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Abstract

Background: In biomedical research, data sharing and information exchange are very important for improving quality of
care, accelerating discovery, and promoting the meaningful secondary use of clinical data. A big concern in biomedical
data sharing is the protection of patient privacy because inappropriate information leakage can put patient privacy at risk.

Methods: In this study, we deployed a grid logistic regression framework based on Secure Multi-party Computation
(SMAC-GLORE). Unlike our previous work in GLORE, SMAC-GLORE protects not only patient-level data, but also all the
intermediary information exchanged during the model-learning phase.

Results: The experimental results demonstrate the feasibility of secure distributed logistic regression across multiple

institutions without sharing patient-level data.

Conclusions: In this study, we developed a circuit-based SMAC-GLORE framework. The proposed framework provides a
practical solution for secure distributed logistic regression model learning.

Background

Biomedical research can benefit from data sharing from
distributed sources. For example, comparative effectiveness
research requires data comparison among different data
sources to determine which existing health care interventions
work best for certain patients. This requires a large amount
of data to be harmonized. Big biomedical data networks, such
as the patient-centered SCAlable National Network for Effect-
iveness Research (pPSCANNER) clinical data research network
(CDRN) [1], the Scalable Architecture for Federated Transla-
tional Inquiries Network (SAFTINet) [2] and the Electronic
Medical Records and Genomics (eMERGE) Network [3] have
been established to enable cross-institutional biomedical stud-
ies. However, information exchange of biomedical data (e.g,
genome sequences, diagnoses, medication information, etc.)
can put patient privacy at risk, where the potential risks in-
clude, but are not limited to, denial of certain types of insur-
ance [4]. As a result, research participants may lose trust in
research institutions, which may have an adverse impact on
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biomedical research. Privacy risks in biomedical studies have
been demonstrated in many recent studies. For example, Vai-
dya demonstrated the possibility to re-identifying individuals
from the public query system of the Healthcare Cost and
Utilization Project (HCUP) [5]. Sweeney’s study successfully
identified participants of the Personal Genome Project (PGP)
[6]. In addition, with some background information, an at-
tacker can even identify sensitive information of a participant
using “anonymized” biomedical data [7-9]. The study in [10]
demonstrated that aggregated genome statistics (e.g., allele
frequencies) can present privacy risks. Therefore, it is impera-
tive to develop privacy-preserving techniques to facilitate bio-
medical research. For this purpose, many distributed model
learning frameworks [11-18] have been proposed for building
a global model involving multiple participants, but without
sharing sensitive patient-level information.

In this paper, we consider the scenario of horizontally parti-
tioned data, where different institutions possess data from dif-
ferent patients, but with the same variables. Our previous
work, Grid binary LOgistic REgression model (GLORE [11])
was developed to allow sharing models without necessarily
sharing patient data in a distributed manner. It leveraged the
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aggregation of non-sensitive decomposable intermediary re-
sults to build a shared model. Its Bayesian extension, EX-
PLORER [19], proposed online learning to update the model
with incremental data. It enabled asynchronous communi-
cation to alleviate probable service breakdown when coord-
inating multiple participants. Recently, grid ordinal and
multinomial logistic regressions [13] were developed to deal
with multi-center modeling with multiple categorical values
for response variables. Remarkably, distributed modeling
learning can also be employed in Cox regression for survival
analysis [20-22].

Existing  privacy-preserving solutions to  multi-site
regression [23, 24] can guarantee the precision of model
learning. However, patient information could leak in these so-
lutions due to disclosure of the information matrix and score
vectors during iterative model learning [25, 26]. To protect
these exchanged data, many secure multi-party computation
(SMC) methods [18, 27—-33] have been developed for distrib-
uted model learning. Unfortunately, existing SMC-based
methods would still suffer from inappropriate disclosure
under certain conditions due to the secure sum protocol.
Therefore, EI-Eman et al. [15] proposed the SPARK protocol
that utilized different secure blocks to build a secure distrib-
uted logistic regression, which aims to offer stronger privacy
protection for patient data. Although, homomorphic encryp-
tion based systems [34—36] can protect secure outsourcing,
they need to assign the same public keys in the case of multi-
party computation, which may leak intermediary results dur-
ing communications among participants.

In this paper, we propose a secret-sharing circuit-based se-
cure multi-party computation framework for grid logistic re-
gression (SMAC-GLORE). Inheriting the distributed model
learning framework from GLORE, SMAC-GLORE protects
not only patient-level data, but also all the intermediary infor-
mation exchanged during the model learning phase. Introdu-
cing secure multi-party computation to build boolean circuits
for private data in learning, the proposed framework prevents
participants from interpreting arbitrary intermediary informa-
tion, such as aggregation of summary statistics, and only re-
leases the final learned model parameters.

Methods

To securely evaluate the logistic function, we introduced
secret-sharing circuits-based Secure Multi-party Computation
(SMC) into procedure of calculation. SMC provides a method
for parties to jointly compute a function over their data while
keeping the data private in semi-honest scenarios, where all
the participants are those who are honest in running pro-
grams and algorithms correctly, but might be curious about
the information transferred among entities.

Garbled circuits
The key idea of circuit based computation is based on
the fact that operations in almost all modern digital

Page 176 of 208

computers are implemented by circuits combining basic
logic gates such as AND, OR, NOT etc., where inputs
and outputs of a gate may be TRUE or FALSE for cer-
tain propositions. One can design a garbled circuit coun-
terpart [37-40] to protect the data and the computation.
Figure 1 shows an example of diagnosing gestational dia-
betes based on blood glucose level (BGL) in a standard cir-
cuit representation, which consists of three gates (ie., G;
with i=1,2,3) and six wires (ie, w; with j=1, 2,...,, 6).
Using Boolean algebra [41] and truth tables of the three
basic gates shown in the figure, the circuit can calculate
(Gestational diabetes) = (NOT (Non-Pregnant Women))
AND ((Fasting BGL =95 mg/dl) OR (1 h BGL>180 mg/
dl)). In theory, one can build circuits of any complexity
using basic logical gates to evaluate functions (e.g., secure
distributed logarithm, exponent, etc.) or algorithms (e.g.,
secure distributed logistic regression models in this paper).

A garbled circuit [37, 39] is a specially designed
circuit, which enables two (or more) parties to securely
compute a function f (x4, x5) without exposing their pri-
vate secrets (e.g., x4 and xp are inputs from party A and
party B, respectively). All parties here are assumed to be
semi-honest collaborators, which means that they follow
the protocol honestly, but may try to deduce additional
information from the received messages during the
protocols’ execution. Figure 2 illustrates several key steps
to securely compare two integers using a garbled com-
parison circuit (GCC), where the comparison function

1, I} XA#XB .

can be formulated as f(x4, x5) = { 0. o{herwise with
x4,% €10, 1, 2, 3}. The first step is to convert the integer
inputs into a binary representation, where we use 2 bits
to encode 4 different integers, i.e., {0=00; 1=01; 2=
10, 3=11}. In the second step, a computation service
provider (CSP) needs to build a circuit to implement the
comparison function. The circuit consists of two XOR
gates (i.e., G1 and G2) and performs bitwise compari-
sons between x4 and xp, where a XOR gate outputs 1 if

Fasting blood glucose Wy Gy
level 295 mg/dl
1 hour blood glucose W» Gs
level 180 mg/dl Wa

Gestational
AND W diabetes
6

Non-Pregnant w3

Women

Anillustrative example of a circuit
o AND Gate OR Gate NOT Gate
e g‘ g g ’3 g g ATR] TRUE: 1; FASLE: 0
'; oltlolloTz 1l F&L] A, B:inputsofagate
s [1]o]o][z]o[z| 2O R: output of a gate
=S FRRARRE W: wires
Fig. 1 An example of a garbled circuit
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Step 1: Convert integer
inputs into 2-bit binary

Computation Service Provider (CSP)
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Step 6: Parties A and B obtain the keys
that corresponds to their inputs from
CRYSP through the Oblivious Transfer

Step 7: CSP evaluates the circuit
based on the garbled inputs

CRYSP Party A * Garbled input keys
ap canno | Kl Ko o AN s
keys were {|1010|0000 1010 1010| W4 (D) 2
peiectedby, Party B | W[ 1000
protocor p | Kiu| ki, IR, |y e, | W e he G o 5 e Cop
1111]1001 1111] V|11 othing S the sarbied hous
and outputs a key

Fig. 2 Private computations using garbled circuits, where parties A and
but without disclosing the actual integer value from each party

(i.e., if
correspondsto 1 or 0)

B would like to compute whether two integers from them are identical,

its inputs are different, otherwise it outputs 0. The
circuit utilizes an OR gate (i.e., G3) to compute whether
any output of the two XOR gates is 1. For example,
given inputs x4 =0 and xp =1, the circuit outputs 1 in
step 2 of Fig. 2 (i.e., x4.xp). In the third step, a crypto
service provider (CRYSP) generates two encryption keys
for each wire of each gate in the circuit, where one key
corresponds to bit 0 and the other to bit 1. Step 3 in
Fig. 2 shows an example of assigning six keys for the
XOR gate G1 with two input wires and one output wire.
For the output wire ws, kSVS and k‘lﬂ,3 are the randomly
assigned keys (e.g., 1000 and 0101 in Fig. 2), which
correspond to the wire outputs O and 1, respectively.
Both keys were randomly chosen by the Crypto Service

Provider (CRYSP) during the circuit initialization phase.
In step 4, CRYSP will substitute the truth table of each
gate with the encryption keys generated in step 3 and
encrypt the outputs through a stream cipher based en-
cryption scheme [42]. In step 5, CRYSP will generate a
garbled truth table by randomly permuting rows of the
encrypted truth table and sending it to the CSP for
garbled circuit evaluation. In step 6, parties A and B will
securely obtain the corresponding keys of their inputs
(e.g. k{,,) = 1111 for input bit 0 of wire w) from CRYSP

through the oblivious transfer (OT) protocol [43], by
which CRYSP cannot learn the actual selections of keys
from the parties. In step 7, parties A and B will send their
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garbled keys (e.g, ki, = 1010 and kj, = 1111) to CSP,
but without disclosing whether they refer to bit 1 or bit 0.
Therefore, given the two garbled input keys, CSP can only

decrypt one row (ie., k. 1000) in the garbled truth table

(as shown in red) without learning the underlying true
value. Following the same protocol, CSP can evaluate the
entire garbled circuit without learning any intermediary
information. Finally, CSP sends the garbled key of the final
output to CRYSP to find out whether it corresponds to 0
(unmatched) or 1 (matched). For garbled circuit based
application, we can consider the circuit initialization phase
as the encryption procedure, where encrypted truth table
for each gate is created and distributed between two
parties through the OT protocol.

In the case in which there is no trusted CRYSP, party A
could, for example, serve as the CRYSP and party B could
be CSP to avoid potential collusion risk between CSP and
CRYSP. Moreover, one can choose more advanced encryp-
tion algorithms (other than the streaming cipher used in
this example) to achieve a better protected OT protocol.
The above example demonstrates how a secure integer
comparison function can be achieved using garbled circuit-
based SMC. In practice, advanced circuits are required to
handle more complicated tasks, such as secure distributed
logistic regression, where only the learned model parame-
ters are allowed to be released as circuit outputs.

However, Yao’s garbled circuit is only secure in 2-party
semi-honest scenarios, which is not sufficient for
practical use. Usually, there are more than 2 parties or
participants engaged in the same computing task. We
based our model on the GMW project developed by
Choi [44], who implemented the classical SMC protocols
of Goldreich, Micali, and Wigderson (the GMW proto-
col) [45]. The GMW protocol uses secret-sharing rather
than garbled truth tables to implement the secure com-
putation, which enables the computation among more
than 2 parties. In GMW, all the variables are represented
as binary numbers and the protocol itself is able to
protect against a semi-honest adversary with any num-
ber of corrupted parties. All the functions should be
interpreted as boolean-circuits and each participant
feeds the encrypted private data as input to the circuits.
During the process of computing, none of the partici-
pants can interpret any temporary values except the final
output. However, the GMW project only supports non-
negative integers. We established our own encoding for-
mat, enabling the support for real number arithmetic,
and built libraries for secure matrix operation primitives,
which made it possible to solve the practical problems of
building a secure distributed logistic regression model.

The proposed framework is based on the well-
developed GMW protocol [44] for SMC. We overcame
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the limitations of GMW protocol and built several secure
computation primitives to support SMAC-GLORE. As
discussed in the original GMW implementation paper
[44], the Naor-Pinkas OT was implemented as the encryp-
tion scheme to secure the computation. The mathematical
definitions and proofs of security of the Naor-Pinkas OT
protocol for GMW have been discussed in [46].

Platform preparation

In our project, all the floating values are represented by bin-
ary vectors in 28-bits fixed-point format, in which 11 bits
are assigned for the fractional part and the other 17 bits for
the integer part. The highest bit of the integer part is re-
served as a sign of positive or negative value. The two’s
complement [47] method is adopted to represent negative
values. Thus, all possible values under the proposed fixed-
point format are ranging from - (2** - 1) x27'! to (2% -
1)x27'". The proposed platform extends the integer
addition and multiplication to support floating number
arithmetic. Here, we describe methods for implementing
subtraction and multiplication.

Subtraction

When doing subtractions, we need to iteratively compare
bits of minuend and subtrahend. If the bit in minuend is
smaller than the corresponding bit in the subtrahend, we
may need to borrow a bit leftwards. However, in circuits, it
is very difficult and expensive to implement borrowing bits.
Therefore, we choose to use two’s complement. To calcu-
late the subtraction, we first calculate the two’s complement
of the subtrahend, where we invert or flip all the bits of
subtrahend and then add 1 to the least significant bit. After
that, we add the calculated value to the minuend.

Multiplication
In multiplication, the result may, at most, double the
number of required bits to represent the product. For
example, the product of two #-bits numbers should have
at most 2# bits. However, the GMW project requires the
two factors involved in a multiplication to have the same
number of bits, and allocates the same number of bits
for the product. So, if we still use 28 bits for multiplica-
tion, we will suffer from significant precision loss or
computing error. To solve this problem, we double the
size of all the values when doing multiplication. In an-
other word, we expand the 28-bits values to 56-bits
values before multiplication and use the 56-bits values
for the multiplication. As the calculated result will also
have 56 bits, we need to drop 28 bits. Even though, in this
procedure, we may waste a lot of bits and computing
effort, we can secure the computing precision.

Based on the basic operations described above, we
built several secure primitives in the GMW project for
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matrix operations, including matrix addition, matrix
subtraction and matrix multiplication, which are elabo-
rated in detail later in this section.

Problem definition

For clarity, in the remainder of this paper, we reserve
regular symbols to scalar variables and bold symbols to
vectors or matrices. Logistic regression is widely used in
biomedical decision support applications, including fea-
ture selection, survival analysis, etc. Suppose there is a
training dataset D = {(X,y)} = {(%1,9,), - (%,9,)} of
n records for patients, where y; € {0, 1} is the observed
binary outcome and &; corresponds to the m-dimen-
sional covariates for the i-th patient. In the logistic re-
gression model, the likelihood function of y; =1 given «;
can be expressed as follows,

1

P(y, = 1|x;, B) = m

, (1)
where f is a parameter vector that measures the rela-
tionship between the response variable y; and covariates
xi. Note that P(y; =0|x; ) =1- P(y;=1|«;, B) for binary
response variable y;. Given the training dataset D, 8 can
be estimated through maximization of the following log
likelihood function

B= argmaxg (l(ﬁ) = —Z;l log(l + e"ﬁTx")). (2)

Here, we use [ (f8) to represent the log-likelihood func-
tion. Since there is no closed-form solution for f3, iterative
numerical solutions are required to obtain the optimal pa-
rameters. In a centralized model, the Newton-Raphson
method is widely used to find B . The iterative
maximization is achieved by calculating the first and sec-
ond derivatives of the log-likelihood function /(). In the
t-th iteration, current estimation B is updated by

p(:n) - ﬁ(z) _ [l”([f(")]ill’(ﬁ(")
= BO + (XWOX) Xy — ) 3)

diag(p(y: = 1]x, B9)[1 - p(y: = 1]x, 8)]) vector (p(y: = 1x:, 8))

In Eq. (3), W% is the diagonal matrix with elements
Py =1|x, B)p(y; = 0|x;, B) and p® is the vector of
probabilities p(y; = 1|a;, 7). Since the Hessian matrix
H=X"WYX is a square matrix of second partial
derivatives [ '(B), the iterative procedure can be
rewritten as

B — O _p-1 [( ﬁu)) (4)
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In this study, we consider a distributed model
learning problem, where D is horizontally partitioned
by & parties as D= {(X',,y!), -, (X",,5")}. For the
j-th party p, X = (x’l x’zxfnl) is a mxn; matrix
representing the subset of n; covariates from p;, and

y = (y"l,)/é7 ,y/n/) is the vector of #; corresponding
binary response variables. Consequently, the inter-
mediary results for the logistic regression model in
Eq. (3) can be linearly decomposed [11] as

S ()
X7 -4) = 000" (-

]

XTwx =
(5)

Equation (5) shows that each party can calculate its own
intermediary results conditioned on its local data X, y),
and share them for the combined results. However, this
method requires a trusted server [11] to exchange local
statistics. In this paper, we will build a decentralized
framework for logistic regression using secret-sharing cir-
cuits based on secure multi-party communication. The
proposed framework protects the intermediary statistics
X)T(W) DX and (X)"(y - (&)"?) with a joint function for
all the parties without disclosing any private information.

Algorithm 1 (Al) summarizes the key steps in the
proposed SMAC-GLORE framework. Each participant
provides encrypted data X' as input. The only output of
the algorithm is the learned model coefficients . All the
intermediary information exchange is protected by the
OT protocol and secret-sharing circuits. In Al: line 1,
each party can locally calculate its own part of the fixed-
Hessian matrix H; (see Eq. (7)) and feed it as part of input
to the circuit, while within the circuit, the fixed-Hessian

~ oo~
matrix is securely constructed as H = ZFIH ; based on

Eq. (7). In Al line 2, we apply the proposed secure
matrix inversion algorithm (see Secure Hessian
matrix inversion section) to get the inversion of H,
where we implement the Strassen Algorithm to
speed up the matrix multiplication and improve per-
formance. Then we iteratively update B until it con-
verges via Al lines 4-7, where we first securely
construct X from each participant’s input and repeat
the procedure described in Eq. (4). Within each iter-
ation, we update the first derivative of the maximum
likelihood function with the current f (Al: line 5).
In this procedure, reciprocals or divisions are re-
quired and we use the same procedure as for matrix
inversion.
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Algorithm 1. Secure multi-party computation based grid logistic regression

Input: Each party p; provides encrypted data X/

Output: Learned model coefficients £ in the proposed SMAC-GLORE framework

1. Securely construct approximate Hessian Matrix based on Equation (7).

Initialize £ as an all-zero vector.
Repeat

Securely update f based on Equation (4).
Until parameters converge

Nk wbd

Securely invert the approximate Hessian Matrix based on Equation (8).

Securely calculate the first derivative based Equation (13) for all parties

Secure Hessian matrix inversion
In this study, the distributed Newton-Raphson method
[11, 12] is adopted to compute the coefficients 8 across
multiple parties. Since the Hessian matrix H represents
the matrix of the second partial derivatives of maximum
likelihood function (), it has to be updated with the most
up-to-date B and inverted for each iteration. However,
calculating the inversion of H would significantly increase
the computational burden and could be unfeasible for our
secret-sharing, circuit-based method. One workaround to
reduce the complexity is to replace the varying Hessian
Matrix with a fixed matrix. According to Bohning [48],
the true Hessian matrix can be approximated by
Lyr
H=--X"X (6)
4
where X=[X' X*---X". Consequently, the approxi-
mated Hessian Matrix can be rewritten as

oLy (x) " x (7)

AN

~

Equation (7) implies that each party p; can locally
calculate its own part of a partial Hessian matrix H; = —
(X)) "X/ /4, and feed H j as part of the input to the cir-

cuit. While in the circuit, the approximated Hessian

matrix is constructed by aggregating all the partial

h ~
.

To further reduce the computational complexity of

Hessian matrices as H =

inverting H, we use the approximating method intro-
duced by Nardi [49]. The numerical approximation
method iteratively computes H ! according to Eq. (8).

Ny = 2N,-NM;,
M,y = 2M,-M7},

No=cl1,
M(()) =c'H (8)

where M; = N; H, and c is constant. After convergence
(e.g., in ~10 to 15 iterations), N, will provide an accurate
approximation to the inversion of H.

Matrix multiplication

We transfer the matrix inversion problem into an itera-
tive procedure of matrix multiplication and addition.
Therefore, optimizing the implementation of matrix
multiplication can improve the efficiency of the
proposed framework. In this subsection, we adopted the
Strassen algorithm for matrix multiplication.

A= {Am

A | p_ |Bu Bia| _ [Cu
A27l ’ )

Cia
Ajo B,, B, Cy ’

Cro

©)

Let us denote A and B two square 7 x n matrices and
C = AB their matrix product. Here, 7 is recommended
to be a power of 2, namely n = 2%, ke N. A, B and C can
be partitioned into equally sized block matrices as
where A;;, B;; and C;; are all (1/2) x (n/2) matrices.
According to the definition of block matrix multiplica-

tion, C;; can be represented by A;; and B, for i,j=1,2.
Ci1=A11B11+A12By;,
Co1 =Ay1B11+A2,By 1,

Cio=A11B1y +A12By,,
Coo =Ay1B1y+A22Bs ;.

(10)

According to Eq. (10), the calculation of C requires
the same number of multiplications as the standard
definition of matrix multiplication C=AB. To reduce
the number of multiplications, we introduce the Strassen
algorithm which defines some new matrices based on
A;; and B;;.

My = A1 (B12-B), My = (A1 +A12)Bs,
Ms = (Az1 + Az2)Biy, My=Ayy(Bri-Biy),

Ms = (A11+Az2) (Bi1+Bsa), Me= (A12-Az2)(Bayi+ Bao),
= (A1,1-A21) (B11 + By)

(11)
Equation (11) requires only 7 matrix multiplications be-

tween (n/2) x (n/2) square matrices (one for each M, [ =
1, -+, 7) to calculate C = AB, which reduces the number of
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multiplications by 7°/8. The product C can be recovered
from M, [=1,--,7 by

Cii =Ms+My-My +Mg, Cio=M;+M,,
Coi =Mz + My, Cro=Ms+ M -M3-M;.

(12)

The matrices can be iteratively partitioned k times,
when 7 =2% Thus, the Strassen algorithm can reduce
the complexity of matrix multiplication from O(r®) to
O(HZ‘S).

In this work, the Strassen algorithm is implemented
for matrix inversion, which has a significant effect on
computational complexity. For other ordinary matrix
multiplications, we still use the standard method. How-
ever, it is also possible to extend the Strassen algorithm
to employ it in ordinary matrix multiplication, e.g.
multiplication between non-square matrices.

The first derivative of the maximum likelihood function
In the #-th iteration, the first derivative /' () of the max-
imum likelihood function has to be updated with the
current 8. The k-th element of /' (B) can be obtained
in a distributed manner.

aﬁ k b= = ZZ(V -p(«l, BY) )0k,

where «/(k) and B(k) are the k-th element of & and B(t),
respectively. Equation (13) shows that we can allow each
party to separately compute its own part of first deriva-
tive based on local data and we add these results [11].
However, such approach will leak the information of
at each iteration. Therefore, we need to securely evaluate
Eq. (13) without releasing any intermediary . As a
result, we need to securely evaluate the exponential
function ¢* in the boolean circuits. In the proposed
framework, we use the Taylor series to approximate the
evaluation of €%, such that we only need to handle multi-
plication and addition operations.

(13)

n x2 3 4

“ . x
=Y T =ltxto +—+ [
;n. 2! 3!

(14)

To simplify computation and avoid overflow, we set a
filter to bound the exponential within the interval be-
tween -5 and 5. When the exponentials are greater than
5 or smaller than -5, the evaluation results of the logit
function (i.e., 1/(1 + €*)) would be smaller than 6.7 x 1072
according to Eq. (1). Thus, we will not lose much accur-
acy by using this bound.

Simulations in MATLAB shows that the Taylor series
could achieve an approximated result with an error less
than 107, when the maximal order for the expansion is
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set to 15. To reduce the number of multiplications, we
transform the Taylor series to a recursive algorithm.

{2 (50 D))

We built a look-up table storing the inversion of inte-
gers from 1 to 15, to avoid divisions and to speed up the
calculation. For the other divisions involved in the
logistic function, we treat them as a matrix of size 1.

It is worth mentioning that all the computations in
this section are carried out in a customized Boolean cir-
cuit, where all the inputs and intermediary information
exchange are protected by the OT protocol and the
circuits. The only outputs in plaintext are the learned
model parameter f in the proposed SMAC-GLORE.

(15)

Results

In this section, we first describe computational perform-
ance evaluations for fundamental operations, including
matrix addition, matrix multiplication and matrix inver-
sion. We then describe accuracy evaluations over real
datasets with three features, including the Edinburgh
dataset, which contains T wave inversion, Sweating and
Pain in right arm features, and three genome datasets
[50], where the first two features are ethnicity groups
and the third feature is a SNP. The last column for each
dataset is the intercept.

Computational performance evaluation

We first evaluated the performance of matrix addition,
matrix multiplication and matrix inversion under a 2-
party setup. We varied the size of matrices from 1 x 1 to
20 x 20 for each party. We simulated both parties on a
64-bit Ubuntu 14.04 platform with an Intel Xeon CPU
at 3.10GHz and 256GB RAM, under the 28-bit fixed-
point encoding, where both parties were connected by a
1GB network.

Figure 3 depicts the performance in terms of commu-
nication cost (i.e., bar plots) and circuit computation
time costs (i.e., line plots) with the same matrix sizes
under a 2-party setup for three secure matrix operations.
We can see both the computation time and communica-
tion costs increase significantly as the matrix sizes
increase. This is because the circuit, which implements
the functions to be executed, contains more gates as the
size of matrix increases. Moreover, secure matrix
addition operations have much lower complexity in
terms of computation and communication than per-
forming matrix multiplication operations. Among all
three secure matrix operations, matrix inversion shows
the highest communication and computational demands
since it requires several iterations of matrix multiplica-
tion and addition operations.
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Fig. 3 Computational performance in terms of communication costs (i.e, bar plots) and circuit computation time (without OT) (i.e,, line plots) for
matrix addition, matrix multiplication and matrix inversion under a 2-party setup

Table 1 shows the computational performance in
terms of number of OT and total time cost (including
both OT and circuit evaluation costs) for the operations
of matrix addition, matrix multiplication and matrix
inversion with different matrix sizes in a 2-party setup.
For matrix inversion, we measure all the computational
performance with 15 iterations. We also included the
size of the circuits for different setups in the terms of
the total number of gates and the number of AND gates
in Table 1, as the evaluation of AND gates is expensive
due to the invocations of OT. We can see that the total
time increases linearly with the increase of matrix size
for matrix addition operations, while the total time
increases exponentially for matrix multiplication and
matrix inversion operations. This is because the number of
AND gates increases exponentially in matrix multiplication
and matrix inversion. In the GMW project, where the
XOR gates are “free”, only AND gates need secret-
sharing evaluations. Therefore, the computing time in
matrix multiplication and matrix inversion increases
exponentially. Oblivious transfer (OT) is the most
computationally expensive part and is the only part
which relies on public-key techniques and encryption.
During the OT initialization phase, for each wire
indexed by w in the circuit, GMW generates a secret
share s,; of the input value v, for each party P, i=
1,...,h for a total of & parties, and transfers each
share to the corresponding party. During the gate-
computation procedure, given a wire w to be evalu-
ated, all the secret shares s,, will be re-collected to
securely evaluate the gate. Therefore, we can consider
the OT initialization as the encryption time and con-
sider the circuit evaluation part or gate- computation
part as the decryption time. We also find that in
matrix multiplication and inversion, it takes more
time for party 2. The bar plots in Fig. 3 show that
party 1 receives much more data than it sends out,

which is due to the fact that party 2 serves as the
sender in OT while party 1 serves as the receiver.

Accuracy evaluation

In this section, we perform accuracy evaluation of the
proposed framework. As we introduced several approxi-
mation schemes (e.g., fixed-point encoding format, Tay-
lor expansion for exponential function, division-free
matrix inversion, etc.), the accuracy evaluation intends
to measure how the results of the proposed framework
differ from those of ordinary methods.

Under the same 2-party settings, we first evaluated the
accuracy in terms of mean squared error (MSE) between
the secure matrix inversion and ordinary matrix inver-
sion operations. The observed MSEs are mainly due to
the use of the fixed-point encoding format and the
division-free matrix inversion algorithm. Figure 4 depicts
the MSE performance with different matrix inversion
iterations using 2x2, 4x4, 6x6, 8x8 and 10x 10
matrices. We find that as the number of iterations
increases, the MSEs decrease for all these matrices, and
the MSE can get under 107>,

We also evaluated the accuracy of learned coefficients
B in secure distributed logistic regression using different
data sets. Our experiments were carried out under two
setups: a local setting (simulated on a single server,
which is the same as the one used in the Computational
performance evaluation section) and a remote setting
(on three different machines). In the remote setting, we ex-
ecuted the program on three servers, including the server
in the local setting and two other 64-bits Ubuntu servers
with Intel Xeon CPUs at 2.40GHz and 96 GB RAM.

In the local setting, we simulated both 2-party and 3-
party setups. In the remote setting with four parties, we
hosted the first two parties on a server with 256 GB
memory and deployed the other two parties on the
remaining two servers. We used the same simulated
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Table 1 Compurtational performance for different matrix sizes in terms of number of gates, OT and total time cost for matrix addition, matrix

multiplication and matrix inversion in a 2-party setup

Matrix addition operation

Matrix size # of AND gates # of total QT time (s)

gates Party 1 Party 2
1x1 27 250 0.346 0.194
2X2 108 994 0.348 0.194
4x4 432 2,850 0.343 0.202
10x 10 2,700 24,802 0.369 0.230

Matrix multiplication operation

Matrix size # of AND gates # of total gates OT time (s)

Party 1 Party 2
1x1 4,621 21,594 0.367 0.245
2X%2 37,076 273,034 0518 0.609
4x4 580,325 2,707,002 2135 3.636
10x 10 4,645,300 21,664,002 21.174 50413
Matrix inversion operation (15 iterations)
Matrix size # of AND gates # of total gates QT time (s)

Party 1 Party 2
2x%2 1,030,869 4872479 4864 10.908
4x4 8,027,793 37,694,207 36.503 85.848
6X6 26,847,253 125,771,967 121.266 296.780
8x8 63,345,729 296,412,479 281.653 676.747
10%x 10 123,379,701 576,922,463 528.062 1286.500

Total time (s)
Party 1

0.354
0.357
0.353
0.387

Total time (s)
Party 1

0.384
0.577
2603
29.646

Total time (s)
Party 1

6.519
49619
170.634
405.865
751421

Party 2
0.202
0.20
0212
0.247

Party 2
0.262
0.660
4.060
58.769

Party 2
12472
98314
349398
810.214
1519.897

1078
L
2
1074
107 —<&— 1x1 matrix
—%— 2x2 matrix
—>%— 4x4 matrix
106k —¥— 6x6 matrix
——&— 8x8 matrix

2 4 6 8 10 12 14 16
Number of iterations

Fig. 4 Number of iterations used in secure matrix inversion and MSE for five different matrices
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Table 2 Model parameters 3 learned in SMAC-GLORE and ordinary logistic regression model

B 2 parties Ordinary logistic regression Two-sample Z test
Value Wald test Value Wald test Test statistic p-value
SE Z value p-value SE Z value p-value
Bs -06182 0.7759 —0.7968 04256 —0.6274 0.7779 —0.8065 04199 0.0084 0.9933
B> 2.5454 0.8461 3.0084 0.0026 25767 08511 3.0275 0.0025 -0.0261 0.9792
Bs 1.2246 1.1226 1.0909 02753 1.2407 1.1369 1.0913 0.2751 -0.0101 0.9920
B4 06177 0.8283 0.7457 04558 06198 0.8319 0.7450 04562 —-0.0018 0.9986

dataset for all setups, which contains 60 records and 3
binary features. Table 2 compares the results of the
learned coefficients, Wald test and two-sample Z test be-
tween the proposed SMAC-GLORE and the ordinary lo-
gistic regression model. We can see that the proposed
SMAC-GLORE framework achieved similar perfor-
mances as those of ordinary logistic regression, as the
outputs are very close, with coefficient differences
between 1072 and 1072 Table 3 illustrates the results
among 2-party, 3-party and 4-party setups with the same
datasets. We can see in Table 3 that all these setups
generated exactly the same outcomes. The experimental
results demonstrated that the proposed SMAC-GLORE
framework enables secure collaboration across multiple
parties with high computation precision under different
settings.

In addition, Table 4 shows the performance differences
in terms of OT time, circuit computing time and total
time for 2-party, 3-party and 4-party setups. We can see
that, for different setups, the total number of AND gates
are roughly the same. However, the OT and total time
costs increase significantly as the number of parties
increases. This is because the GWM project requires
pairwise OT communication among parties. The circuit
computing time is similar between 2-party and 3-party
setups under the local settings. However, the circuit
computing time becomes much larger under the 4-party
remote setting. This is due to the fact that the servers in
the remote setting are located under different networks,
while the servers in the local setting are under the same
network. Therefore, the communication cost in remote
setting becomes more significant in cross-network setups.

In Table 5, we performed the comparison of models
learned from SMAC-GLORE and ordinary logistic

regression, based on four real data sets. All the datasets
consist of 3 features. Dataset 1 is the Edinburgh dataset
and Datasets 2—4 are genome datasets [50]. We can see
that our SMAC-GLORE produced very close results to
those produced by ordinary logistic regression.

Limitations and discussion

Our project, which is in part based on the GMW project,
developed secure fixed-point algorithms to handle floating
number computation and constructed pipelines for se-
curely building a distributed logistic regression model.
The experimental results demonstrated the feasibility of
the proposed framework, but there are still some
limitations.

First, all the variables are represented in a 28-bit fixed-
point format, where we allocate 1 bit for the sign (i.e.,
positive or negative numbers) and 11 bits for fractional
part of a floating number. Therefore, the proposed
framework cannot handle a number that is larger than
2'® or has precision higher than 5ir- Although the range
and precision of a floating number can be improved by
adding more bits in the fixed-point format, it will result
in a significant increase of circuit size. Another potential
workaround is to replace the fixed-point format with a
floating-point format, which will require further investi-
gation. In addition, during fixed-point multiplication,
results may end up taking twice the number of bits,
where the intermediary product results have 56 bits. In
order to maintain a consistent 28-bit fixed-point encoding
format, we need to truncate the intermediary product re-
sults, which may also result in precision loss. Based on
our simulation, we need at least an 80-bit fixed point rep-
resentation to achieve precision of a single precision float-
ing point encoding format.

Table 3 Model parameters 3 learned in local 2-party, 3-party scenarios, and remote 4-party scenarios

B 2-party 3-party 4-party (remote)
Value Wald test Value Wald test Value Wald test
SE Z value p-value SE Z value p-value SE Z value p-value
B -0.6182 0.7759 —-0.7968 04256 -0.6182 0.7759 —0.7968 04256 -0.6182 0.7759 —-0.7968 04256
B> 2.5454 0.8461 3.0084 0.0026 2.5454 0.8461 3.0084 0.0026 2.5454 0.8461 3.0084 0.0026
B3 1.2246 1.1226 1.0909 0.2753 1.2246 1.1226 1.0909 0.2753 1.2246 1.1226 1.0909 0.2753
Ba 06177 0.8283 0.7457 04558 06177 0.8283 0.7457 04558 0.6177 0.8283 0.7457 04558
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Table 4 Computing performances in local 2-party, 3-party scenarios, and remote 4-party scenarios
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2-party 3-party 4-party (remote)

Party 1 Party 2 Party 1 Party 2 Party 3 Party 1 Party 2 Party 3 Party 4
QT time (s) 1,785.51 4,021.83 507579 519217 5,168.24 722562 15,927.10 10,051.50 9,929.10
Computing time (s) 601.76 625.59 53879 65943 612.51 650.65 1288.07 1011.14 857.72
Total time (s) 2,607.11 4,683.56 582217 6,064.08 5976.22 8123.55 17,556.40 11,412.60 11,0265
# of AND gates 355,074,784 355,075,216 355,075,648

Second, to handle secure distributed exponential and
logit function evaluations, we implemented a secure
Taylor expansion algorithm up to a 15 order and trun-
cated the input range (i.e., -5 to 5). The output precision
of both functions can be further improved by increasing
the order of expansion and of the truncated input range,
but this results in additional computational costs.
Similarly, we also developed a secure matrix inversion
protocol based on an iterative algorithm [41], which only
requires multiplication and addition operations. This
secure matrix inversion protocol may also introduce
precision loss in the final results.

Third, the current implication of the secure multiplica-
tion primitive is partially based on the Strassen algorithm,
which requires several levels of block-wise decompositions
of the input matrix to achieve maximum performance
gain. However, we only perform a one-level decompos-
ition rather than repeating the procedure in the whole
multiplication. As matrix multiplication is one of the most
time-consuming operations, we may need to fully utilize
the Strassen algorithm to improve the performance in our
future work.

In addition, based on our experiments, we find that
the OT phase contributes the most to the computa-
tional time, due to the limitations of the GMW pro-
ject which uses only a single thread for each pair’s
OT procedure. To reduce the time for OT and im-
prove performance, we can resort to parallel compu-
tation in the OT procedure. The GMW project was
developed for a 32-bit computing environment, which
means that the total number of gates cannot exceed
231, Therefore, in our future work, we plan to extend
GMW to support a 64-bit address space, in which we
can handle larger data sets. Another limitation is that
the GMW project needs to preload the entire circuit

into memory during the computation, which requires
a very large amount of memory for a complex circuit.
In our future work, we will investigate the possibility
of dynamically generating a part of a circuit that will
be required for the next execution to reduce memory
consumption.

Although the proposed framework can protect the
entire model learning phase, there is still no protection
of the final output of the learned model parameter.
Differential privacy has emerged as one of the strongest
privacy guarantees for statistical data release [51].
Roughly speaking, it ensures (to a pre-defined extent,
and quantifiably) that no risk is incurred when data from in-
dividual patients are entered in a particular database. It will
be useful to integrate an optional component to enable dif-
ferentially private model learning [52] in our future work.

Conclusion

In this study, we developed a secret-sharing, circuit-
based SMAC-GLORE framework. To overcome the limi-
tation of GMW, which only supports integer operations,
we designed a fixed-point encoding format to support
floating number arithmetic in SMAC-GLORE. We also
implemented several secure matrix-operation primitives
and built a pipeline for secure distributed logistic regres-
sion calculation. SMAC-GLORE is able to build a shared
model without sharing each party’s private data. To the
best of the authors’ knowledge, the proposed SMAC-
GLORE is the first attempt to enable secret-sharing cir-
cuit based secure distributed logistic regression model
learning for biomedical research studies. The experimen-
tal results show that our framework is reliable and can
be used to solve practical problems in secure distributed
logistic regression model learning.

Table 5 Differences between models learned from SMAC-GLORE and Ordinary Logistic Regression (LR) for Datasets 1-5

B Dataset 1 Dataset 2

Dataset 3 Dataset 4

2-party SMAC-GLORE  Ordinary LR 2-party SMAC-GLORE = Ordinary LR 2-party SMAC-GLORE Ordinary LR 2-party SMAC-GLORE = Ordinary LR

B 1.7632 1.7647 -0.6592 -0.6567
B> 0.3369 0.3374 03174 03179
Bs 1.1885 1.1902 -0.2212 -0.2195
B4 -1.6514 —1.6500 =1.3115 —-1.3098

—0.5093 -0.5066 -1.5126 -1.5168
0.5767 0.5777 -03516 —0.3488
04102 04138 0.2822 0.2855

—1.8940 -1.8939 —1.4873 —1.4873
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