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Abstract

Background: Prediction of influenza weeks in advance can be a useful tool in the management of cases and in the
early recognition of pandemic influenza seasons.

Methods: This study explores the prediction of influenza-like-illness incidence using both epidemiological and
climate data. It uses Lorenz’s well-known Method of Analogues, but with two novel improvements. Firstly, it
determines internal parameters using the implicit near-neighbor distances in the data, and secondly, it employs
climate data (mean dew point) to screen analogue near-neighbors and capture the hidden dynamics of disease
spread.

Results: These improvements result in the ability to forecast, four weeks in advance, the total number of cases and
the incidence at the peak with increased accuracy. In most locations the total number of cases per year and the
incidence at the peak are forecast with less than 15 % root-mean-square (RMS) Error, and in some locations with
less than 10 % RMS Error.

Conclusions: The use of additional variables that contribute to the dynamics of influenza spread can greatly
improve prediction accuracy.
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Background
Introduction
Currently and historically, seasonal influenza epidemics
caused by influenza A and influenza B viruses occur
worldwide in the winter months in temperate climates.
In some individuals, they cause severe illness; 250,000-
500,000 deaths are estimated to occur from influenza or
its complications each year [1]. In addition to seasonal
influenza, novel infections occur occasionally. Because
these novel influenza strains may not be affected by exist-
ing antibodies in individuals, they can cause pandemic
outbreaks.
Countermeasures such as development of additional

vaccines and hospital resource management can be greatly
aided by accurate forecasts of the number of cases and the
peak of the influenza season. In addition, accurate fore-
casts can give warning of the emergence of a pandemic or

the presence of a strain for which there is little immunity
from the year’s influenza vaccine.
Although seasonal influenza is predictably periodic, in-

fluenza spread is influenced by many factors, including
the strain(s), the match of the seasonal vaccine to the
strains, the immunization rate, the weather [2] and the
contact of individuals with others. Many of these data
are not easy, if even possible, to obtain, and the exact re-
lationships between the data and influenza incidence are
not known and are likely to be evolving [2]. Thus we
turn to a data-driven model for prediction in order to
reduce complexity and make the model reflect local vari-
ation in the factors affecting influenza transmission.

Related work
A survey of influenza forecasting methods [3] yielded
35 publications organized into categories based on the
epidemiological application – population-based, medical
facility-based, and forecasting regionally or globally. Within
these categories, the forecasting methods varied along with
the types of data used to make the forecast. Roughly half of
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the publications used statistical approaches without
explicit mechanistic models and the other half used epi-
demiological models. Three of these models used me-
teorological predictors.
In this study, we model directly from the data (time

series consisting of weekly incidence geographically aligned
with multiple facilities) and use meteorological data to en-
rich the model. None of the models surveyed in [3] used
both the Method of Analogues and meteorological data to
forecast influenza in a population.
Typically data on the current number of influenza

cases reported by the Centers for Disease Control ([4];
one of the more accurate geographically tagged data sets)
has a one-week lag. In order to predict 4 weeks ahead of
the current date, one uses data up to one week before the
current date. This translates, in reality, to a 5-week pre-
diction horizon for a prediction 4 weeks in the future.
For the remainder of the paper we will refer to this as a
4-week prediction. Similarly, most climate data for the
current date is not available in a format for which ac-
quisition can be automated immediately; for most there
is a lag of about one week. Our goal is to predict influenza
incidence (number of influenza cases/total number of
health-care visits) 4 weeks ahead of the current date, using
only data available up to the current time, that is, using
both incidence and climate data from the week before.
This study was part of a team effort to predict the

height of the peak, the timing of the peak and the total
cases in an influenza season. This paper addresses the
height of the peak and the total cases in a season. Another
paper (see [5]) uses machine-learning methods to predict
the timing of the peak.

Methods
Overview
The method of analogues
The method of analogues is a prediction method origin-
ally proposed by Lorenz [6] to predict weather patterns,
but more recently used by Viboud et al. [7] for influenza
prediction. The idea is the following: Weather (or the
spread of influenza) is assumed to be a continuous, but not
necessarily linear, deterministic process. Deterministic dic-
tates that a future discrete-time observation depends only
on the observation immediately prior to that observation
and an underlying functional process. Continuous dictates
that “nearby points map to nearby points,” meaning that
although the process may be nonlinear and therefore not
predictable over long periods of time, previous sequences
of historical observations that are close to current se-
quences of observations should yield “close” subsequent
observations. The principles both of determinism and of
continuity allow us to use sequences of observations to
predict other sequences of observations. This is the reason-
ing behind the method of analogues.

The method of analogues is illustrated in Fig. 1. A
prediction is desired for the point with the red arrow.
Sequences of points are found which are close (Euclidean-
distance) to the green-circled sequence prior to the de-
sired prediction point. The time-advanced values are
located in the time series. The values for the black-
circled points are averaged to arrive at the prediction
for the point.
The method of analogues begins with the time of the

point to be predicted, call it x. For h- week predictions,
the sequence of values at time points leading to h weeks
before x is recorded. Call this sequence T. Sequences S
of points closest (in distance) to T are found in the his-
torical data, but recent data are not included in the
search. The points that occur h weeks after the historical
sequences are used to predict x. These points are aver-
aged (in this implementation with equal weights, but there
are many options for weights based on distance from the
sequence T or time-distance from T).
Several factors dictate the accuracy of the method of

analogues. Obviously, the longer the historic time series
and the faster the data rate, the better the characterization
of the deterministic process that is producing the observa-
tions. The parameters l and v, the length of the prediction
sequence S and the number of sequences can also greatly
influence the quality of the prediction for any prediction
horizon h. Shorter prediction horizons h, as with any pre-
diction method, typically produce more accurate forecasts.

Novel applications of the method of analogues
Previous implementations of the method of analogues to
influenza forecasting ([7, 8]) treated the time series as a
one-dimensional process, that is, any analogues are de-
termined as sequences of closest (based on the metric
used) sequences of points to the sequence T. In this im-
plementation, we recognize that although the measure-
ment of incidence is a one-dimensional time series, it is
really a projection of a multidimensional continuous, de-
terministic process for which many of the variables are
not available. Theoretically, inclusions of additional vari-
ables that are known to directly affect the transmission
or viability of the influenza virus are then relevant to the
dynamics of influenza incidence. This is the basis for our
study.
One option for analysis of dynamics that is used exten-

sively in physical experiments is phase-space reconstruc-
tion. An evolving process is measured for a length of
time and then the measurements are used to reconstruct
the entire state-space. Theorems guarantee the faithful
reproduction of the state-space directly from one vari-
able using delay-coordinate embedding [9].
Typically the reconstruction of dynamics from time

series via delay-coordinate embedding requires a long
time series to populate the state-space. One rule of thumb
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is about 10,000 points per dimension. Unfortunately, a
typical epidemiological time series of weekly data is much
shorter. Reconstruction of a faithful representation of in-
fluenza transmission dynamics from influenza incidence
alone is not practical or possible. The short time series se-
verely restrict what can be reconstructed from the time
series or its delay coordinates. However, the theory behind
state-space reconstruction does yield another avenue. If
an additional variable is known to affect the dynamics of
the variable in question, its measurements, when suffi-
ciently orthogonal to the existing variable, can be used to
further describe the dynamics of the influenza transmis-
sion process. The degree to which the variable is orthog-
onal can be tested using either mutual information or the
continuity test (see e.g. [10, 11]).
A recent study [2] linked influenza transmission to the

temperature and relative humidity of the ambient air.
Dew point is a weather variable that incorporates both
temperature and humidity, and thus should add an add-
itional relevant criterion, independent of influenza inci-
dence, that will aid in selection of analogues that are not
only close in the incidence dimension, but also close in
the climate dimension. Using another relevant variable
describes the dynamics of transmission more accurately.
These two-dimensional analogous sequences may not be
the same as those chosen using only the influenza inci-
dence. However, the evolution of these sequences may

be closer to the evolution of the test sequence T because
the climate variable is included. The prediction for influ-
enza incidence remains the average of only the influenza
incidence values.
The time series of points that is used for prediction it-

self affects the quality of the prediction. If the time series
is nearly periodic and has many sequences of points that
are close, analogous sequences are close in distance to
the test sequence T and the time-advances of these se-
quences should be closer. If, however, the time series is
noisy or not as obviously periodic, sequences are far-
apart, it is more difficult to find multiple analogous se-
quences and the averages of their time-advances will
be farther apart. Thus, it is advantageous to calculate
the “closeness” of typical sequences to see how many
analogue sequences v are supported by the data. We
calculate this space scale, which can vary for each time
series. This must be carried out on a subset of the data
so that predictions are not contaminated by essentially
using the same set of data for determination of param-
eters and for validation of the method. This is compar-
able to the dividing of data used for machine-learning
methods into “test” and “validation” subsets. The space
scale parameter is calculated based on the “test” subset;
the method is validated using the entire data set. However,
predictions are only made for the portion of the data in
the “validation” subset.

Fig. 1 The blue-circled sequences of points are “analogous” to the green sequence for which a prediction is desired. Average the black-arrow
designated values to arrive at the prediction
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Data
The case data for this study include all medical encoun-
ters for influenza-like illness (ILI) paid for by the De-
partment of Defense (DoD) in the United States and 4
US territories (at US military treatment facilities and
non-military facilities) from December 2000 through
April 2013. Data were obtained from the Armed Forces
Health Surveillance Center’s [12, 13] Defense Medical
Surveillance System, the central repository of medical sur-
veillance data for the US Armed Forces (Center, Defense
Medical Surveillance System) which provides near-complete
capture of medical encounters for military personnel (who
typically use DoD-sponsored healthcare) and incomplete
coverage of other DoD healthcare beneficiaries (e.g., retirees
and family members of military personnel). ILI was defined
using ICD-9 diagnostic codes validated previously using la-
boratory data [14]. Data were de-identified prior to use by
the investigators, and provided as an operational public
health activity of the AFHSC in accordance with AFHSC
policy, as with mathematical modeling projects using similar
AFHSC ILI datasets [15].
The data fields included date of encounter, military

treatment facility identifier, gender, age, cohort (service
member of other beneficiary, such as spouse of service
member), and type of encounter (inpatient or outpatient).
We calculated the CDC-epidemiological week [4] for each
date. We aggregated age, gender, cohort and type for each
military treatment facility, and converted the military epi-
demiological weeks to CDC-epidemiological weeks. The
data aggregation yielded a weekly time series of both ILI
visits and of total visits for each military treatment facility.
We used the data provided in [16] to then aggregate the
data by U.S. state. That is, we included the military treat-
ment facilities in each state in that state’s aggregate data.
We calculate ILI incidence as the number of ILI cases

divided by the total number of cases. We excluded data
from 10 states and all territories because the time series
were incomplete, and aggregated data across facilities
within each state in the ILI incidence calculation.
We note that military treatment facilities frequently

have fluid movement of personnel among adjacent
states. That is, a person who becomes ill is likely to visit
the treatment facility that has the earliest available ap-
pointment, if that facility is within a reasonable radius of
the person’s residence or workplace, whether or not that
facility is in the state of residence.
We examined the data set in advance of the analysis

via the Method of Analogues. The population for this
data set includes active military personnel and their de-
pendents. Thus, it includes all age groups, with a some-
what skewed population in the 20–40 year old range.
The data exhibited a jump in total visits after 2006, and
a smaller jump in ILI visits for most states, reflecting in-
creased access to healthcare encounter data beginning at

that time. Because we used ILI incidence (ILI cases/total
cases) in the modeling, the result appeared as a reduc-
tion in the ILI incidence after 2006.
The climate data used for this study are weekly mean

dew point measurements collected by weather stations.
The dew point is the temperature below which the water
vapor in a volume of humid air at a given constant baro-
metric pressure will condense into liquid water at the
same rate at which it evaporates [17]. Because the dew
point is never higher than the temperature, the dew point
is a measure of both temperature and humidity. The unit
is in degrees Celsius. The source for these data is the
National Oceanic and Atmospheric Administration Na-
tional Climatic Data Center (NOAA NCDC) Quality con-
trolled Climatological Data (QCLCD) [18], downloaded
daily from selected weather stations, and averaged
weekly to coincide with epidemiological weeks used in
the ILI data.
A concurrent study [5] using the same data predicted

the timing of the peak incidence but that method was
not applicable to predicting the number of cases at the
peak. This method was able to predict the cases at the
peak as well as the total cases.

Experimental design
We calculated ILI incidence for the 700 time points cor-
responding to CDC epidemiological weeks that covered
the time interval of the data. The ILI incidence is calcu-
lated for each week t using the formula:

ILI Incidence tð Þ ¼ ILICases tð Þ
TotalCases tð Þ

For the initial baseline experiment, we calculated the
parameters l and v that optimized the five-time-step-
ahead (four-week) predictions for all states’ time series.
The parameters chosen were l = 7 and v = 3, using a par-
ameter sweep. This was done using the first 550 points
of the time series. Predictions were made for each week
after week 550, using prediction horizon h = 5 (for a
four-week prediction), that is to predict a point at time t,
the sequence T was identified as ILI incidence at the
times ((t-1)-l, (t-1) – (l-1), …(t-1)). The test sequence T
of values was used to locate v nearest-neighbor sequences
S of length l in the time series of ILI incidence, excluding
the points from t-25 forward in time. Thus, all predictions
are prospective and simulate the prediction of the future
using only information that would have been available at
the time of the prediction.
Each sequence S consists of ILI incidence at times

((τ-(l-1)) … (τ -2), (τ -1), (τ)) for time τ. We then “advance”
each sequence S and obtain ILI incidence at time (τ + h).
The values ILI_Incidence (τ + h) are averaged for the v
different sequences to obtain the prediction p(t).

Moniz et al. BMC Medical Informatics and Decision Making  (2016) 16:134 Page 4 of 17



Table 1 Results from prediction of influenza incidence in each state for the three prediction years 2010–2013 using the method of
analogues with adaptable parameters l and v as well as the same measures for the naïve prediction (average of the date’s incidence
for the previous 4 years)

State Analogue: % RMS
Error in Peak Height:

Analogue: % RMS
Error in Area under
the Incidence Curve

Correlation Coefficient:
Incidence to Prediction

Naïve: % RMS Error
in Peak Height

Naïve: % RMS Error in Area
under the Incidence Curve

Alabama 16.7 17.2 0.74 25.3 16.6

Alaska 12.7 20.0 0.41 38.0 20.3

Arkansas 14.6 17.4 0.72 29.6 14.2

Arizona 7.6 23.2 0.76 20.9 16.3

California 17.8 26.2 0.68 19.8 12.5

Colorado 3.7 16.0 0.80 19.9 11.5

Connecticut 17.2 8.6 0.62 22.3 5.6

Delaware 17.4 48.6 0.58 21.3 5.9

Florida 9.5 16.4 0.72 20.0 3.3

Georgia 8.3 13.3 0.79 25.8 9.6

Hawaii 11.1 9.6 0.64 28.1 27.2

Illinois 13.5 12.3 0.48 50.8 27.8

Kansas 8.2 17.7 0.63 42.7 11.2

Kentucky 12.5 21.5 0.74 26.5 12.5

Louisiana 10.3 11.6 0.68 23.8 9.1

Maryland 18.3 23.2 0.61 15.5 20.9

Massachusetts 7.6 20.7 0.66 27.7 7.1

Mississippi 10.5 19.0 0.71 30.8 4.6

Missouri 13.3 18.3 0.80 26.7 17.9

Montana 9.8 23.8 0.74 13.9 8.2

Nebraska 18.4 12.7 0.59 37.7 12.4

Nevada 4.2 5.8 0.77 20.3 9.4

New Hampshire 26.7 23.2 0.56 20.9 13.7

New Jersey 13.0 37.6 0.56 13.7 12.7

New Mexico 14.4 17.8 0.76 26.2 1.2

New York 28.8 6.4 0.76 25.1 15.7

North Carolina 19.8 50.0 0.78 22.6 11.4

North Dakota 19.0 15.1 0.57 19.7 11.3

Ohio 7.4 23.8 0.76 28.5 4.8

Oklahoma 8.2 22.7 0.53 28.9 11.2

Pennsylvania 12.4 11.7 0.79 23.7 2.8

Rhode Island 31.5 22.3 0.62 31.6 32.0

South Carolina 18.1 21.4 0.71 31.0 17.7

South Dakota 6.7 13.3 0.71 20.2 17.3

Tennessee 11.2 15.3 0.82 20.4 13.2

Texas 19.4 14.6 0.69 26.3 29.7

Utah 20.1 10.4 0.64 24.5 17.8

Virginia 35.4 17.5 0.66 23.6 12.6

Washington 24.1 17.1 0.70 21.6 18.2

Wyoming 13.2 24.9 0.65 18.4 17.8

Average over All States 14.8 19.2 0.68 25.4 13.7
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Experiments with different weightings for analogues
sequences closer in time or sequence-space did not
improve the predictions; thus the average was used. The
entire time series of 4-week-ahead predictions of values at
points t = 550 to t = 700 is then reported. This encom-
passes two years and one partial year. The window t-25
was chosen as approximately half of a large oscillation of
the time series. This assures that analogous dynamics
remain in previous years. This allows results to be

validated against the ground truth value at the time of
the prediction and provides a reasonable estimate of
the accuracy of the method if it is to be used for real-
time prediction. Results from this “optimized” set of pa-
rameters, along with the parameters l and v associated
with each state, appear in Table 1.
The second experiment includes dew point in the selec-

tion of analogue sequences. For each state, we down-
loaded the mean dew point from the National Weather

Fig. 3 Distribution of percent RMS error in total ILI cases, one-dimensional Analogue prediction

Fig. 2 Distribution of percent RMS error in height of yearly peak, with Analogue one-dimensional prediction
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Service for the location in the state that exhibited the
most complete dew point data, typically the largest
city in the state. Each sequence v was a sequence of
two-dimensional variables (incidence(t), dew point(t))
and the search for analogue values was done on the
two-dimensional space. The prediction was obtained
by averaging incidence for the chosen analogue
sequences.

Metrics
To compute the percent RMS error in Peak Height,
one peak (highest value) per year is identified in both
the data and in the prediction p(t). The two years and

one partial year will be treated as three years for which
the peaks are identified. Thus, peak height for the data
is calculated to obtain (Peakdata(1), Peakdata(2), Peak-

data(3)) and the peak height for the prediction is calcu-
lated to obtain (Peakpred(1), Peakpred(2), Peakpred(3)).
The RMS difference in peak height for all three years
of prediction is then calculated, summed, and divided
by the sum of peak heights in the data:

RMSDiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1

3
Peakdata ið Þ− Peakpred ið Þ� �2

:

r
ð1Þ

Fig. 5 Naïve Prediction for Arkansas

Fig. 4 Correlation coefficients for Analogue predictions with dew point vs. 1-dimensional Analogue Prediction
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Percent RMS difference for the peak height is then
calculated:

%RMSDiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

peakdata ið Þ− peakpred ið Þ
peakdata ið Þ

� �s
ð2Þ

We computed additional metrics for the area under
the curve (total cases). To compute the percent error in
area under the incidence curve (total cases), divisions
were made in accordance with the oscillations present in

the data. These divisions were: week 551 to week 604
(5/2/2010 to 5/1/2011), week 605 to week 657 (5/8/
2011 to 4/29/2012) and week 658 to week 700 (5/6/
2012 to 2/24/2013). The total ILI incidence count
was computed for the test data and the predicted ILI
total case count was computed for the prediction se-
quence per test division. The RMS error was com-
puted for each division, and the RMS error divided
by the total cases for the test data to arrive at the
error for the incidence curve, that is,

Fig. 7 Naïve prediction for Rhode Island

Fig. 6 Naïve Prediction for Nevada
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RMSDif f cases per year

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

X3
i¼1

Area Under true Curve ið Þ−Area under prediction ið Þð Þ2
vuut :

ð3Þ

We computed the RMS total percent error:

RMSPercentDif f cases per year ¼ 100 � RMSDif f cases per year

mean Cases per yearð Þ
ð4Þ

We also computed a more dynamic measure, the aver-
age running cumulative percent error. This metric mea-
sures the average error percent as the total cases are
computed prospectively:

Fig. 9 One-dimensional Analogue prediction sequence for Rhode Island: higher-than average percent RMS errors

Fig. 8 One-dimensional Analogue prediction sequence for Arkansas: “average” RMS error
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Running%Error ið Þ

¼ 100 �
abs

X
j¼1

i
FluCases jð Þ−

X
j¼1

i
PredictedFluCases jð Þ

� �
X

i¼1

j
FluCases jð Þ

2
4

3
5

ð5Þ

We average this running error to get

AverageRunning%Error ¼ mean Running%Errorð Þ:
ð6Þ

This measures, on average how well the prospective
predictions for total cases estimate the true values as
they are computed.

Results
We obtained predictions for all the included states for the
3 years from 2010 to 2013, using the time series up to and
including 1 year prior to the prediction date, using ILI
incidence only. The predictions consisted of a time series
of predicted values of weekly ILI incidence to which we
could compare the actual values of ILI incidence. We cal-
culated the metrics and the results appear in Table 1. We
also compiled the distribution of RMS errors in both peak
height and in total cases. The RMS distribution for peak
height appears in Fig. 2 and for total cases appears in
Fig. 3.
We also calculated the correlation coefficients, in

order to compare these methods with previous results
using the method of analogues. The correlation coefficients

are plotted, along with those for the predictions with dew
point, in Fig. 4.
We also used a naïve method of prediction in order to

further compare the results from analogue prediction.
The naïve method averaged the ILI incidence for the
4 years prior to the prediction date to arrive at the pre-
diction value. Typical prediction sequences are shown in
Fig. 5, Fig. 6 and Fig. 7.
The average error for peak height is 14.8 %, and the

average error for total cases (area under the curve) is
19.2 % using analogues with parameter optimization. In
comparison, the average error for peak height is 25.4 %
and the average error for total cases is 13.7 % for the
naïve method. Using the parameter optimization the
correlation coefficients were comparable, on average, to
those obtained by [7] for three-week ahead predictions;
the average correlation coefficient was .68 for the four-
week ahead predictions, with some states exhibiting higher
correlation coefficients (e.g. Colorado) and some with
much lower coefficients (e.g. Arkansas). We note that
correlation coefficient does not necessarily coincide
with error in the prediction of total cases or with error
in peak height prediction, however.

Discussion
Comparisons of data vs. prediction for an average pre-
diction (Arkansas) a good prediction (Nevada) and a
poor prediction (Rhode Island), based on percent RMS
errors, are shown in Fig. 8, Fig. 6 and Fig. 9, respectively.
The Arkansas and Nevada prediction curves, in spite of

Fig. 10 Analogue predictions with dew point, Nevada. The RMS errors for peak height and total cases are slightly higher using dew point, but
the correlation coefficients are much higher. Compare with Fig. 11
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Table 2 Analogue prediction results with dew point

State l v Peak RMS % Error AUC RMS % Error Correlation Coefficient

AL 7 2 11.8 10.7 .83

AK 7 2 5.3 13.0 .73

AR 7 2 14.0 7.3 .66

AZ 7 2 11.0 13.9 .91

CA 7 2 5.1 19.4 .85

CO 7 2 7.1 5.1 .75

CT 7 2 9.4 8.3 .73

DE 7 2 13.7 19.8 .75

FL 7 2 14.7 7.0 .85

GA 7 2 13.0 12.0 .91

HI 7 2 9.1 7.7 .60

IL 7 2 10.5 13.8 .62

KS 7 2 8.9 9.3 .81

KY 7 2 12.3 12.7 .88

LA 7 2 9.5 10.4 .88

MD 7 2 14.6 10.7 .78

MA 7 2 11.9 10.1 .72

MS 7 2 6.8 13.7 .76

MO 7 2 10.2 5.1 .83

MT 7 2 6.5 15.8 .66

NE 7 2 15.1 11.4 .78

NV 7 2 5.3 12.9 .91

NH 7 2 22.1 6.6 .62

NJ 7 2 4.4 19.6 .67

NM 7 2 10.9 12.5 .87

NY 7 2 15.6 8.4 .80

NC 7 2 19.6 18.9 .88

ND 7 2 15.8 7.4 .72

OH 7 2 17.7 12.4 .85

OK 7 2 20.1 10.8 .69

PA 7 2 6.7 12.3 .85

RI 7 2 22.8 12.8 .65

SC 7 2 20.5 15.2 .78

SD 7 2 19.4 32.5 .62

TN 7 2 5.9 8.3 .83

TX 7 2 16.3 7.3 .86

UT 7 2 10.7 2.8 .78

VA 7 2 16.9 21.1 .71

WA 7 2 8.0 21.8 .83

WY 7 2 12.2 7.6 .76

Average for all states with l = 7,v = 2 12.3 12.2 .77
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reasonable percent RMS errors, exhibit spurious mid-year
spikes that do not coincide with spike in the data. In all
three states, the peak of the prediction curves typically
does not coincide in time with the real peak, although the
percent RMS height differences are lower. The Rhode Is-
land curve exhibits many spikes that do not appear in the
data. The spread of the distribution of RMS errors (Fig. 2)
in height of the yearly peak is further evidence. Although
the bulk of the distribution indicates errors of less than
20 % there are some large errors up to 35 %. Regarding
the distribution of RMS errors in total cases, there are few
states with %RMS error above 20 % and the distribution
clusters around a point less than 20 %.
In some states naïve prediction the percent error for

area under the curve was lower than for analogue pre-
diction with dew point. However, the naïve method of
prediction was prone to spurious peaks as was the

one-dimensional analogue prediction, shown in Fig. 6,
vs. the analogue prediction with dew point shown in
Fig. 10. Although the percent error for total cases was
only slightly lower for the analogue prediction with
dew point, the week-to-week prediction is closer to the
real values for the analogue prediction with dew point.
The running RMS percent error captures this difference
better.
While these predict some states’ peak height and total

incidence with less than 20 % error, performance is in-
consistent, and often not better than the naïve method.
The time series predictions are not close to the time
series, the predicted peaks are not close in time to the
peaks in the data, and many of the predictions are prone
to spurious peaks mid-year. Thus, some improvement is
desired. Because the method of analogues’ success de-
pends on finding analogous sequences to time-advance
to the prediction point, the only change that is possible
to make to this method is to refine the choice of se-
quences through the addition of other information to
better describe the underlying dynamics.
Results from using the dew point to locate dynamically

close near-neighbors are significantly better than the re-
sults from the one-dimensional analogue predictions.
These results appear in Table 2. We note that although
nearly all states exhibited good results with parameters
l = 7 and v = 2, there are some states that also performed
well (reducing either peak difference or difference in total
cases better) with other parameters; those are shown in
Table 3.

Table 3 Analogue predictions results with dew point using
alternate parameter choices for selected locations

State l v Peak RMS % Error AUC RMS % Error

AL 7 1 14.7 0.5

AZ 6 1 17.6 10.1

CA 7 5 7.7 17.4

KY 6 1 4.1 15.3

MA 6 1 14.0 1.5

NV 4 1 3.4 6.1

NY 4 1 1.3 8.4

Fig. 11 One-dimensional Analogue prediction sequence for Nevada: lower-than-average percent RMS errors
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Contrasting the percent RMS error in peak height for
predictions with dew point (Fig. 12, Fig. 13, Fig. 14) to
those without (Fig. 2) shows significant improvement with
the dew point. Although there is a wide range in the distri-
bution of RMS errors in peak height using dew point, the
distributions are centered near 10 % RMS error. Similarly,
the distribution of RMS error (Fig. 15) for total cases shows
significant spread, but the distribution centers around 12 %
(vs. 20 % for one-dimensional prediction without dew
point) RMS error.
The table of running error in the area under the

curve (eq. 6) is shown in Table 4. This gives an idea
of the error that can be expected as ILI cases are pre-
dicted prospectively. We see that all but 3 of the
states had errors under 10 % for the Analogue predic-
tion with dew point. Errors for the 1-dimensional
analogue prediction were variable, with some under
10 % but many above 15 %. Errors for the naïve

prediction method were often much larger, in some
states above 20 %. Put another way, as predictions are
computed each week in a season for the total number of
cases so far in the season, the analogue predictions with
dew point can be expected to average errors under 10 %.
This is not true for the other methods.
There are some states for which including the dew

point did not improve the correlation coefficient of the
predictions, but did decrease the RMS errors on peak
height and in total cases (area under the curve). These
states include Arkansas and Rhode Island.
Given that some states are quite large and the weather

attributes can vary widely from one part of the state to
another (for example, Texas includes a desert-like dry area
in the west, with a moist subtropical area on the Gulf of
Mexico), the data used were an over-simplification of the
representative dew point, but were the most accurate data
we could obtain at the chosen interval. Thus, we expect

Fig. 12 Distribution of percent RMS error in maximum peak height. Analogue prediction with dew point

Fig. 13 Analogue predictions for North Dakota, with and without dew point. Predictions without dew point had higher-than-average RMS errors;
with dew point, average RMS errors. Note that the spurious spike in early 2012 does not occur in predictions with dew point
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that more local dew point forecasts may improve the
prediction ability for states with widely varying weather
patterns.
This study’s time series included data from 2009, the

occurrence of the H1N1 (“swine flu”) pandemic [19].
The rationale behind including these data was that pan-
demic influenza is as relevant to influenza dynamics as a
“typical” influenza season. If a pandemic is to be forecast
in the future using this method, sufficient historical se-
quences need to be present in the data to match future se-
quences that could be early stages of a pandemic. Those
sequences of observations which are not sufficiently close
to a current sequence v will not be selected as analogues.
As long as all available data are used for real-time predic-
tions (and these data include seasons that are not termed
“pandemic”), the inclusion of data from “pandemic” years
will not affect the accuracy of any predictions that do not
give early indications of a pandemic.

Other components that may be relevant to the spread
of influenza (and thus the incidence) can also be added
to the multidimensional analogues model. For example,
virological data may yield increased accuracy of the pre-
diction. These data (influenza type and subtype) are cur-
rently tracked by the CDC and are available with the
same time lag as incidence, but it is important that they
have the same geographic granularity as the incidence
and climate data. A national reporting of the matching
of the dominant strain to the vaccine may not yield add-
itional accuracy to the analogue predictions because the
dynamics of transmission may vary based on the locally
dominant strain. Thus it is important that these data
have the same geographical granularity as the incidence
and climate data.
A dynamical model depends heavily on the accuracy

and data rate of the data used for it. Currently, weekly
incidence is available in most cases [4]. A higher data

Fig. 14 Analogue predictions with and without dew point, Texas. Without dew point, predictions had higher-than-average RMS errors; with dew
point predictions had lower-than average RMS errors. Note the predictions for peak are much closer in 2011 and 2013 using dew point

Fig. 15 Distribution of percent RMS error in total cases: Analogue prediction with dew point
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rate that is commensurate with the typical incubation
period of influenza would improve the forecast if
available. However, given that the exact time of
manifestation of the disease and the ability to report

it to a provider contains a lag, a higher data rate may
not be more accurate in representing transmission
rates. The inclusion of more localized data, however,
may give a more accurate representation of the

Table 4 Predictions for average running percent error for total cases (Eq. 6)

State Naive 1-Dimensional Analogues: (l = 7,v = 3) 2-dimensional Analogues (l = 7,v = 2)

Alabama 15.9 7.4 6.5

Alaska 30.8 14.7 2.2

Arkansas 18.8 10.3 10.8

Arizona 15.0 6.4 4.9

California 15.9 7.4 2.6

Colorado 23.9 4.9 8.0

Connecticut 11.8 12.1 4.3

Delaware 8.0 4.5 2.2

Florida 12.1 19.8 3.8

Georgia 30.0 9.8 2.5

Hawaii 18.0 12.5 6.4

Illinois 48.6 6.3 3.7

Kansas 21.2 7.0 5.5

Kentucky 15.9 6.5 3.9

Louisiana 9.0 5.1 2.4

Maryland 21.9 14.4 3.8

Massachusetts 5.8 1.5 4.6

Mississippi 15.0 15.8 4.2

Missouri 25.5 7.6 3.9

Montana 18.9 8.7 11.4

Nebraska 17.6 4.1 4.7

Nevada 19.9 5.7 3.6

New Hampshire 6.3 5.9 4.4

New Jersey 6.6 4.1 7.4

New Mexico 21.9 17.4 7.2

New York 9.5 5.8 3.2

North Carolina 14.5 4.8 2.5

North Dakota 13.4 7.8 2.1

Ohio 11.7 6.7 3.8

Oklahoma 17.4 7.9 6.3

Pennsylvania 8.9 3.9 5.7

Rhode Island 19.9 12.9 4.8

South Carolina 38.3 4.6 3.7

South Dakota 14.0 6.4 5.4

Tennessee 6.6 3.3 2.2

Texas 20.4 14.8 6.4

Utah 15.7 12.4 9.7

Virginia 13.3 45.4 11.5

Washington 16.4 14.3 5.2

Wyoming 21.7 18.6 9.9
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transmission dynamics, particularly if climate data are
available with the same temporal and spatial granularity.

Conclusions
The revised Method of Analogues yielded encouraging
results. On paper, these could be sufficient to predict,
four weeks ahead, the number of resources (e.g. beds,
staff, pharmacy, etc.) that could be required to respond
to patient needs in the next four week interval, but re-
sults are inconsistent. Although these predictions give
relatively low percent RMS error, the inconsistent and
spurious spikes would not allow them to be particularly
useful as a running prediction of the future during the
course of an influenza season. The spread of the distri-
bution of RMS errors in total cases is slightly more en-
couraging, but there is room for improvement.
Including the dew point as an additional datum with

which to choose the analogue sequence for the predic-
tions greatly improved the prediction accuracy in terms
of RMS error and correlation coefficient for both the
height of the peak and for the total cases. The addition
of dew point in general made good predictions better
(either in correlation coefficient or RMS errors or both)
and made bad predictions much better.
This study shows that the method of analogues can be

useful for accurate predictions of the height of influenza
season peaks and of the total incidence for the season
when climate data are used to refine the prediction se-
quence. Logical extensions of these results would be both
a real-time test of the method with current data and the
inclusion of other variables (e.g. observed strains) that
may impact the spread of influenza in the subpopulations.
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