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Abstract

Background: Accurately assessing pain for those who cannot make self-report of pain, such as minimally
responsive or severely brain-injured patients, is challenging. In this paper, we attempted to address this challenge
by answering the following questions: (1) if the pain has dependency structures in electronic signals and if so, (2)
how to apply this pattern in predicting the state of pain. To this end, we have been investigating and comparing
the performance of several machine learning techniques.

Methods: We first adopted different strategies, in which the collected original n-dimensional numerical data were
converted into binary data. Pain states are represented in binary format and bound with above binary features to
construct (n + 1) -dimensional data. We then modeled the joint distribution over all variables in this data using the
Restricted Boltzmann Machine (RBM).

Results: Seventy-eight pain data items were collected. Four individuals with the number of recorded labels larger
than 1000 were used in the experiment. Number of avaliable data items for the four patients varied from 22 to 28.
Discriminant RBM achieved better accuracy in all four experiments.

Conclusion: The experimental results show that RBM models the distribution of our binary pain data well. We
showed that discriminant RBM can be used in a classification task, and the initial result is advantageous over other
classifiers such as support vector machine (SVM) using PCA representation and the LDA discriminant method.

Introduction
Pain is very important in patient care, and more than
half of hospitalized patients have reported pain [1]. In
America, chronic pain affects about 100 million people
[2]. Pain and its associated problems are among the
leading public health problems in the US [3]. Although
pain assessment guidelines are available, pain manage-
ment is still deemed insufficient as reported by many
patients and health professionals [4]. Pain management
relies on the ability to accurately assess when, how and

to what extent a patient is experiencing pain. As a sub-
jective phenomenon, the severity of the perceived pain
may vary significantly among different patients. Thus a
patient’s self-report is usually treated as the most reli-
able pain measurement [5]. Various non-physiological
factors such as emotional state, environmental and socio-
economic contexts [6–8], etc. may also have an impact on
pain assessment, which makes accurate assessment of pain
a non-trivial task.
The multidimensional pain theory [9] proposed by

Melzack categorizes pain based on non-observable
(i.e., subjective), and observable (i.e., objective) indica-
tors. For example, patient’s self-reports of pain that
include sensory, emotional, and cognitive components
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of pain are subjective information, which can serve as
non-observable indicators. Nurses often assess and
document this information. Observable indicators in-
clude the physiological and behavioral components of
pain, which are usually captured and documented in
critical care settings through continuous monitoring.
The behavioral components are actively applied in be-
havioral observational pain scales. The physiological
signals should also help healthcare professionals better
perform the pain assessment. Although many studies
have attempted to associate physiologic signals and
pain [10–20], few practical and reliable methods of
using physiological components in pain assessment are
available. In this study, we attempted to assess the
probability of pain presence based on physiological
data. This approach can particularly be useful for car-
ing minimally responsive patients who cannot make
self-report of pain.
A great deal of effort has been made to analyze pain.

Recently, there has been increasing interest in exploring
the task of predicting pain state using machine learning
techniques. Generally, the task of prediction requires
discovering (learning) patterns in training data. A good
data model to represent the distribution of training data
is critical in this process. Our previous work [21] was
done using the electronic flowsheet data of ICU pa-
tients collected for a limited time interval. These time
series data were projected into a lower-dimensional
subspace, and a number of data vectors (within a time
window size) were represented (reconstructed) with
some linear combinations of principal components
(PCs). The magnitude of residual between original and
reconstructed data can be used to measure the level of
pain. In this previous study, we did not utilize any label
(i.e., documented pain presence) from the data. It is a
good strategy to deal with the time series data when
the recorded labels are incomplete. On the other hand,
ignoring all the labels may result in loss of significant
information.
The overall approach of the study reported here is

different from that of the previous one in that: (1) we
focus on learning from labeled data, (2) we treat our
data as non-temporal rather than temporal data, and
(3) we focus on investigating the relationships between
activation of pain and the normal/abnormal state of
various electronic signals. Consequently, the problem is
transformed into a supervised learning and classifica-
tion problem.
In machine learning, linear methods [22] are fast and

robust which successfully avoid the over-fitting prob-
lem. In addition, they are guaranteed to produce a glo-
bal optimum. However, they are often too limited
when used in real world data. In this study, we employ
another alternative non-linear model, restricted

Boltzmann machine [23] (RBM), a deep learning ap-
proach. In this study, we trained RBM with the labeled
data and feature vectors in a supervised manner. Both
the feature and the labels are visible units in the
model. Moreover, using the nature of this model, dis-
criminant RBM can be used in the classification. The
probability of unknown label class can be calculated
through free energy when a new input was fed into
RBM. In the rest of this paper, we will present the pro-
posed framework of our new pain prediction algorithm
called PATTERN: Pain Assessment for paTients who
can’t TEll using Restricted Boltzmann machiNe.

Background
Data representation
The success of a classification algorithm highly depends
on the choice of representation for data. One hypothesis
is that different representations can more or less entan-
gle and hide the different explanatory factors of variation
behind the data [24, 25]. An attractive alternative is to
estimate the parametric distribution, which explains the
data best, for example, Gaussian Model and Gaussian
Mixture Models. Another concern is the high data di-
mensionality. Higher dimensional data can provide
richer and detailed information than lower dimensional
one; at the same time, learning from the high dimen-
sional data often suffer from over-fitting problem. In
other words, with an insufficient number of data points
in the training set, we tend to memorize each data point
rather than learn from it. To avoid over-fitting, some
classical approaches typically project the data into
lower-dimensional space, such as principal components
analysis (PCA). Recently, using RBMs to model the data
have been reported in a large variety of learning prob-
lems [26–28]. Theoretically, the capacity of RBMs has
been demonstrated that it can provide a powerful means
to representing data [29].

Restricted Boltzmann machine (RBM)
A RBM is an undirected probabilistic graphical model
with symmetric connections between hidden (latent and
usually is binary-valued) and visible (observed) variables
to model an input distribution. Unlike most linear
models that try to perform transformation in the same
space with input data, RBM introduced a new type of
unobserved variables, which increase the representative
power of the model. The word “restricted” suggests there
is no connection between the units from the same layer,
this restriction makes learning much easier than Boltz-
mann machine. Precisely, let v = {v1,v2,…,vm} represents a
visible vector and h = {h1, h2,…, hn} denotes a hidden
vector.
An RBM (Fig. 1) defines a distribution over v and h

through energy function:
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Where vi, hj ∈ {0, 1} are the binary values of visible
variable vi and hidden variable hj, and bi, cj are the biases
from visible and hidden layers, respectively. wij is the
weight parameter between vi and hj. We assigned a
probability to each pair configuration (v, h) through the
following Boltzmann distribution:

p v;hð Þ ¼ 1
Z
e−E v;hð Þ ð2Þ

The partition function Z is given by summing over
all possible pairs of configurations. The value of Z is
generally unknown and computationally intractable,
and is often the most challenging inference task for
many prediction models. Since the visible vectors are
our main concerns, we delve a step further into the
probability of visible units p(v). We introduce a nota-
tion called free energy, which defined as

f vð Þ ¼ − log
X

h
e−E v;hð Þ ð3Þ

And the energy function is only associated with visible
units. With the definition of free energy, we can have
the probability of visible vector as: p vð Þ ¼ 1

Z e
−f vð Þ . In

particular, in binary RBM, the free energy turns into:

f vð Þ ¼ −
X

i
bivi −

X
j
log 1þ ecjþWjv

� � ð4Þ

From the above equation, the energy (correspondingly,
the probability) is determined by the weights and biases.
Learning is conducted by performing stochastic gradient
decent on the log likelihood of training data with respect
to the individual parameter. Since the objective function
in RBM is non-convex, the exact gradient is intractable. In
this study, we used contrastive divergence (CD-k) [30]
with k = 1 to achieve a reasonable approximation accuracy.

In [31], the authors demonstrated that an RBM with
sufficiently large number of hidden units can represent
any distribution over binary vectors.

Comparison between RBM and linear models
To demonstrate the representation performance of RBM
in our experiments, it is worthwhile to compare our
method to linear models. We now briefly turn to the dis-
cussion of two commonly used techniques, namely, PCA
and linear discriminant analysis (LDA). Both of them are
linear transformation methods and attempt to represent
the data with lower dimensions. We refer the reader to ref-
erences for more details [32, 33].
PCA method finds a subspace, where basis vectors

correspond to the maximum-variance directions in the
original space. The principle behind is that a large vari-
ance usually has an important structure to consider. In

Fig. 1 The Graphical Model of Representation for an RBM

Fig. 2 The main component direction found by PCA and LDA in
2-dimensional manner
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practice, we keep only the largest k components to re-
duce the dimensions. When data was projected into this
lower-dimensional space, we then fed them into some
classifiers (we use support vector machine (SVM) in our
experiment). In theory, however, PCA is not optimal for
classification under some conditions, because it ignores
the class discrimination. The discriminant dimensions
could be simply discarded. A theoretically better method
to find discriminant direction is LDA. It provides a lin-
ear boundary, which is generated by fitting class con-
dition densities to the data. In a two-dimensional
example shown in Fig. 2, PCA will prefer the direc-
tion, which is shown in black color, because it has the lar-
gest variance in the components directions while LDA (in
red color) finds the direction that corresponds to the class
discriminant direction. In this case, LDA should outper-
form PCA.

Methods
Original training data
In our study, we collected data from 7384 patients,
which include 937,461 flowsheet entries in total. Based
on our previous study [21] we selected 78 data items
that were documented in continuous numerical values
with sufficient frequencies. We synchronized the time
series data using MATLAB.

Classification using Discriminant RBM
We addressed the task of classification using RBM with
two approaches. The first one is straightforward: we
directly fed the hidden vectors into another classifier.
Note that RBMs provide no guarantee that the gener-
ated hidden variables will ultimately be useful for the
supervised task. In other words, if we are handling the
task of 2-class classification and set the number of
hidden units as 1, this hidden unit usually has no

connection with our labels. The second more interest-
ing approach is discriminant RBM, which utilizes the na-
ture of a model to compute the probability.
We assume that a test set Dtest = {vi} = {(xi, ci)} consists

of an input features vector xi and a target class ci ∈ {0, 1}
(see Fig. 3). The probabilities of two visible vector v1

0

= (x1, c1 = 0) and v1
1 = (x1, c1 = 1) can be directly com-

puted from their free energies f(v1
0) and f(v1

1) through the
equation (4). As shown in the equation (5), we can fur-
ther obtain the probabilities p(v1

0) and p(v1
1) using the

chain rule to cancel unknown constant Z.

p c1 ¼ 0jx1ð Þ
p c1 ¼ 1jx1ð Þ ¼

p c1 ¼ 0; x1ð Þ
p c1 ¼ 1; x1ð Þ ¼

p v01
� �

p v11ð Þ ð5Þ

Predicting pain state
In a supervised experiment, we would expect the num-
ber of labeled data points (i.e., training data) to be large.
To this end, we only selected the features whose time
interval was larger than the time interval of pain labels
(i.e., documented pain). Four individuals (Table 1) with
the number of recorded labels larger than 1000 were
used in this experiment. None of the four patients had
all 78 assessment items available. Number of available
data items for the four patients varied from 22 to 28
(Table 1). We then randomly select approximately 20 %
of the data as test data.
In classification tasks it is necessary to perform pre-

processing of the data before applying the algorithm. In
our experiment, we converted the numerical data t into
binary data x. It is worth mentioning that the binary rep-
resentation may be inappropriate in many real problems,
although their interpretation (“normal” and “abnormal”)
makes sense in our medical electronic data. Another im-
portant step is personalization, since the indication of a
“normal” state varies among different individuals. We
assumed the probability distribution of status measure-
ment to be a Gaussian. We fit the numerical feature into
this Gaussian probability distribution function, (xi = 1) ~
ℕ(ti|μ, σ), where p(xi = 1) represents the probability of
current feature is abnormal. The mean and variance can
be directly calculated from the samples. With this pro-
cedure, the resulting feature vectors are well-suited to
the standard binary RBM. In this experiment, we

Fig. 3 Pain label c is included in the visible layer. The black color
denotes the state “on”, while the blue color denotes the state “off”

Table 1 Number of Data Items for Selected Individuals

Patient ID Number of Data Items

7137 22

4822 28

1245 28

6563 24
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Fig. 4 Comparison of RBM, LDA, and PCA in classification. (a), (c), (e) and (g) are the ROC curves and (b), (d), (f) and (h) are the predicted pain
labels using their optimum threshold from patients (with IDs 7137, 4822, 1245, and 6563). Artificial timestamps are used for patient privacy
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converted non-binary probability into binary value by set-
ting threshold = 0.5.
Since LDA allows only the number of classes – 1 di-

mension to be used, there is no parameter to be set in
our 2-class task. For PCA, the size of the reduced di-
mension was selected as k = 4, which can cover most
energy of the original data. In our experiment, we con-
sidered RBM as a non-parametric model and allowed
the number of hidden variables to vary by the data [34].
As we have a trade-off to make: while a larger number
of hidden units usually give a more powerful representa-
tion of distribution it also exaggerates the over-fitting
problem. Therefore, the number of hidden units was
adjusted between 15 and 30.

Results
With regard to the classification performance, we first
examined the Receiver Operating Characteristic (ROC)
curves for each model and calculated the area under the
curve (AUC) by varying the classification threshold
(Fig. 4). Sensitivity, specificity and accuracy were used as
the criteria of classification performance with the
optimum boundary. The optimal point is defined as the
minimum distance between the point (0,1) and any point
on the ROC curve. Table 2 suggests that the performance
of PCA and LDA is quite similar. Even though intuitive
choice will prefer LDA to PCA, there is no guarantee that
LDA will outperform PCA, especially when the size of
training data is not sufficiently large. This observation is
also reported in [35]. With carefully setting parameters,
discriminant RBM can achieve better accuracy in all 4
experiments.

Conclusions
Our experiments show that the RBM classification is
competitive to the other methods such as LDA and
SVM using PCA. The AUC was improved and the pre-
dicted pain labels using RBM outperformed the LDA
and PCA using the optimum threshold, respectively.
However, we notice that most results of AUC are still
smaller than 0.8, which is only a fair level.

Discussion
There are several limitations in our approach that might
have contributed to this: (1) we have not given any con-
sideration to the temporal data. Ignoring time will result
in significant loss of information. We carried out the ex-
periments by using the training data in the first half of
time series, and made pain prediction with the test data,
which corresponds to the second half of the time series,
the detection rate of all methods turned out to be very
poor. (2) Currently, we adopted the fundamental binary
RBM. An obvious observation is that a binary represen-
tation may not be sufficient to represent states very well.
For example, the value of blood pressure higher or lower
than mean value may give totally different contributions
to the pain response. In order to enrich the representa-
tion power, we will incorporate the softmax visible units
to the model in our future work. (3) Most importantly,
training of RBM expects the number of training data to
be large. However, our experiment was done with a rela-
tively small dataset. To this end, we will try to learn a
model using a bigger dataset, and fine-tune the parame-
ters only using the specific individual data in future work
to minimize data loss.
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Table 2 Classification results using discriminant RBM, PCA with
SVM, and LDA (Bold font denotes the best performance on
certain metric of the 4 patients)

Patient ID Model AUC Sensitivity Specificity Accuracy

7137 RBM 0.73255 0.7143 0.6286 0.6714

PCA + SVM 0.65541 0.8143 0.4714 0.6429

LDA 0.65316 0.8 0.4858 0.6429

4822 RBM 0.76017 0.7037 0.6885 0.6932

PCA + SVM 0.67729 0.6667 0.6557 0.625

LDA 0.67122 0.7037 0.5902 0.6591

1245 RBM 0.8813 0.8667 0.8049 0.8214

PCA + SVM 0.76504 0.8667 0.7317 0.7679

LDA 0.82033 0.8 0.7561 0.7679

6563 RBM 0.78594 0.7692 0.6721 0.7011

PCA + SVM 0.71721 0.5769 0.6885 0.6552

LDA 0.69893 0.7308 0.6393 0.6667
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