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Abstract

Background: Glands are vital structures found throughout the human body and their structure and function are
affected by many diseases. The ability to segment and detect glands among other types of tissues is important for the
study of normal and disease processes and helps their analysis and visualization by pathologists in microscopic detail.

Methods: In this paper, we develop a new approach for segmenting and detecting intestinal glands in H&E-stained

histology images, which utilizes a set of advanced image processing techniques: graph search, ensemble, feature
extraction, and classification. Our method is computationally fast, preserves gland boundaries robustly and detects

glands accurately.

Results: We tested the performance of our gland detection and segmentation method by analyzing a dataset of over
1700 glands in digitized high resolution clinical histology images obtained from normal and diseased human
intestines. The experimental results show that our method outperforms considerably the state-of-the-art methods for

gland segmentation and detection.

Conclusions: Our method can produce high-quality segmentation and detection of non-overlapped glands that
obey the natural property of glands in histology tissue images. With accurately detected and segmented glands,
quantitative measurement and analysis can be developed for further studies of glands and computer-aided diagnosis.

Background

Glands are well-organized structures found throughout
the body and are primarily responsible for the storage
and secretion of bodily fluids. Glands in the gastroin-
testinal tract secrete materials which help lubricate and
protect the tissues that line the inner surface of the gut.
Alterations in gland structures are used extensively to
help medical diagnosis. Examples include architectural
distortions produced by inflammatory bowel disease [15]
and the clustering of glands in prostate cancer [16]. In
order to quantitatively analyze the appearance of glands
with computer-aided techniques, an important step is to
accurately segment and detect individual glands [10, 11]
(Fig. 1). Hematoxylin and eosin stained tissue specimens
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are often used as the “gold standard” for histological anal-
ysis, and are routinely used for clinical diagnosis and
treatment monitoring. Several major challenges for gland
detection on H&E-stained histology images include the
complex image background (e.g., multiple cell types and
tissue regions), variations in gland morphology, weak
gland boundaries caused by variations in sectioning, vari-
ations in staining, variable presentation of disease, etc.

A gland is composed of multiple epithelial cells orga-
nized in an oval or circle around a lumen, see Fig. 2.
A common known gland detection approach was based
on identifying the basic objects in tissue images (e.g.,
lumen and cell nucleus), and colors have been intensively
explored to help detect such components. In [11], a tis-
sue image was first decomposed into a set of primitive
objects, e.g., nucleus, lumen, stroma (stroma is the mate-
rial between glands), and then glands were segmented by
utilizing the organizational information of such objects. A
similar idea was incorporated in [16], which first detected
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Fig. 1 Example of gland segmentation in normal and diseased tissue.
Left: High resolution histology images of normal glands (a) and
glands with architectural distortion from chronic inflammation (c).
Right: Segmentation output of the normal (b) and chronically

inflamed tissue (d) with the glands highlighted in red

possible lumen areas, and then identified gland borders
by an expansion algorithm. A major improvement was
attained in [9, 10], which detected glands by directly
finding the gland epithelial cell nucleus borders; a condi-
tional random field model with a cost-based soft contour
smoothness constraint was proposed to find gland epithe-
lial cell nucleus borders in the polar space, the enclosed
region of a contour thus obtained was viewed as a seg-
mentation proposal, and its type was determined by a typ-
ical feature extraction and classification process. Recently,
a deep learning method was utilized to simultaneously
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detect glands and specialized small intestinal structures
called villi in H&E-stained images [19]; similar to [9],
gland region proposals were first generated based on
domain knowledge, and then a convolutional neural net-
work (CNN) [13] was trained and applied to determine
the region types. Although the method in [19] achieved
better performance than previous methods, deep learn-
ing models are generally quite time-consuming to train
and apply. To reduce the time cost to acceptable level for
clinical practice, it requires high-end hardware to support
the intensive computation [13].

The rich and diverse appearance of gland shapes and
their cellular background (submucosa) present challenges
for the the design of robust computer-aided gland detec-
tion strategies. As one may see in Fig. 3, glands can
be densely neighbored, background regions and gland
regions can look similar, parts of gland borders can be
quite unclear, and due to various inflammations or dis-
eases, glands can appear in irregular shapes. These issues
can cause considerable difficulties to preserving correct
gland boundaries and preventing segmentation leaking.
Segmentation leaks occur when the area or volume of
segmentation expands beyond the actual target structure
to include other glands and/or surrounding submucosal
cells. Leaking in segmentation can downgrade the detec-
tion performance and cause further potential problems
to quantitative analysis (e.g., analyzing the shapes and
morphology of glands). The previous gland detection and
segmentation methods [9-11, 16, 19] were not designed
for preserving the true gland boundaries and preventing
segmentation leaking. Consequently, their performance
can be downgraded in noisy and complicated imaging
scenarios (e.g., in H&E-stained images).

In this paper, we develop a robust gland segmentation
and detection approach, which is capable of preserving
true gland boundaries and reducing segmentation leaking.
First, we design a stable and effective ensemble procedure
based on graph search to generate good quality boundary-
preserving gland segmentation proposals. Then, we apply
a feature extraction and classification procedure to the
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Fig. 2 The basic components of in diseased (a) and normal (b) glands
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Fig. 3 The diversity of gland shapes and the submucosal cells
surrounding glands in normal colon (@) and colon with architectural
distortion in a patient with chronic colon inflammation (b). One gland
in each image is marked in black

generated proposals to determine their types (gland or
non-gland). To further eliminate potential false positives,
we propose a process to re-weight the gland probability
for each segmentation proposal produced by the classi-
fication (regression) procedure. Finally, a region merging
step is designed for handling some over-segmentation
cases with irregular-shaped glands. Our method improves
the gland segmentation and detection performance by
producing better boundary-preserving and less leaked
segmentation proposals. Comparing to [9, 10], we are able
to identify more accurate gland borders. In general, we
achieve several technical improvements.

(1) From the segmentation method point of view, we
utilize a graph search procedure to determine the gland
boundaries. This procedure allows us to impose a hard
and more stable geometric smoothness constraint on the
boundary searching. The smoothness constraint is natural
for glands, and sometimes is even critical for prevent-
ing leaking. Rather than using penalty terms in the cost
functions to ensure boundary smoothness, the structural
constraint in the graph search method is more stable and
robust to noise. After searching, since not every bound-
ary found is entirely correct, we cannot solely rely on
each individual searched result. We generate a more reli-
able and robust gland boundary probability map (BPM)
by collecting and collaborating these individual boundary
results by an ensemble procedure.

(2) From the output of the segmentation method
point of view, based on the generated boundary prob-
ability map, we produce non-overlapped segmentation
proposals, rather than proposal regions with arbitrary
overlapping. This is mainly because glands in tissue
images naturally seldom overlap. We thus have much less
regions proposed and these regions are mutually non-
overlapped. This allows our method to utilize much faster
and more advanced procedures.

Page 125 of 162

(3) To further reduce false positives and over-
segmentation cases, we design a local re-weighting step
and a region merging step for post-processing.

In experiments, we show that our method can effectively
preserve true gland boundaries and prevent segmenta-
tion leaking. Comparing to the state-of-the-art methods
[9, 10], which also aimed to obtain good quality gland
segmentation, we achieve better gland segmentation per-
formance (by 6 % in recall and 8 % in precision), and
consequently, better gland detection performance (by 6 %
in recall and 6 % in precision).

Method

Overview

In Fig. 4, we outline the overall processing flow of our
method: We first generate segmentation proposals; then
on each proposal region, we extract representative fea-
tures; next, based on the extracted features, we classify the
proposal regions as gland or non-gland by a handcrafted
feature based classification procedure; finally, we apply a
post-processing to further eliminate potential false posi-
tives and possible over-segmentation cases. The following
sections show the details of our major steps one by one.

Generating segmentation proposals

The contour of a gland epithelial nucleus border can
be used to specify the occupation of a gland (e.g., see
Fig. 2). After we obtain good gland boundaries, generat-
ing gland segmentation proposals from such boundaries is
a relatively easy task. We first describe our gland bound-
ary identification process. Then we show how to generate
gland segmentation proposals from the identified gland
boundaries.

Sampling and searching
The processes of sampling and searching aim to
obtain independent gland boundaries for the subsequent
ensemble step. We first choose a set of seeding positions
on the input image, and then perform local search on each
seeding point to find contours that correspond to gland
epithelium nucleus borders. We seek to introduce as lit-
tle bias as possible in the sampling, and thus simply apply
a uniform grid in this sampling step (see Fig. 5a). We
apply a relatively dense uniform grid for the need of cov-
ering small-sized and densely neighbored glands. To avoid
unnecessary computation, we further prune away seeds
with very low intensity (dark) by a conservative threshold.
For every seeding point, we want to find the closest con-
tour of some epithelial cell nucleus border around it. For
a seeding point inside a true gland, the gland boundary
thus founded is the desired gland border contour cov-
ering that seed. For a seeding point outside all glands,
there can still be portions of border contours from dif-
ferent glands around that seed, and the “contour” thus
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Input Image Segmentation proposals

Fig. 4 The overall processing flow of our method
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formed is supposed to cover these portions of borders
without containing any gland body in its interior. Note
that each seeding location, no matter it is inside or outside
a gland, can both serve the purpose of helping generate
gland boundaries which separate glands and non-gland
tissue regions apart.

As a general rule-of-thumb, cell nuclei are stained darkly
(with low image intensity) and colored deep purple. This is
true for a variety of cell types including gland and epithe-
lial cells as well as the immune and connective tissue cells
in the submucosa surrounding the glands. Hence, during
the search for a seeding point, we seek to find a continuous
dark contour in the local image area containing that seed-
ing point. We model the neighboring image area around
a seeding point by a directed acyclic graph (DAG), and
compute a cyclic shortest path in this graph which cor-
responds to the desired continuous dark contour in the
image area (see Fig. 5). Below we discuss the details of this
local search process.

From each seeding point p, we evenly shoot # rays, each
of a length (or radius) r, around 360 degrees centered at p.
On each ray, we evenly sample m positions, and construct
a multi-column graph G that consists of # columns, such
that each column corresponds to one ray and has 7 nodes
(see Fig. 6). Note that the sampled positions on the # rays

are in general different from the (grid) sampled seeding
points.

We denote a node in G as Vj;, which corresponds to the
point (pixel) in the input image on the j-th ray (i.e., j-th
column of G) and the i-th sampled position of that ray. We
add a directed edge from Vj; to each Vj; if /' = j 4+ 1 and
|i — i| < 1. Note that the constraint of |i — | < lisa
geometric smoothness constraint which specifies that the
sought contour must be sufficiently smooth with respect
to its seeding point p. We define wj;, the node weight of
Vij, as follows:

i
wy =1G,) + 1Y E(,)) (1)
i'=1
where
. , ir 2nj ir | (27j
I(i,j) = Intensity | x + —cos | — ),y + —sin [ —
m n m n
(2)
i ir 2rj ir | (27
E(i,j) = Ed, — ) y+ — =
@ )) ge<x+mcos< , ) y+ n( . ))
(3)

Fig. 5 Finding an optimal closed contour by local search for every seedi
the search of a closed contour for one seeding point

ng point: (@) Seeding point sampling in an input image; (b)—(d) illustrating
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Fig. 6 The polar transform and the corresponding multi-column
graph G

and (x,y) is the position of the seeding point p.
Intensity(x',y') is the intensity of pixel (x’,y’) in the orig-
inal image. Edge = Sobel(Intensity), where Sobel(-) is the

2
Sobel filter [17]. The term A ) E(7,j) for w;; in Eq. (1) is
=1

a region-based cost which discourages the sought path to
cover too many edges resulted from the Sobel filter. It sim-
ply serves the purpose of preventing systematic leaking
from closely neighbored glands. The parameter A in this
term is used to control the importance of the region cost.
With the above definition of w;;, a cyclic shortest path in
the graph G corresponds to a continuous and smooth dark
contour around the seeding point p in the original image
(see Fig. 5).

To ensure that the sought contour for the seeding point
p is closed, we need to make sure that the starting point
and ending point of the shortest path computed in G is
at the same location. This can be done by augmenting the
graph G, as follows. We add one more column to G as the
(n + 1)-th column, which is merely a replica of column 1,
and add edges from column # to column n + 1 in the same
way as specified above. Then, the formal problem defini-
tion is: In the (augmented) graph G, find the path with the
smallest length among all the shortest V; 1-to-V; .41 paths
inG,foralli =1,2,...,m. Note that G has n+1 columns,
every column has m nodes, and each node has O(1) out-
going edges. A naive approach would be to compute a
shortest V;1-to-V; 41 path for everyi = 1,2,...,m, and
then find the path with the smallest length among these
m shortest paths. Since the multi-column graph G is a
directed acyclic graph, computing each shortest V;;-to-
Vint1 path takes O(mmn) time. Thus, overall this naive
approach runs in O(m?n) time.

The above algorithm can be improved. A key obser-
vation is that the “non-crossing” lemma for the shortest
paths in the multi-column graph in [5] also holds for the
graph G here, because the multi-column graph in [5] and
G are similar in their structures. Hence, we are able to
reduce the time bound of the algorithm for computing
an optimal closed contour to O(mnlogm), as follows. We
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first obtain the shortest V,;/2,1-to-V};,/2,,41 path, and use
this path to partition the graph G into two subgraphs
G1 and Gy; then we compute the shortest V;, 1-to-V;, 41
paths for all iy < m/2 in G; and the shortest V;, -
to-Vi, n+1 paths for all iy > m/2 in G, recursively. In
this divide and conquer scheme, a graph is partitioned
into smaller subgraphs at each dividing step. It is easy to
see that for each recursion level, the algorithm takes in
total O(mn) time, and there are O(log m) recursion levels.
Thus, the overall time bound of this improved algorithm
is O(mnlog m).

Therefore, the above local search process obtains an
optimal path corresponding to an optimal closed smooth
contour in the original image which contains a seeding
point p and has the minimum total cost among all pos-
sible feasible contours for p. For every seeding point
pi» we record the curve for its optimal closed contour
as Boundary; or B; and the enclosed region as Region;
or R;. Suppose K seeds are sampled. Then we have B;
and R;, i = 1,2,...,K. How well these boundaries and
regions capture the true glands in the input image is deter-
mined by many factors, e.g., the quality of the original
image, seeding positions, cost functions used, the value
of the smoothness constraint parameter, etc. It is possi-
ble that not all these resulted boundaries are correct gland
boundaries. In the next section, we develop an ensemble
procedure to collect and collaborate these boundaries and
their enclosed regions, in order to build a more stable and
useful gland boundary probability map (BPM).

Ensemble

The basic idea of the ensemble method is: When there are
different sources from different perspectives to give sug-
gestions on one object, e.g., a point (pixel) is on a true
gland border or not, the ensemble process collects these
suggestions and forms a more unbiased and more accurate
conclusion [7].

In our situation, the local search for an individual seed-
ing point p can be viewed as a maker of suggestions. The
search operates on the local image domain around p with
a radius r, and gives suggestions on certain points (pix-
els) in this domain on whether they are on a gland border
contour. The points on the contour curve obtained by the
search are assigned a value of 1 (for “yes”), and the points
enclosed by the closed contour but are not on its boundary
are assigned 0 (for “no”). Suppose a point (pixel) p; of the
input image is covered by k such contour-enclosed regions
computed by all the local searches. Then p; receives k such
suggestions. Overall, the probability of p; being on a true
gland border contour is defined as:

k

P(p; on true gland boundary) = (Zf(pi, K)/k  (4)
k'=1
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where
o)1 pi€eBy
fok)={ BER

By denotes the k'th searched closed contour; Ry
denotes the enclosed region inside of By (not including
By). We perform the above processing for every point
(pixel) in the image, and obtain a boundary probability
map BPM for the entire image.

Producing segmentation proposals
Based on the gland boundary probability map BPM, we
next generate segmentation proposals. It was shown in
[1] that with a good boundary map, segmentation pro-
posals can be generated effectively and reliably. We adopt
the original watershed method [14] to generate segmen-
tation proposals using the gland boundary information.
In the boundary probability map, we set all values which
are smaller than a threshold 7T to be 0. In practice, we set
this threshold T simply as 0.5. This basically means that
pixels with their probability values smaller than 0.5 are
less likely to be on any gland border. Due to the nature of
the watershed method, we set all values below 0.5 to be
0 in order to avoid too many meaningless gland regions
to be generated (i.e., over-segmentation). We then apply
the regular watershed method to the truncated boundary
map thus resulted to obtain non-overlapped segmenta-
tion proposal regions. Figure 7 gives image examples to
illustrate the ability of our method on generating good
boundary-preserving gland segmentation proposals. One
may see that our segmentation proposals can cover many
weak boundaries of glands.

In this step, we have segmentation proposals generated.
The next step will determine the type of every segmenta-
tion proposal region as gland or non-gland (see Fig. 8).

Fig. 7 lllustration of gland segmentation proposals: Each area in the
image examples enclosed by a red contour is a segmentation
proposal region (whose type as gland or non-gland will be
determined later)
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Feature extraction and classification

This step determines each segmentation proposal region
as gland or non-gland. This task falls into the category
of two-class classification problems. For such problems, a
common approach is to first extract some features from
the original image region under consideration, and then
determine its type based on a training/testing classifica-
tion procedure in the feature space. We also adopt this
approach. Yet for a more effective and fast processing,
we first prune away a significant portion of the propos-
als which are very unlikely to be part of any glands, and
then perform feature extraction and classification on the
remaining proposals.

Proposal pruning

This step aims to eliminate a significant portion of can-
didate segmentation proposals which are very unlikely to
belong to any true gland based on some simple and fast
criteria, in order to speed up the whole process. As shown
in Fig. 7, many non-gland segmentation proposal regions
are very small; thus we can safely prune away segmen-
tation regions of small sizes. Also, using the boundary
probability map BPM, we can obtain the average probabil-
ity value for the points on the boundary of each proposal
region. Usually, such an average value for a gland pro-
posal region should be large, but for a non-gland region
in general should be much smaller. Specifically, we take a
proposal region as non-gland if its such average value is
smaller than 0.3. Our experiment showed that this simple
pruning step can successfully remove at least half of the
candidate proposals safely.

Feature extraction
To classify the remaining “harder” cases, more advanced
techniques and criteria are employed. On each such seg-
mentation proposal region, we extract a set of visual fea-
tures for determining its region type (as gland or non-gland).
In general, we consider two types of features for this.

1. Basic in-region and on-boundary information.

2. Advanced image descriptors.

Basic in-region and on-boundary information. Lumen
usually appears inside a gland, and it looks bright in the
image (high intensity). The cytoplasm of an epithelial cell
is also bright due to H&E staining (see Fig. 2). Thus, as
a whole, a gland region may have a brighter mean inten-
sity than the background. Also, due to the nature of our
segmentation method, the sizes of true gland proposals
are usually larger than those of the regions from the back-
ground. That is, the sizes of proposal regions are also a
useful feature. A gland normally has a continuous dark cell
nucleus contour border. To capture this property, we com-
pute the mean intensity of the border contour for each
proposal region, as well as the corresponding standard
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Feature
vector.

i Classification

locations in the image (right)

Fig. 8 After generating segmentation proposals (left), feature extraction and classification processes are conducted to determine the actual gland

deviation. In all, we extract features as the mean intensity
of each proposal region and its standard deviation, the size
of the region, and the mean intensity of its boundary and
the standard deviation.

Advanced image descriptors. Advanced image descrip-
tors can present texture and more detailed information
than the basic ones above. HOG (histogram of oriented
gradients) [6] is one of the most widely used image
descriptors. PHOG (pyramid histogram of oriented gra-
dients) [2] was used in [9, 10]. We choose to use the
original (simpler) version of the HOG feature (see Fig. 9).
Recently, learning based features, especially deep-learning
features, have been studied to represent more complex
appearances such as general objects and human faces
(e.g., identity or expression). We think the appearances of

Fig. 9 lllustration of the HOG feature. Left: original images; middle:
HOG features extracted from the original images; right: visualization
(inverse) of the HOG features [18]. Observe that the HOG feature can
represent the gland structure quite well

glands are relatively simple and stable, and thus simple
HOG feature is good enough to represent such structural
information. The HOG feature can be in high dimen-
sions; of course, not every dimension of the feature space
is equally important. PCA (Principal component analysis)
may be applied to the HOG feature space to reduce the
feature dimensions and make the feature more efficient
and effective to use.

Overall, we stack these two types of features into a long
vector, which is input to our classification model. The
classification model receives the feature vector for each
proposal region, and predicts its type (gland or non-gland).

Classification

We now discuss how to assign a type label to each
proposal region using its feature vector. Suppose there are
M gland regions in the ground truth set GT, and Ry; € GT
is a region area which covers exactly one gland in the orig-
inal image. For a proposal region Ry,pesqi, We define the
score P(R) for this proposal region as:

m Rpraposal N Rgt ( 5)

Ru€GT Ryroposal U Rgt

A proposal region with a larger P(R) score means it
is more likely to be a gland region. We need to learn a
classification model to predict the P(R) value based on the
extracted feature of the proposal region Ryoposai-

Multiple classification models can be considered for
this purpose, e.g., Logistic Regression [12], SVM [4],
Random Forest [3], etc. We choose Random Forest as our
classification model because it is fast, stable, and invariant
to the value ranges of the feature space. Since the y value
is in the range of 0 to 1, we use the regression version of
Random Forest.

Refinement

The regression model provides a score for every proposal
region. Since the score is assigned independently to each
proposal region, we use a post-processing to collaborate
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the results of neighboring regions and improve the gland
detection accuracy (eliminating potential false positives).

Usually, artifacts (false positives) may occur near some
true gland nucleus borders. This is mainly due to the fact
that gland borders are an important sign for the existence
of glands, and this sign can also make some areas that are
near true glands but are not true glands be classified as
gland (false positives).

If we view gland borders as a “resource” associated with
image locations, then once a true gland region “consumes”
this resource, a nearby artifact region could become lack
of gland borders (i.e., no gland border is available for form-
ing its closed boundary as a gland). Based on this obser-
vation, we propose a re-weighting procedure to re-weight
the region probability map generated by the regression.
The purpose of the re-weighting process is to further
highlight true gland regions and weaken artifact ones. We
use the boundary probability map BPM again here to help
the re-weighting. In Fig. 10, the gland border resource
is represented by BPM, and an artifact region R is sur-
rounded by 6 true gland regions. In the order of the scores
assigned by the regression model (from high to low), the
6 true gland regions can take the gland border resource
away from the outer contour of Ry (the red contour in the
right image of Fig. 10) before R, seeking the gland border
resource; when it is Ry’s turn, there is almost no gland bor-
der to use. Based on this mechanism, we design a simple
algorithm for the gland probability re-weighting process,
as follows.

Input: m  non-overlapped  proposal regions

R1,Ry,...,Ry; each proposal region R; is initially

associated with a probability P(R;) that indicates how

likely R; is a gland, and a point set C(R;) that stores
the locations of points on the outer contour of R;; the
gland boundary probability map BPM; a value A, (the

“decreasing parameter").

Output: The modified P(R;), foralli = 1,2,...,m.

index = Sort(all P(R;)) in decreasing order;
fori=1,...,mdo
PS = C(Ripdex(i))s
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modifier = mean(BPM(PS));
PRipgexiy) = PRingex(iy) X modifier;

for every point p in PS do
BPM(p) = Ag x BPM(p);
end for
end for

Figure 11 gives examples of the effects after applying
the re-weighting process. Initially, an artifact region sur-
rounded by true gland regions may have just a slightly
lower probability value comparing to the values of these
gland regions. But after re-weighting, the differences of
such values between the artifact region and gland regions
become larger (controlled by the decreasing parameter 1).

Merging proposal regions
A potential problem of our seeding-searching-ensemble
method is that it might generate over-segmented proposal
regions for irregular-shaped glands (e.g., see Fig. 12).
Although such irregular-shaped glands do not appear
quite often, they are strong indications for chronic inflam-
matory diseases (e.g., inflammatory bowel disease). Thus,
it is necessary to merge over-segmented gland regions.
Given a set of proposal regions R;, i = 1,2,...,m, we
apply a greedy merging method to merge potential over-
segmented proposal regions. We say that two regions R,
and Ry are neighbors if their contours C(R,) N C(R,) # @.
Each pair of neighboring regions has a score P, indicat-
ing how likely these two regions belong to the same gland
(and thus should be merged). For simplicity, we compute
P,4 based on the boundary probability map (more details
of this are given below). In every iteration, the pair of
neighboring proposal regions R, and R, with the highest
score Py, is merged, and then the relations of the merged
region thus obtained to its adjacent regions are updated.
We repeat this process until the highest Py, is smaller than
0.5. We present the algorithm for this merging method, as
follows.

Input: A set S of m proposal regions R1, Ry, ..., Ry; a
point set C(R;) that stores the locations of points on the

outer contour of each R;; the boundary probability map
BPM.

Fig. 10 The input to the refinement step. For two neighboring proposal regions, their outer contours may overlap (e.g., the purple curve in the right
image). The re-weighting process uses such overlap and the map BPM to re-weight the gland probability for each proposal region

ontour(R,)

ontour(R;)
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bar represents the probability of gland detection, with black =

Fig. 11 lllustration of the refinement. Images from left to right: an original intensity image, ground truth (in red), the gland probability of
segmentation proposals before re-weighting, and the gland probability of segmentation proposals after re-weighting, respectively. The intensity
low probability, gray =

ec)

intermediate, and white = high probability of gland detection

Output: A set S’ of the merged proposal regions.
for each (R,, R;) which are neighbors do
P,y = mean(BPM(C(R,) N C(R,)));
end for
initialize S’ = S;
v =maXpq Ppg, s:t. Ry, Ry € §';
while v > 0.5 do
(a,b) = argmax, 4 Ppy, s.t. Ry, Ry € S';
Ry = R, URy;
S' =S\ Ry;
for each R; which is adjacent to R, in §’ do
Pyi = mean(BPM(C(Rz) N C(R))));

Py = Py;
end for
V=maXpg Ppg, s.t. Ry, Ry € S';
end while

Figure 12 shows several examples of over-segmented
regions for irregular-shaped glands merged by our merg-
ing method.

Results and Discussion
We collected 10 clinical H&E-stained histology images
of human intestinal tissues digitized at 40x magnifica-

tion with a medical grade slide scanner (Aperio, Leica
Microsystems Inc. Buffalo Grove, IL). At 40x magnifi-
cation, 1 mm = 4050 pixels. This data set consisted of
images with normal colon (4 patients), colon with histo-
logical features of chronic inflammation (3), colon with
acute inflammation (2), and ileum with acute inflamma-
tion (1). In total, there are 1723 glands. Human experts
manually labeled these glands to form the ground truth.
The variations of gland appearances and the environment
of the tissue sections are quite large across the images,
and provide a robust data set to test our methods. This
is due the following reasons: (1) The images were sam-
pled from regions of the gut including colon and ileum; (2)
Inherent in the biopsy and tissue processing techniques is
that tissue is sampled in any orientation which results in
display of tissue in any plane through the original tissue.
(3) The samples reflect a spectrum of normal and disease
states as they were obtained from a patients who were
deemed to have normal gut or gut affected by a range of
acute to chronic inflammation.

This project was reviewed and approved by the Insti-
tutional Review Board and compliant with the pri-
vacy provisions of the Health Insurance Portability and

Fig. 12 Top row: proposal regions before the merging step; bottom row: proposal regions after the merging step
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Accountability Act (HIPAA) of 1996. Tissue specimens
were obtained under an IRB-approved waiver of consent
applicable to de-identified samples.

Settings

Since our gland proposal generation does not require any
training phase, we apply the same setting to all images
for the gland proposal generation process. The radius
r for the local search is set as 100 pixels, because the
long diameter of a gland in our images is between 80
to 160 pixels. The number of sampling rays is set to
be 360, that is, every ray covers 1 degree in the polar
plane. The parameter A in the cost function is set as 10.
Before applying the watershed method to generate the
segmentation, the threshold value on the boundary prob-
ability map is set to be 0.5. The pruning threshold on
the gland segmentation proposals is set as 0.3. For the
final refinement, the decreasing parameter A4 is set to
be 1/2. Most of the parameters are intuitive and easy
to set.

For the classification process, the random forest needs
to be trained using data. We adopt the common 10 fold
cross-validation. That is, for each time of the testing, we
use 9 images as training data, and the remaining 1 image
as testing. We repeat this training and testing process ten
times, each with different testing images and the corre-
sponding different set of training images. Below we report
the gland detection performance and gland segmenta-
tion performance of two state-of-the-art methods and our
method.

Gland detection

We adopt the PASCAL VOC criteria [8] for evaluat-
ing the gland detection performance, which is commonly
used in object detection studies and were also adopted

Table 1 Detection performance comparison
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Recall Precision F-score
OG[11] 0.662 0.690 0.676
PSRF [10] 0.787 0.845 0.815
Our method without merging 0.835 0.892 0.862
Our method with merging 0.850 0.908 0.878

in [10]. A detected region is viewed as true positive if
Rietectea N Rgt > 05,
Rietectea Y Rgt

The precision is calculated by TP/(TP + FP), and the
recall is calculated by TP/(TP + FN). Figure 13 and
Table 1 show the detection performance of our method
comparing to [10] and [11]. When determining a region
is gland or non-gland, the method proposed in [11]
used only 8 simple features rather than more advanced
image descriptors. This is one reason why its detection
performance is far lower than the other two methods.
More advanced image descriptors such as HOG (his-
togram of oriented gradients) can effectively represent
more complicated structural information, and are widely
used in many computer vision tasks. Comparing our
method to the method in [10], both methods utilize HOG
feature in the classification procedure, but our method
performs more stably and has a higher mean average pre-
cision (MAP) by 9 % (see Fig. 13), a higher recall by
6 %, and a higher precision by 6 % (see Table 1). We
think this advantage is due to our better segmentation
process.

Gland segmentation

The segmentation performance is measured at the pixel
level, and is concentrated more on examining gland
boundary preservation (to prevent leaking). We compute
the true positives, true negatives, false positives, and false
negatives using pixel-by-pixel comparison of the algo-
rithms’ results against the ground truth. Table 2 shows the
segmentation comparison result when the three methods
achieve their best F-scores in detection. One can see that
our method obtains more accurate gland segmentation.
Figure 14 shows some segmentation visual comparison
examples. Our method is significantly better at preserving
true gland boundaries and preventing segmentation leak-
ing than [10].

Table 2 Segmentation performance comparison

Fig. 13 Precision-recall curves for gland detection

c
51 ]
» N,
.g N\
5 0.5} \“ b
045 [N
\ i
\
0.3} hY b
—our method with merging MAP=0.86
0.2 our method without merging MAP=0.80
Polar-space random field [10] MAP=0.77
0L Object-graphs [11] MAP=0.64 .
"o 0.2 0.4 0.6 0.8
recall

Recall Precision F-score
OG[11] 0.652 0.662 0.657
PSRF [10] 0.776 0.794 0.785
Our method without merging 0.826 0.853 0.840
Our method with merging 0.838 0.874 0.856
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Our method

Fig. 14 Six examples which compare the results of two segmentation methods. The columns from left to right: original intensity images, ground
truth (in red), results by PSRF [10], and results by our method, respectively. Our new method has less leaking and preserves more gland boundaries

Conclusions

In this paper, we proposed a new seeding-searching-
ensemble method for gland segmentation and detection
in H&E-stained histology images. We showed that on
generating gland segmentation, local search with a hard
shape constraint followed by an ensemble procedure is
more robust on preserving gland boundaries and prevent-
ing leaking. We produced high-quality segmentation and
detection of non-overlapped glands that obey the natu-
ral property of glands in histology tissue images. With
accurately detected and segmented glands, quantitative
measurement and analysis can be developed for further
studies of glands and computer-aided diagnosis.
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