which generate an excessive number of trivial rules that
are overwhelming for clinical reasoning [15]. For
example, we test-ran random tree on the first real
dataset in our evaluation, and it generated a tree that spans
228 lines (attribute-value occurrences). Though technically
it can be considered as a decision tree, the lengthy rules are
not feasibly interpretable for domain users.
In order to identify predictive patterns to guide

potential formal studies, interpretability is critical for not
only the selection of attributes (predictors) but also the
specific properties (values) of the predictors to look into.
Therefore, among the numerous classification methods
available, we focus on interpretable ones in our proposed
method and comparison, which should include the
explicit attributes and values in the trained models
(classifiers) with a model length digestible by human
users. The representable interpretable models included
in our evaluation comparisons are logistic regression
[16], Naïve Bayes [17] and decision tree [18].
In this paper, we propose a predictive and intuitively

interpretable pattern model that is noise tolerant for real
data. We develop a simple pattern discovery algorithm
where an optimization criterion is employed for prediction
targets that are rare but of clinical importance, such as
cardiac death. To evaluate the effectiveness, we employed
two retrospective clinical datasets with imbalance and
compared pattern discovery with the above representative
interpretable prediction methods. Evaluation with cross-
validation shows competitive prediction performance of
pattern discovery. Pattern discovery is expected to be a
handy and valuable analytics tool for domain users to
predict imbalanced targets from existing practice data
without sophisticated processing, and to provide first-
hand insights for formal research and studies to follow.

Problem definition and related works
In this section, we define the problem we address and
review the key related works. Data mining has been
extensively applied in healthcare domain, which is
believed to be able to uncover new biomedical and
healthcare knowledge for clinical and administrative
decision making as well as generate scientific hypotheses
[3]. We focus on the prediction problem of classification,
where for a given (training) dataset D, we would like to
utilize the known (labelled) values of a target T to
establish (train) a model and method (a classifier) to
predict a target of interest (T = t), i.e. positive cases, for
future (testing) data where T is not known. Specifically,
the dataset
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is with n samples and m + 1 attributes (columns) where
for simplicity the first m attributes R = [R1, R2, … Rm]
represent the predictor variables and the last attribute T
represents the target to predict (response). dij is a value
in D for attribute Ri for i = 1, 2, …, n and j = 1, 2, …, m.
T is a nominal attribute and one is specifically interested
in cases of T = t, compared to cases of any other values.
Therefore, we model the problem as binary classification
where we would like to distinguish T = t (positive) from
T ≠ t (negative, and can be of multiple values in data).
We assume there are no missing values of T in training,
but R can have certain missing values, reflecting the
reality of healthcare data in practice. Furthermore, most
targets of clinical interest (T = t) are minorities in real
data, e.g. Cardiac death = Yes and Death in 1 year = Yes.
In such a case, the prevalence, defined as # (T = t)/n, is
considerably smaller than 1/2 (50%), and we inter-
changeably denote the dataset and prediction problem
as imbalanced.
We have listed existing interpretable classifiers in-

cluded for comparisons: logistic regression, Naïve Bayes,
and decision tree (C4.5). They were not designed for
imbalanced datasets. Naive Bayes would be less influ-
enced as the target proportion could be used as the prior
in training. But a moderately high imbalance ratio would
overweigh the prior and impact the prediction perform-
ance, as will be shown in experimental results and recent
work [13]. Both logistic regression and decision tree
optimize towards the overall accuracy where the predic-
tion performance of a minority target can be signifi-
cantly influenced.
The other non-interpretable methods, such as k-

nearest-neighbor [19], support vector machines [20] and
artificial neural nets [3], are beyond our scope of
comparison as they do not directly provide explicit
human-readable “patterns” to follow up for domain users.
The proposed pattern discovery in this work has some

resemblance with association rule mining [21], associ-
ated motif discovery from biological sequences [22] and
feature selection for data mining [23]. Association rule
finds only frequent items, but does not model prediction
(classification). One critical limitation of association rule
based methods is that the target has to be frequent,
which is not the case in clinical outcomes of interest [6].
Further extensions of classification after association rule
mining suffer from scalability because non-trivial rules
(over 3 attributes) can take intractable time to compute
[24]. Furthermore, association rule mining works with
only exact occurrences which cannot tolerate noises in
healthcare data. These two limitations also apply to rule

extraction based prediction methods [25]. Motif discov-
ery works on sequential and contiguous patterns which
are not the case in mining healthcare data (attributes are
disjoint without an order and are not contiguous) [22,
26]. Nonetheless, the approximate matching modeling of
biological motifs [27] inspires us to introduce a control
to tolerate noise and increase flexibility of the pattern
model. Feature selection usually works as an auxiliary
method in combination with formal data mining
methods for target prediction [23], but it works only on
the attribute level (not attribute-value) and does not
explicitly generates an prediction model for direct
interpretation. On the other hand, the wide spectrum of
feature selection methods provides many choices to select
attributes for pattern discovery, such as Chi-Squared test
based feature selection [28].
Motivated by these, this work presents a pattern

discovery classifier featuring a highly interpretable pre-
dictive pattern model on noisy, imbalanced healthcare
data in practice for domain users.

Methods
Data
In this study, we utilize two published datasets to
evaluate how pattern discovery can be applied on
imbalanced target prediction, similarly in the way for
clinical data repositories where minimum data process-
ing is needed. The two datasets have been de-identified
and published online for scientific research. The avail-
ability and approval information can be found from the
corresponding references.
The thoracic dataset is about surgical risk for real-life

clinical data from the thoracic surgery domain. The data
was originally collected retrospectively at Wroclaw
Thoracic Surgery Centre for patients who underwent
major lung resections for primary lung cancer in the
years 2007–2011 [20]. The publicly available dataset is
after feature selection and elimination of missing values.
It is composed of 470 samples, 16 pre-operative attri-
butes after feature selection, and the target attribute of
1-year survival period labels (denoted as Risk1Yr = Yes if
patient died; prevalence = 14.9%). To simulate the target
scenario without requiring much tweaking, the original
numeric attributes (PRE4, PRE5, and age) without well-
established categorization were skipped, the total 22
missing values (0.3%) in the data were kept as-is and no
imputation was done to evaluate noise handling. Instead,
PRE4 and PRE5 were combined into the well-established
chronic obstructive pulmonary disease COPD (Yes/No)
category with the auxiliary function. The attribute list is
detailed in the Additional file 1.
The cardiac death dataset contains patients with

coronary artery disease (CAD). Peripheral blood samples
from 338 subjects aged 62 ± 11 years with CAD were
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analyzed, and followed for a mean 2.4 years for cardio-
vascular death (31 deaths). The available dataset is
composed of 43 attributes (41 non-trivial) covering both
clinical attributes and derived ones from gene expres-
sions [5]. While the study discovers association between
gene expression profiles and cardiac death, the next
question of both great interest and challenge to domain
users is whether a predictive pattern can be discovered
for more follow-up studies. Therefore, in the experi-
ments we tried the prediction of Cardiac Death = Yes
(prevalence = 9.1%) on the available data as-is, with the
definition dependent removed to properly evaluate the
prediction performance. In our experiments, data of
both phases was combined for evaluation. In this
dataset, gene expressions were transformed into more
concise principal components (Prin*), and conserved
axes of variation (snmAxis*). In our experiments, the
gene expression components/axes were categorized by
their signs (>0 or ≤ 0) with the auxiliary function. Other
clinical indicator attributes were categorized according
to typical normal/abnormal ranges. The total 417
missing values (2.9%) were kept to evaluate noise hand-
ling. The attribute list and more details on categorization
are available in the Additional file 1.

Pattern discovery
We first propose the pattern model to support interpret-
ability and tolerate noise for real data. An optimization
criterion for prediction performance on imbalanced
targets is then employed. A simple algorithm is then
presented to computationally discover a predictive
pattern according to the optimization goal.
The proposed model is a combination of attributes

and their corresponding (categorized) values for a
chosen prediction target. An auxiliary configuration
function is implemented to transform numeric values to
categories according based on clinical guidelines or
domain knowledge. To make the pattern practical and
flexible for noisy realistic data, a matching ratio thresh-
old is introduced. It controls the minimal percentage of
attribute-value pairs to match where a sample can be
considered an imperfect match of the pattern.
A pattern is proposed to be a selection of attributes

and their corresponding values of a chosen target of
interest, which is a selected attribute and its value to
predict (T = t). A pattern is further proposed to be asso-
ciated with matching (ratio) threshold r, requiring a min-
imal ratio r of attribute-values to match for a record to
be considered as matched by a pattern. A pattern (Pat)
is formally defined as {P, S, r}, which consists of

1) a subset of attributes P = {P1, P2, …, Pw} ⊂ R,
2) a specific set of their corresponding values

S = {v1, v2, …, vw}, and

3) a matching ratio threshold 0 < r < = 1 to control the
ratio of matching values of a data sample on P.

It can be also represented as P1 = v1, P2 = v2, …, Pw = vw
(with matching ratio threshold = r)
Pattern matching: a sample Di = {di1, di2, …, dim} is de-

fined to match a pattern Pat = {P, S, r} = {{ P1, P2, …, Pw },
{v1, v2, …, vw}, r}, if count(diP1 == v1, diP2 == v2, …, diPw
== vw)/m > = r. We denote this case as match(Pat, Di) =
TRUE. Otherwise match(Pat, Di) = FALSE.
A simple illustrative dataset is presented in Table 1. There

are 6 samples and 6 attributes excluding ID (irrelevant in
prediction), where the target is Bleeding = Yes. Prevalence
= 2/6 = 33%, and positive/negative ratio = 1/2 = 0.5.
The threshold r thus tolerates missing values by allow-

ing them as mismatches. Therefore, the pattern model is
intuitively interpretable by clinical users. The challenge
is about discovering a pattern computationally from data
that maximizes certain prediction criterion de novo.
To optimize and evaluate the pattern model specific-

ally on imbalance target, the following criteria are
employed.
For a dataset D with m attributes R = {R1, R2, …, Rm},

there are an exponential number of attribute-value com-
binations as pattern candidates, so we need certain
optimization criterion to distinguish informative candi-
dates from spurious ones. For the imbalanced minority
target of interest T = t, the prediction performance
should be evaluated by criteria other than accuracy, as it
is non-informatively high (=1-prevalence) if one simply
predicts all samples to be the majority cases T ≠ t.
Specifically, a classifier (pattern) can be evaluated by

precision (pre) and sensitivity (sen) on predicting the
minority target T = t when the labels of T can be ob-
tained [29]. To collectively evaluate prediction perform-
ance, F1-score is usually employed which summarizes
both by their harmonic mean (F1-score = 0 if number of
true positive TP = 0) [29]:

Table 1 An illustrative example of categorical CVIS patient data

ID Gender PCI History Hemoglobin Diabetes CRP Bleeding

1 Male Yes Abnormal No Abnormal Yes

2 Female No Abnormal N/A Abnormal No

3 Male No N/A No Normal No

4 N/A Yes Normal No Normal No

5 Female Yes N/A No Abnormal Yes

6 Male No Normal No Normal No

N/A Not available (missing value), PCI Percutaneous coronary intervention, CRP
C-Reactive Protein
The following example shows a candidate pattern to be discovered for
target Bleeding = Yes
PCI History = Yes, Hemoglobin = Abnormal, CRP = Abnormal
Matching ratio threshold r = 2/3 (at least 2 attributes to match; or presented in
% as 67%)
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F1‐score ¼ 2 � pre � sen= pre þ senð Þ
Similarly, specificity (spec) can be calculated. A similar

evaluation measure is G-mean, defined as the geometric
mean of sensitivity and specificity:

G‐mean ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sen � spec

p

All these measures have the range [0, 1] and are higher
the better towards the ideal value 1. The evaluation steps
of the candidate pattern on the illustrative data are
shown in the Additional file 1.
These evaluation measures therefore serve as potential

optimization criteria for a classifier targeting the predic-
tion of minority T = t. In this work, we employ G-mean
as the optimization criterion, which shows stronger
trends for performance balance than F1-score in
optimization (geometric mean versus harmonic mean) in
initial experiments (details not shown). The optimization
of G-mean is only carried out on training data, not on
testing data.
The pattern discovery problem can be therefore defined

as: given an input dataset D with input attributes R = {R1,
R2, … Rm} and target attribute T, a specified target of
interest T = t, and a maximal pattern width W (< = m),
find a pattern Pat = {P, S, r} where P ⊂ R, |P| < = W, such
that the optimization criterion of G-mean for T = t is
maximized on D.
The next challenge is to discover a pattern de novo to

maximize the optimization criterion on the training data.
We introduce a simple pattern discovery algorithm and
further integrate it with independent log likelihoods for
cases with too weak patterns to form the pattern discov-
ery classifier.
For pattern discovery, search exhaustively is computa-

tionally intractable. The search space can be broken
down into three steps in a simplified view: the candidate
attributes; the optimal combination of possible values of
the attributes; and the optimal matching threshold. The
first two steps are still computationally intractable to
reach optimal solutions with respect to measures such
as f-measure [23]. A heuristic computational method is
developed to discover a feasible pattern candidate first
by eliminating hundreds of thousands of less predictive
candidates, so that clinical users can have a feasible
pattern to start with during interactions.
Identifying pattern candidate attributes is a feature

selection problem [23]. The Chi-squared test of inde-
pendence [28] is employed, which is well established and
interpretable for domain users. To determine pattern
width W, a cutoff of p-value (<= 0.05), or top K signifi-
cant attributes can be used.
To tackle the challenge of determining the attribute-

value combinations for imbalanced target prediction, we
develop a heuristic method based on attribute-value

percentage comparison. For a candidate attribute, all its
values are listed with the target value (T = t) and non-
target value (T ≠ t) in a table. The count of samples
belonging to each specific attribute-target value combin-
ation is filled in. The row-wise percentages are then
calculated. The heuristic method then compares these
percentages column-wise and selects the value with the
maximal percentage to associate with the target value.
An illustrative example is shown in the Additional file 1.
Lastly, the matching ratio threshold r is determined

from the exhaustive range of at least one attribute (1/W)
up to all attributes (W/W = 100%), where the value
generating the best optimization criterion is chosen as
the output r.
Though the pattern model is intuitively interpretable,

there can be cases with too weak and ambiguous pat-
terns to discover when imbalance exists. To construct a
robust classifier not to miss a case like this, we calculate
the log likelihood of T = t with the attribute-values of
the case along the pattern, and accepts cases if the log
likelihood is larger than T ≠ t. This intuitively integrates
the Naïve Bayes scoring to classify cases without any ex-
plicit patterns. We set a relatively loose criterion of posi-
tive/negative ratio < 2 to trigger the log likelihood
scoring. The setting is for use convenience, as it is intui-
tively the minimal integer > 1, which is the boundary
case of balanced data. Further optimizing this with
decimal points may improve the results but it is not our
current focus.
The training and classifying procedures of the pattern

discovery classifier are summarized as follows:

Train classifier on training set D
Chi-squared test to select W attributes (W specified by
user or by p-value cutoff ): P = {P1, P2, …, Pw} ⊂ R
Heuristic method to find values with the maximal

row-wise percentages across the columns for the attri-
butes: S = {v1, v2, …, vw} for T = t
For r = 1/W to W/W
Evaluate {P, S, r} on D and keep the pattern Pat with

the best G-mean
Calculate the log likelihoods for all values of P = {P1,

P2, …, Pw} if imbalance exists

Classify Di in a test set
Return match(Pat, Di) || (log likelihood (T = t |Di) > log
likelihood (T ≠ t | Di) if calculated)

Evaluation methods and experiment design
In this sub-section, we illustrate the evaluation methods
and experiment design for the results section. The whole
evaluation framework designed for the experiments is
illustrated in Fig. 1.

Chan et al. BMC Medical Informatics and Decision Making  (2017) 17:47 Page 5 of 12



To evaluate prediction performance, a typical way is to
use holdout testing data after building prediction models
on training data. The training data could be further split
to optimize parameters and select the model with the
best generality before testing by applying cross-
validation [30]. In this work, our aim is to evaluate
model prediction generality for domain users with min-
imal tweaking and the datasets are retrospective ones.
Instead of using one-off training-testing split which may
introduce bias, we repeated training-testing multiple
times (10) and recorded the average holdout testing per-
formance each time. This was effectively a stratified
10-fold cross-validation, but without optimizing parame-
ters or selecting top models. We further performed this
rotated 10-time holdout testing 20 runs, resulting in a
distribution for each prediction performance metrics of
precision, sensitivity, F1-score and G-mean. Besides
comparing the averaged 20-run metrics along with their
standard deviations (±), we further evaluated the
statistical significance of the performance distributions,
as illustrated at the bottom of Fig. 1.
The non-parametric paired Wilcoxon signed rank test

was applied [31], to assess whether the favorable (higher)
F1-scores and G-means of pattern discovery were

statistically significant compared to other method. We
used R (Version 3.2.1) to perform this evaluation, par-
ticularly wilcox.test() with the following parameters:
paired = T, alternative = ‘greater’.
A 10-fold cross-validation used in this training-testing

way would generate 10 (slightly) different models due to
the holdout difference. It is tricky to list all models of
the 20 runs or synthesizing a unified one. We employed
the common practice for illustration on retrospective
data [32], which is to use full data to train a final model,
also consistent with the way of rules illustrated in the
thoracic dataset reference [20]. Note that in this regards
the discovered pattern would be for illustration simpli-
city only, and a future testing set should be used to
validate it. The final pattern generation part is illustrated
in top right of Fig. 1.
The methods compared, including logistic regression,

naive Bayes, and decision tree (C4.5), were run with the
Weka 3.6 APIs which was able to run over missing
values [32]. A random baseline classifier with equal
chance to predict positive/negative for any sample was
implemented, serving as a non-informative random
guess method. This method has the theoretical sensitiv-
ity = 0.5 and precision = prevalence for any specified tar-
get. Therefore, no standard deviation is available. The
Weka APIs of evaluation were employed to compute the
metrics for all methods. All methods were run with the
default parameters on the same set of attributes. There-
fore the cross-validation was for evaluating the holdout
testing each time rather than parameter optimization.
Note that all models were trained on the same generated
folds in each run for fair comparisons.
Targeting for the domain user scenarios, we focus on

performance evaluation with the original prevalence (im-
balance) of data. On the other hand, we notice that there
are specific methods on down-sampling [11], up-
sampling [10], or generating new artificial samples (such
as synthetic minority over-sampling technique: SMOTE
[33]) to address imbalanced data besides the typical cost
matrix (high penalty on misclassified target cases in
training) approaches [34]. While they have yielded
promising results in many other applications, in our tar-
get scenario to gain initial insights from practice data,
clinical domain users would be confused and disengaged
by the statistics not reflecting the real data, either linked
to non-existing samples or prevented from viewing
certain real samples. This would become a concern
beyond the scope here as we aim to provide interpret-
ability for domain users to investigate into and connect
to the actual samples.
Nevertheless, we performed extended experiments

with up-sampling. We used the same evaluation frame-
work, where additionally we up-sampled the minority
positive cases to certain positive/negative ratios (up-

Fig. 1 The evaluation framework designed for the experiments
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sampling ratios) in the training set only, and evaluated
the holdout testing set WITHOUT any up-sampling.
Note that our purpose is to illustrate that pattern discov-
ery can achieve comparably robust performance with the
original imbalanced prevalence. This was done not for
the scenario desired by healthcare domain users, as
interpretability would be affected with non-existing
samples and distorted case proportions.

Results
Results on the thoracic dataset
Following the experiment design, we first report the
average 20-run testing results on the thoracic dataset
with the original prevalence. Then we cover the ex-
tended experiment results with up-sampling. Statistical
test results are then summarized, and the discovered
pattern is illustrated with references to results beyond
our scope. Detailed evaluation results with standard de-
viations (±) are available in the Additional file 1.
The average precision, sensitivity, F1-score and G-

mean of the methods compared are shown in Fig. 2. It
may look surprising that except pattern discovery, the
other methods perform even worse than the random
baseline. Logistic regression and naive Bayes show poor
prediction performance, resulting in 0.06 ± 0.02 and
0.09 ± 0.02, respectively on F1-score. Decision tree
almost misclassifies all testing cases into the majority
(0.00 ± 0.01). In this challenging setting (original preva-
lence = 14.9%), only pattern discovery is able to achieve
non-trivial favorable prediction performance in all mea-
sures against the random baseline (e.g. F1-score 0.30 ±
0.01 vs 0.23 ± no standard deviation). It is likely that
logistic regression optimizes the loss function of accur-
acy which is dominated by the majority. Naive Bayes is
less influenced than logistic regression with the target

prior. However, due to the imbalance, all methods except
pattern discovery achieve very low sensitivity.
By the extended up-sampling experiments, we demon-

strate that the performance difference is mainly due to
imbalance which is handled well by pattern discovery.
The original positive/negative ratio was 0.18 correspond-
ing to prevalence 14.9%; an up-sampling ratio up to 1.0
indicates no imbalance. As shown consistently in Fig. 3,
pattern discovery has achieved very competitive average
testing F1-score (0.30 ± 0.01) and G-mean (0.58 ± 0.01)
without requiring any up-sampling, while the other
methods are only able to achieve non-trivial results with
substantial up-sampling up towards ratio 1.0. Till up-
sampling ratio 1.0 does naive Bayes achieve the average
F1-score (0.34 ± 0.02) almost as high as pattern discov-
ery’s (0.35 ± 0.01), and G-mean (0.62 ± 0.02) in a similar
manner (compared to pattern discovery’s 0.63 ± 0.01).
Without any up-sampling, pattern discovery shows ro-
bust and favorable prediction performance to all other
methods. We also have some investigation into higher
up-sampling ratios beyond the valid imbalance assump-
tion, and the results, available in the Additional file 1,
consistently support our conclusion.
Therefore, finding the optimal up-sampling ratios

beforehand is not trivial especially for domain users.
Pattern discovery shows the advantage of robust and
consistent prediction performance even without up-sam-
pling, being the least sensitive to training up-sampling
ratios. This is desirable for our target scenario where do-
main users would like to discover insights from noisy
and imbalanced practice data before they further invest
heavily into formal studies.
For both F1-scores and G-means with the original

prevalence, pattern discovery has already shown statisti-
cally significance (p-value = 4.43 × 10−5) over the random
baseline which has fixed results for all different up-
sampling ratios, so we focus on detailed comparison with
other methods for simplicity. As shown in Table 2, pattern
discovery has shown clear statistical significance (signifi-
cance level 0.01) at all up-sampling ratios except for F1-
score compared to naive Bayes at 1.0 (p-value = 0.0895).
For illustration, we show the patterns discovered with

all data on for cardiac Risk1Yr = Yes (in the data T
means Yes and F means No).
Without using the numeric attributes (including PRE4,

PRE5, and age) same as in the cross-validation, the pat-
tern of 12 categorized attributes achieves F1-score 0.337
(without up-sampling) as shown in Table 3, with cover-
age and accuracy shown for reference only.
Although our focus is on interpretable models and

minimal sampling handling to fit the target scenario for
domain users, we are aware that advanced sampling
combined with non-interpretable methods such as
support vector machine (SVM) could generate very

Fig. 2 Average testing performance from 20-run 10-fold cross-validation
on Risk1Yr = Yes of the thoracic dataset, with the original prevalence.
Legends: logistic regression (blue), naive Bayes (red), decision tree (green),
pattern discovery (purple), and random baseline (light blue)
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promising prediction performance [10, 11, 33], with also
reported evaluation results on this dataset [20]. We
listed the reference G-mean and projected the F1-score
with pattern discovery’s results generated at up-sampling
ratio 1.0, solely for audience information. Note that this
is not a formal comparison as the methods in the list
were not interpretable methods in our scope, where the
referenced cross-validation experiment was not with the
same fold or run numbers.
As listed in Table 4, pattern discovery, with a naturally

interpretable model and without sophisticated sampling
techniques, is able to provide very close prediction per-
formance to the top reported results (0.03 and 0.024
differences from the top F1-score and G-mean, respect-
ively). As mentioned in the reference, boosted SVM for
imbalanced data (BSI) is highly uninterpretable for clin-
ical practitioners because it combines SVM and ensem-
bles [20]. JRip + BSI shows a non-trivial effort to extract
interpretable rules (with JRip [25]). Nonetheless, in the
target scenario for domain users, pattern discovery
shows its unique value and convenience, compared to

sophisticated processing which probably further requires
careful tweaking.
Further categorizing on PRE4, PRE5, and age, we are

able to get a pattern with F1-score 0.41 (precision 0.40,
sensitivity 0.42; including AGE > = 80 and PRE5 < =
3.62) comparable to 0.44 by the JRip + BSI rules. Com-
pared to the 9 rules extracted from JRip + BSI that are
complex and less handy for practice (details in reference
[20], also available from the Additional file 1), our dis-
covered pattern is concise and practically interpretable
for domain users, demonstrating its value to be used in
the target scenario. The results shows great potential
when pattern discovery is fully utilized with domain
knowledge.

Results on the cardiac death dataset
This sub-section reports the same experiment results
and comparisons on the cardiac death dataset.
As shown in Fig. 4 with the original prevalence,

pattern discovery again demonstrates robust prediction
performance with comparable precision, the highest

Fig. 3 Average testing F1-scores (top) and G-means (bottom) from 20-run 10-fold cross-validation on Risk1Yr = Yes, with original prevalence and
different up-sampling ratios (x-axes). Legends: logistic regression (blue diamonds), naive Bayes (red squares), decision tree (green triangles), pattern
discovery (purple crosses), and random baseline (light blue asterisks)
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sensitivity, reaching non-trivial F1-score (0.25 ± 0.03)
and G-mean (0.58 ± 0.05) compared to other methods
and the random baseline. Note that pattern discovery
also has the lowest standard deviations compared the
other methods on both F1-score and G-mean. While
decision tree is able to achieve the best precision, the
low sensitivity contributes to the overall low F1-score
and G-mean. The relative rankings of logistic regression,
naive Bayes, pattern discovery and the baseline are un-
changed compared to Fig. 2.
Figure 5 shows the extended up-sampling experiment

results with respect to average testing F1-scores and G-
means. Starting from up-sampling ratio 0.8, naive Bayes
shows competitive F1-score (0.26 ± 0.02) to pattern dis-
covery (0.26 ± 0.02). Pattern discovery remains consist-
ent, with the lowest standard deviations (available in the
Additional file 1), across all different ratios in both F1-
scores and G-means. Consistently, the corresponding
Wilcoxon test results on testing F1-scores and G-means
are shown in Table 5. Note that pattern discovery is
more convenient to interpret for domain users com-
pared to naive Bayes.

The experiment results on the cardiac death dataset
demonstrate consistent robust prediction performance
of pattern discovery, which reaches average testing
F1-scores and G-means comparable to the best results
achievable from various up-sampling ratios on training
data. Furthermore, pattern discovery offers good inter-
pretability for domain users, fitted best for our target
scenario where initial insights are desired before poten-
tial formal follow-ups.
We illustrate the discovered pattern from full data and

discuss its details in the Additional file 1. The interpret-
able pattern sheds light to predictive modeling of cardiac
deaths before more data can be obtained, and can be
used as screening reference for more in-depth follow-up
and cohort studies for more detailed clinical and bio-
logical significance.

Discussion
In this work we have targeted a practical scenario where
domain users would like to perform first-hand predic-
tion without requiring sophisticated handling on clinical
data repositories with existing practice data, so that they
can plan more precisely before more involving efforts

Table 3 Discovered pattern from full thoracic dataset for illustration

Pattern (Rule) Coverage Accuracy

PRE11 = T, PRE10 = T, PRE9 = T, PRE8 = T, PRE7 = T,
PRE6 = PRZ2, COPD = Yes, PRE25 = T, DGN = DGN5,
PRE17 = T, PRE14 = OC14, PRE30 = T; r = 25% - >
Risk1Yr = T

0.42 0.23

OTHERWISE - > Risk1Yr = F 0.58 0.91

Table 4 F1-scores and G-means of pattern discovery and the
referenced non-interpretable methods

Methods F1-score G-mean

pattern discovery 0.345a 0.633a

RUSBoost (RUS) [10] 0.302 0.588

SVM + SMOTE (SSVM) 0.338 0.625

boosted SVM for imbalanced data (BSI) 0.375 0.657

JRip + BSI 0.362 0.648

UnderBagging (UB) 0.354 0.651
aAverage testing results from our experiment; other results reported or
projected from the reference [20]

Fig. 4 Average testing performance from 20-run 10-fold cross-validation
on Cardiac death = Yes with the original prevalence. Legends: logistic
regression (blue), naive Bayes (red), decision tree (green), pattern
discovery (purple), and random baseline (light blue)

Table 2 Wilcoxon test (paired, greater than) p-values between
pattern discovery and the other methods on testing F1-scores
and G-means of the cross validations on the thoracic dataset

Logistic Regression Naive Bayes Decision Tree

F1-score

Original 4.43 × 10−5 4.43 × 10−5 4.43 × 10−5

0.2 4.43 × 10−5 4.43 × 10−5 4.43 × 10−5

0.4 4.43 × 10−5 4.43 × 10−5 4.43 × 10−5

0.6 4.43 × 10−5 8.14 × 10−5 4.43 × 10−5

0.8 7.54 × 10−4 0.0045 4.43 × 10−5

1.0 5.17 × 10−5 0.0895 4.43 × 10−5

G-mean

Original 4.43 × 10−5 4.43 × 10−5 4.43 × 10−5

0.2 4.43 × 10−5 4.43 × 10−5 4.43 × 10−5

0.4 4.43 × 10−5 4.43 × 10−5 4.43 × 10−5

0.6 4.43 × 10−5 4.43 × 10−5 4.43 × 10−5

0.8 4.43 × 10−5 4.43 × 10−5 4.43 × 10−5

1.0 4.43 × 10−5 9.72 × 10−4 4.43 × 10−5

*p-value = 4.43 × 10−5 indicates higher rankings of paired values in all 20 runs
for pattern discovery
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are spent. On the two retrospective datasets, pattern
discovery has shown promising results with good inter-
pretability and competitive prediction performance with-
out sophisticated data handling.
Pattern discovery is novel in its intuitively interpret-

able model combined with the optimized matching
threshold to accommodate noise. Pattern discovery is
designed for minority and noise challenges which
association rule mining does not address. Different from
non-interpretable methods (such as SVM, ANN), or
impractically complex models (such as random forest,
random tree), pattern discovery offers domain interpret-
ability. It also shows competitive performance compared
with representative interpretable methods including
naive Bayes, logistic regression, and decision tree.
Without sophisticated processing or tweaking (such as
boosting and sampling techniques), pattern discovery
can achieve predictive performance on imbalanced data
comparable to the best achievable one.
As a good starting point for domain users to gain in-

sights on clinical data repositories with existing practice

data, pattern discovery can be further enhanced first into
pattern visual analytics. With good interpretability,
pattern discovery can be visualized and updated by users
in an interactive manner. Clinical users can conveniently
incorporate their knowledge into discovered patterns
and check how the prediction performance will be influ-
enced instantly. As a result, they are engaged to have a
detailed understanding of both the predictive pattern
and patient data, which can be utilized for follow-ups
such as patient cohort design.
We are also aware of the limitation of this work for

future improvement. We focus on comparisons among
domain interpretable methods, and excluded methods
which would provide stronger predictive performance by
compromising interpretability. Our experiments were
limited in the two retrospective dataset and rotated
training-testing split was employed in cross-validation,
but a real clinical application with training-testing split
would better evaluate the actual predictive performance.
Furthermore, the search/optimization towards optimal
patterns will become more critical, especially with

Fig. 5 Average testing F1-scores (top) and G-means (bottom) from 20-run 10-fold cross-validation on Cardiac death = Yes, with original prevalence
and different up-sampling ratios (x-axes). Legends: logistic regression (blue diamonds), naive Bayes (red squares), decision tree (green triangles),
pattern discovery (purple crosses), and random baseline (light blue asterisks)
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extensions to more advanced pattern modeling, such as
auto-categorization for numeric attributes, multi-value
and multi-pattern supports for better descriptive power.

Conclusions
Pattern discovery has been developed with good inter-
pretability and a simple but effective algorithm. On the
two retrospective datasets with high imbalance ratios
and noise where the other interpretable methods face
difficulty without sophisticated technical data handling,
pattern discovery has demonstrated to be robust and
valuable for the minority target prediction. The predic-
tion results and interpretable patterns can provide in-
sights in an agile and inexpensive way for the potential
formal studies. We are looking into several directions to
further enhance the value of pattern discovery.
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