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Abstract

Background: Learning deep representations of clinical events based on their distributions in electronic health
records has been shown to allow for subsequent training of higher-performing predictive models compared to the
use of shallow, count-based representations. The predictive performance may be further improved by utilizing
multiple representations of the same events, which can be obtained by, for instance, manipulating the representation
learning procedure. The question, however, remains how to make best use of a set of diverse representations of
clinical events – modeled in an ensemble of semantic spaces – for the purpose of predictive modeling.

Methods: Three different ways of exploiting a set of (ten) distributed representations of four types of clinical events –
diagnosis codes, drug codes, measurements, and words in clinical notes – are investigated in a series of experiments
using ensembles of randomized trees. Here, the semantic space ensembles are obtained by varying the context
window size in the representation learning procedure. The proposed method trains a forest wherein each tree is built
from a bootstrap replicate of the training set whose entire original feature set is represented in a randomly selected
set of semantic spaces – corresponding to the considered data types – of a given context window size.

Results: The proposed method significantly outperforms concatenating the multiple representations of the bagged
dataset; it also significantly outperforms representing, for each decision tree, only a subset of the features in a
randomly selected set of semantic spaces. A follow-up analysis indicates that the proposed method exhibits less
diversity while significantly improving average tree performance. It is also shown that the size of the semantic space
ensemble has a significant impact on predictive performance and that performance tends to improve as the size
increases.

Conclusions: The strategy for utilizing a set of diverse distributed representations of clinical events when
constructing ensembles of randomized trees has a significant impact on predictive performance. The most successful
strategy – significantly outperforming the considered alternatives – involves randomly sampling distributed
representations of the clinical events when building each decision tree in the forest.
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Background
The digitization of healthcare in electronic health record
(EHR) systems has opened up the possibility for analyz-
ing the inexorably growing amounts of healthcare data
with computational methods. Meaningful secondary use
of healthcare data has the potential to make healthcare
more effective and more efficient. Healthcare has indeed
become an important application domain for machine
learning and natural language processing; however, this
valuable data source remains largely untapped [1]. One
promising use of the vast amounts of healthcare data is
for training predictive models that can support clinicians.
There are, however, numerous challenges involved in
learning high-performing predictive models from health-
care data. The high-dimensional nature of the data, as a
consequence of the large amount of clinical events that
can be used to describe an instance (e.g., a patient or
a care episode), presents one such challenge. The high
dimensionality of the data, in turn, typically renders it
extremely sparse since patients, particularly within a given
care episode, are only exposed to a very small subset of
the clinical events used for describing the training sample.
This is known as the curse of dimensionality and makes
it difficult to apply statistical methods to healthcare data.
Another challenge is presented by the inherent hetero-
geneity of such data, which entails that clinical events
of different data types cannot be effectively handled in
a uniform manner. A simplifying yet useful distinction
is sometimes made between structured and unstructured
data. Structured EHR data includes diagnosis codes (in the
form of, e.g., ICD), drug codes (in the form of, e.g., ATC)
and measurements (typically in the form of institution-
specific encoding). Using these data types inevitably gives
rise to questions of representation, how to handle values
missing at random or not, and how to take into account
the temporality of clinical events. These issues have been
addressed in a number of studies [2–7].
The unstructured or semi-structured EHR data comes

primarily in the form of free-text clinical notes written
or dictated by clinicians. This data type – even more
high-dimensional and sparse than the aforementioned
structured data types – is particularly challenging to ana-
lyze computationally in this domain since it tends to be
very noisy [8]: clinical notes often comprise telegraphic
sentences that do not comply with formal grammar
and contain numerous (non-standard) abbreviations and
acronyms that are sometimes difficult to disambiguate
even in context [9]. Here, too, the question of representa-
tion naturally presents itself and various alternatives have
been explored [10].
We have previously proposed a means of representing

heterogeneous data types by first learning deep represen-
tations of clinical events based on their distribution in
EHRs. These representations are obtained by leveraging

distributional semantics, i.e., techniques conventionally
used in natural language processing for obtaining vector
representations of words based on word co-occurrence
information. The theoretical foundation underpinning
models of distributional semantics is the distributional
hypothesis [11], according to which words with similar
meanings tend to appear in similar contexts, i.e., co-occur
with largely overlapping sets of words. Distributed rep-
resentations of words have been successfully exploited
in a range of downstream natural language processing
applications [12], also in the biomedical [13] and clinical
[14] domains. In the clinical domain, the use of dis-
tributed representations has been investigated for applica-
tions such as medical terminology construction [15–18],
medical concept recognition [19, 20], semi-automatic
diagnosis coding [21–23], care episode retrieval [24], and
detection of adverse drug events [10, 25–28]. In one of
these studies [27], the distributional semantics framework
was extended to other, non-linguistic but sequential, data
types, which allowed distributed representations to be
learned for diagnosis codes, drug codes and clinical mea-
surements, in addition to words used in clinical notes. It
was shown, in that study, that using these deeper rep-
resentations of clinical events led to the construction of
higher-performing predictive models compared to the use
of more shallow representations, whereby each example
was treated as a bag of clinical events. Modeling EHR data
in so-called semantic spaces has three distinct advantages:

1. It mitigates the twin problems of high dimensionality
and sparsity by creating dense, reduced-dimensional
representations of the data. The dimensionality is
controlled by the dimensionality of the distributed
vectors representations, which is a model
hyperparameter, effectively making the method
scalable since the dimensionality does not grow with
the size of the data.

2. It takes into account and explicitly models
similarities between clinical events instead of treating
them as atomic units about which we presumably
know nothing a priori. The assumption here is that
clinical events that have similar distributions in EHRs
are, in some sense, semantically similar.

3. The representation learning procedure is
unsupervised and thereby allows large amounts of
unlabeled data, which tend to more readily available,
to be leveraged.

This way of representing EHR data also makes it more
feasible to combine clinical events of heterogeneous data
types: the study showed that combining structured and
unstructured EHR data led to significant improvements
in predictive performance. Another finding of that study
was that modelling each type of clinical event in a separate
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semantic space and then concatenating their representa-
tions was more effective than having a shared semantic
space for the three structured data types.
In another study [28], it was demonstrated that the

predictive performance could be further improved by
leveraging multiple – and to some degree diverse – rep-
resentations of the same events. The motivation behind
this idea is to capture multiple, distributed views of the
data in an ensemble of semantic spaces [29]. This notion
has been explored for a number of applications, including
medical terminology construction [18, 30], medical con-
cept recognition [20, 31] and adverse drug event detection
[28]. The multiple representations can be obtained by, for
instance, manipulating the representation learning proce-
dure. One means of creating a semantic space ensemble –
studied previously and also used in the present study –
is to vary the context definition, i.e., the region in which
co-occurrences are considered, typically a window of sur-
rounding items. This has been shown to affect the seman-
tic properties that are modeled [32–34]. Once a set of
potentially diverse semantic spaces has been created, the
question arises of how to combine them in an effective
manner. In the aforementioned study, early (feature) and
various late (classifier) fusion strategies were investigated
and it was shown that early fusion outperformed the con-
sidered late fusion strategies. In the present study, we
investigate alternative ways of making use of semantic
space ensembles in conjunction with ensemble methods
bagging and random subspacing used in the random forest
learning algorithm.
The random forest learning algorithm [35] creates an

ensemble of decision trees that collectively vote, typi-
cally through some form of (weighted) majority voting, for
which class label to assign to an instance. For an ensem-
ble like this to be effective – that is, obtain a higher
predictive performance than the individual, base models
of which it is composed – its base models need to be
accurate and diverse [36]. An explanation for the effec-
tiveness of ensemble models can be traced back to the
18th century and Condorcet’s jury theorem [37], which
states that the error of the majority of a jury decreases
with the number of jury members. This theorem holds
under the assumption that each member is more likely to
be correct than wrong (i.e., accurate), but also requires
that the members make the errors independently (i.e., are
diverse [38]). The latter means, for example, that noth-
ing is gained from forming a jury whose members always
agree; the overall error will be no lower than the error
of its members. Along with the number of base mod-
els, these two components – the performance of each
base model and the extent to which the models vary in
their predictions – affect the predictive performance of
the ensemble. The random forest algorithm attempts to
create diverse base models in two ways: (1) by training

each decision tree from a bootstrap replicate of the orig-
inal training set of D examples, i.e., sampling D examples
with replacement from the training set (i.e., bagging); and
(2) only allowing a random subset of the original features
to be inspected when deciding on a splitting criterion at
each node in the tree (i.e., random subspacing). An impor-
tant question for ensemble models like random forest is
how, precisely, the accuracy of the base models and their
diversity relate to ensemble performance. In a regression
framework, i.e., when the task is numerical prediction,
the (squared) error E of the ensemble is directly related
to the average (squared) error A of the base models,
and their diversity D, i.e., the average (squared) deviation
of each single prediction from the ensemble prediction
(Eq. 1) [39].

E = A − D (1)

The above states that the ensemble error can be no
higher than the average base model error, and that the
more diversity there is, the lower the ensemble error will
be. It should, however, be noted that using the above
directly in the search for an optimal ensemble is not
straightforward, as there is normally a strong interplay
between diversity and average base model performance,
e.g., perfect base models will agree on all predictions.
When it comes to classification accuracy, there is no sim-
ilarly direct decomposition of ensemble performance into
average base model accuracy and diversity. A large num-
ber of alternative diversity measures have been proposed
in the literature [38]; however, their connection to ensem-
ble performance have been shown to be questionable.
In this study, forests of trees that are trained from

diverse distributed representations of clinical events, sam-
pled at random, are evaluated for their ability to detect the
presence of a particular adverse drug event (ADE) in care
episodes documented in EHRs. Adverse drug events –
defined as undesired harm resulting from the use of a
drug – are the most common form of iatrogenic injury,
causing approximately 3.7 % of hospital admissions world-
wide [40]. Electronic health records have emerged as a
potentially valuable source for pharmacovigilance, which,
due to the limitations of clinical trials in terms of duration
and sample size, needs to be carried out throughout the
life-cycle of a drug to inform decisions about its continued
use in the treatment of patients. A challenge for pharma-
covigilance is that ADEs are heavily underreported [41],
both in spontaneous reporting systems – to which ADE
case reports are submitted voluntarily by patients and
clinicians – and in EHRs, wherein ADEs can be encoded
by a limited set of diagnosis codes. To address the problem
of underreporting, alerting systems that can automatically
detect ADEs in EHRs are potentially very valuable.
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Methods
This paper investigates three different strategies for uti-
lizing a set of semantic spaces that contain distributed
representations of the same clinical events. The investi-
gation is carried out on 27 real, clinical datasets that are
used for learning the binary classification task of detect-
ing care episodes in which the patient has experienced a
particular ADE. A number of follow-up experiments are
then conducted in an attempt to identify possible sources
for the observed differences in predictive performance, as
well as to study the impact of the size of the semantic space
ensemble on predictive performance.

Modeling heterogeneous clinical events in semantic space
To create deep representations of clinical events, the data
first needs to be presented as a sequence. For each of the
three structured data types, we extract all sequences of
events that occur in the healthcare episodes of patients,
ordered by time. These sequences are then processed
one-by-one by the distributional semantics algorithm. For
notes, we obtain sequences of words. The preprocessed
notes – lemmatized, without digits and punctuation – are
processed sentence-by-sentence.
In this study, word2vec [42] is used to construct seman-

tic spaces from the sequential data. This implements
a recently developed model that has been inspired by
research in deep learning and neural network-based lan-
guagemodels. It was chosen for its ability to produce high-
quality vector representations of words, outperforming
traditional context-counting based methods on a range
of natural language processing tasks [43] and now con-
sidered state-of-the-art in distributional semantics. We
employ the skip-gram architecture. The algorithm con-
structs a vocabulary from the training data and learns
vector representations of the sequential items (here, clin-
ical events). It achieves this by training a neural network
with a single hidden layer; given a setD of sequential items
i and their contexts c, the objective function is to set the
parameters � that maximize p(c|i;�) [44]:

arg max
�

∏

(i,c)∈D
p(c|i;�) (2)

Context is defined as an adjacent item within a (sym-
metric) window of a pre-specified size around the input
item. The parameters that are learned in the hidden layer
give us the semantic vectors.
A semantic space is then created for each pre-specified

context window size and set of input sequences. There is
one set of input sequences for each data type: words, drug
codes, diagnosis codes (for diagnosis codes, 27 variants
are created wherein the target ADE label code is excluded
to avoid bias) and measurements. In this study, the ques-
tion is how best to utilize the set of diverse representations
of clinical events that have been learned.

Semantic space ensemble utilization strategies
The following three semantic space ensemble utilization
strategies are investigated in this study. The first is essen-
tially the baseline and corresponds to the early (feature)
fusion approach with which the best results were obtained
in a previous study [28]. Two variants of an alternative
approach, wherein diverse distributed representations are
sampled at random, are compared to the feature fusion
approach. In all strategies, the distributed representa-
tions from each semantic space are treated as a bag, in
the sense that the vector corresponding to a given clin-
ical event is multiplied by its count – the number of
times it has occurred in a given example – before being
added to the vector corresponding to a given semantic
space for that example. Distributed representations from
semantic spaces generated with the same context win-
dow size but comprising different data types are, in all
strategies, concatenated. However, the manner in which
distributed representations from different types of seman-
tic spaces, i.e. ones that have been generated with dif-
ferent context window sizes (henceforth referred to as
different types of semantic spaces/distributed represen-
tations), differs in the three strategies. All strategies use
bagging, two in combination with random subspacing,
to create randomized trees. The combination of bagging
and random subspacing has been shown to yield com-
parable performance to random forest proper, with the
advantage of being applicable to any base classifier [45].
The utilization strategies are described in more detail
below:

• Fused Diverse Representations (FDR): The
multiple distributed representations of the clinical
events in the dataset are first concatenated; each tree
in the forest is then generated from a bootstrap
replicate of the transformed dataset and a random
subset of the transformed features.

• Randomized Diverse Representations with
Feature Subsampling (RDR-FS): A single type of
distributed representation is randomly selected for
each tree, which is generated from a bootstrap
replicate of the transformed dataset and a random
subset of the transformed features.

• Randomized Diverse Representations without
Feature Subsampling (RDR-ALL): A single type of
distributed representation is randomly selected for
each tree, which is generated from a bootstrap
replicate of the transformed dataset; however, in
contrast to the previous strategy, the entire
transformed feature set is used for building each tree.

The RDR-ALL strategy is also described in Algorithm 1.
The only difference between RDR-FS and RDR-ALL is
that the former makes use of random subspacing, while
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the latter does not but instead allows each tree to exploit
the entire feature set. In this study, the distributed vectors
are 200-dimensional; four data types are considered; ten
types of semantic spaces (i.e., ten context window sizes are
used;) and

√
N features are randomly sampled when using

feature subsampling. The number of features post trans-
formation for each utilization strategy with this particular
setup is shown in Table 1. If V is the vector dimension-
ality, T the number of data types, P number of types of
semantic spaces (in this case the number of context win-
dow sizes) and

√
N is chosen for feature subsampling, all

three strategies allow the ensemble to exploit V × T × P
features. For each decision tree, FDR allows

√
V × T × P

features to be exploited; RDR-FS allows
√
V × T features

to be exploited; RDR-ALL allows V × T features to be
exploited. The number of features is independent from the
dimensionality of the original dataset.

Algorithm 1: Ensemble of randomized trees using
diverse representations
input : dataset D with N features of T data types,W

window sizes and T × W semantic spaces
output: ensemble modelM comprising a set of

randomized decision trees C
for c ∈ in C do

Randomly sample a window size w fromW
for t ∈ T do

for n ∈ N where n is of type t do
Get distributed representation −→vn from
semantic space corresponding to t and w
Multiply −→vn by event count and add to
example vector −→et

end
end
Concatenate example vectors −→et , ∀t ∈ T
Create a bootstrap replicate of the transformed
version of D
/* For RDR-FS: randomly sample a

subset of the features */
Train a decision tree classifier c and add toM

end
returnM

Table 1 The number of features available to the ensemble and
each tree with the three utilization strategies

Utilization strategy Ensemble features Tree features

FDR 8000
√
8000

RDR-FS 8000
√
800

RDR-ALL 8000 800

Data source
The 27 datasets used in the following experiments were
extracted from a subset of the Stockholm EPR Cor-
pus [46]. This subset contains health records written
in Swedish of around 700,000 patients over a two-year
period (2009–2010) from Karolinska University Hospital
in Stockholm, Sweden. This research has been approved
by the Regional Ethical Review Board in Stockholm (per-
mission number 2012/834-31/5).
The semantic space ensemble utilization strategies are

here evaluated in the context of ADE detection. More pre-
cisely, the learning task is to detect care episodes that
involve a certain ADE, i.e., care episodes in which an ADE-
specific ICD-10 diagnosis code has been assigned. A care
episode is here defined based on the time interval between
recorded activities for a patient: a care episode is delim-
ited by at least three days of no registered activities. The
care episodes are described by four types of data: clinical
notes, ICD-10 diagnosis codes, ATC drug codes and clin-
ical measurements (represented as types, i.e., values are
ignored). Only care episodes that contained at least one
of each of the four data types were retained. Each of the
27 datasets thus consists of care episodes according to the
above definition, where the positive examples have been
assigned an ADE-related diagnosis code, i.e., have experi-
enced a drug-induced disorder, and the negative examples
are an equal number of randomly selected care episodes
in which that same code has not been assigned. The ADE-
related diagnoses were selected on the basis of having
been classified as indicating ADEs in a previous study [47]
and being sufficiently frequent (> 10 care episodes) in the
used subset of the Stockholm EPR Corpus. The number
of visits and characteristics of the datasets are described
in Table 2. In addition to the labeled datasets, the entire
two years of data in the subset is used for building the
semantic spaces. That is, this is the dataset fromwhich the
distributed representations in the experiments are sam-
pled. The notes are preprocessed by using Stagger [48]
for tokenization and lemmatization of Swedish text and
by removing all digits and punctuation. The notes con-
tain approximately 3M unique words (700M instances),
while there are 9,046 diagnosis codes (51.6M instances),
1,272 drug codes (2.9M instances) and 713measurements
(14.5M instances).

Experimental setup
As mentioned previously, word2vec and the skig-gram
model is used for generating semantic spaces with 200-
dimensional vectors. The following ten context window
sizes are used: 2 + 2, 4 + 4, 6 + 6, 8 + 8, 10 + 10, 12 + 12,
14 + 14, 16 + 16, 18 + 18, 20 + 20. With four types of
clinical events – words, diagnosis codes, drug codes and
measurements – this results in 40 semantic spaces; how-
ever, in reality, there are even more semantic spaces since
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Table 2 Description of datasets

Words (Lemmas) Diagnoses (ICD-10) Drugs (ATC) Measurements

Dataset Visits Types Instances Types Instances Types Instances Types Instances

D64.2 416 46125 2110354 536 6320 364 8960 304 60689

E27.3 34 9564 112789 143 248 157 662 138 3982

F11.0 76 12200 232203 180 367 159 687 157 3920

F11.2 308 30077 904496 486 1875 347 4329 260 23637

F13.0 120 14764 215626 232 390 204 1167 153 6178

F13.2 76 12507 215321 220 484 195 922 167 4621

F15.0 32 5849 39658 71 148 96 257 105 1427

F15.1 46 9174 102697 122 259 142 573 137 4518

F15.2 256 25179 658428 394 1347 295 3439 209 22870

F19.0 122 15823 278873 237 475 214 1120 227 5519

F19.1 74 12651 177644 186 373 186 985 152 4688

F19.2 288 29291 799717 492 1259 326 3667 262 19653

F19.9 68 13144 177749 177 350 178 992 87 3743

G24.0 28 10017 101769 76 132 136 599 113 3551

G62.0 20 4622 35997 41 71 93 219 56 1119

I95.2 70 11528 145432 162 652 177 799 144 5252

L27.0 274 34504 1114979 556 1619 375 5324 273 28451

L27.1 78 13477 234268 220 545 186 1260 128 6088

N14.1 28 9180 82075 105 387 128 335 99 2215

O35.5 128 10567 121849 278 882 223 1654 125 3894

T59.9 40 5803 47694 81 165 104 317 76 1467

T78.2 102 13341 188250 208 602 200 1063 200 5384

T78.3 266 22659 411014 393 1178 282 2454 208 9967

T78.4 1520 46575 1633049 926 4571 463 9567 370 39883

T80.8 732 39077 1655988 709 5323 425 9890 269 35283

T88.6 96 15137 227317 240 549 209 1290 185 6325

T88.7 564 42794 1436333 767 3303 467 7263 306 41793

a separate semantic space is generated for each window
size and diagnosis code, where the target diagnosis code
has been excluded to avoid bias.
Forests are built with 500 trees and, when random

subspacing is employed, i.e., for FDR and RDR-FS, each
tree is able to exploit

√
N features randomly sampled

from the original feature set of size N. Predictive perfor-
mance is estimated using 10-fold cross validation, save
for in one of the follow-up experiments were random-
ized train-test splits are used. The considered perfor-
mance metrics are accuracy and area under the ROC
curve (AUC). Accuracy corresponds to the percentage of
correctly classified instances, while AUC estimates the
probability that a model ranks a randomly chosen posi-
tive instance ahead of a negative one. A Friedman test,
followed by a post-hoc test using the Bergmann-Hommel
procedure, as suggested in [49], is employed for statistical
hypothesis testing, where the null hypothesis is that

the methods perform equally well; the ranks are com-
pared, adjusting for the fact that multiple comparisons are
made.
Three experiments are conducted in this study. In the

first and main experiment, the three semantic space
ensemble utilization strategies are evaluated w.r.t. accu-
racy and AUC using 10-fold cross-validation over the
27 ADE datasets. A Friedman test is applied to assess
whether the strategies have a significant impact on pre-
dictive performance, followed by a post-hoc test to assess
the significance of pairwise differences. The second exper-
iment – and the first of two follow-up analyses – involves
inspection of the ensemble models in an attempt to
uncover the source of differences in predictive perfor-
mance. To that end, we look at average tree accuracy and
diversity, measured as ensemble accuracy minus average
tree performance. Again, this is estimated using 10-fold
cross-validation, while a Friedman test, followed by a
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post-hoc test, is applied to assess whether the observed
differences are statistically significant. The third and
final experiment constitutes another follow-up analysis,
in which the best-performing strategy is employed when
assessing the impact of the semantic space ensemble size
on predictive performance. The considered sizes for the
pool of window sizes are: 1, 2, ..., 10. All possible combina-
tions of semantic spaces to include from the original pool
are evaluated using randomized 70–30 train-test splits
and averaged. A Friedman test is used to asses whether
pool size, i.e., the number of semantic spaces included
in the ensemble, has a significant impact on predictive
performance.

Results
The evaluation of the three utilization strategies on the
27 ADE datasets shows that the RDR-ALL strategy yields
the highest predictive performance w.r.t both accuracy
and AUC, while RDR-FS leads to the worst performance
(Table 3). The differences among the three strategies are
statistically significant for accuracy (= 0.0023) but not for
AUC. A post-hoc test shows that RDR-ALL leads to sig-
nificantly higher accuracy than FDR (p = 0.04122) and
RDR-FS (p = 0.00156). There is, however, no pairwise sig-
nificant difference between FDR and RDR-FS. For the sake
of reference, all of the results are substantially higher than
those obtained with a shallow, count-based representation

Table 3 Predictive performance with the three strategies over 27 datasets

Dataset
Accuracy % (Rank) AUC (Rank)

FDR RDR-FS RDR-ALL FDR RDR-FS RDR-ALL

D642 95.19 (1.5) 93.76 (3.0) 95.19 (1.5) 0.974 (1.0) 0.967 (3.0) 0.969 (2.0)

E273 77.50 (3.0) 80.00 (2.0) 85.00 (1.0) 0.923 (2.0) 0.954 (1.0) 0.902 (3.0)

F110 91.25 (3.0) 92.92 (1.5) 92.92 (1.5) 0.956 (3.0) 0.966 (1.0) 0.958 (2.0)

F112 88.27 (3.0) 88.98 (2.0) 90.27 (1.0) 0.950 (2.0) 0.937 (3.0) 0.960 (1.0)

F130 90.83 (2.0) 90.83 (2.0) 90.83 (2.0) 0.958 (2.0) 0.952 (3.0) 0.961 (1.0)

F132 89.58 (1.5) 86.67 (3.0) 89.58 (1.5) 0.938 (2.0) 0.930 (3.0) 0.977 (1.0)

F150 90.00 (2.0) 90.00 (2.0) 90.00 (2.0) 0.876 (2.0) 0.875 (3.0) 0.876 (1.0)

F151 89.17 (2.0) 90.00 (1.0) 85.00 (3.0) 0.990 (1.0) 0.954 (3.0) 0.990 (2.0)

F152 94.97 (2.0) 94.58 (3.0) 95.32 (1.0) 0.979 (1.0) 0.978 (2.0) 0.977 (3.0)

F190 90.83 (2.0) 90.00 (3.0) 90.95 (1.0) 0.958 (2.0) 0.960 (1.0) 0.957 (3.0)

F191 87.50 (2.0) 83.75 (3.0) 88.75 (1.0) 0.961 (3.0) 0.962 (2.0) 0.977 (1.0)

F192 90.21 (1.0) 89.90 (3.0) 90.19 (2.0) 0.942 (3.0) 0.956 (1.0) 0.947 (2.0)

F199 87.08 (2.0) 82.92 (3.0) 88.75 (1.0) 0.959 (1.0) 0.939 (3.0) 0.955 (2.0)

G240 87.50 (3.0) 90.00 (2.0) 92.50 (1.0) 1.000 (1.0) 0.924 (3.0) 0.973 (2.0)

G620 90.00 (1.5) 85.00 (2.0) 90.00 (1.5) 0.900 (2.0) 0.900 (2.0) 0.900 (2.0)

I952 87.50 (2.0) 85.00 (3.0) 88.75 (1.0) 0.932 (2.0) 0.883 (3.0) 0.956 (1.0)

L270 85.05 (1.0) 83.60 (3.0) 84.31 (2.0) 0.917 (2.0) 0.917 (3.0) 0.920 (1.0)

L271 73.33 (3.0) 74.58 (2.0) 78.33 (1.0) 0.798 (3.0) 0.804 (1.0) 0.799 (2.0)

N141 70.00 (2.0) 67.50 (3.0) 72.50 (1.0) 0.800 (3.0) 0.830 (1.0) 0.825 (2.0)

O355 99.17 (2.5) 99.17 (2.5) 100.0 (1.0) 1.000 (2.0) 1.000 (2.0) 1.000 (2.0)

T599 92.50 (2.5) 97.50 (1.0) 92.50 (2.5) 1.000 (2.0) 1.000 (2.0) 1.000 (2.0)

T782 84.17 (3.0) 85.17 (2.0) 88.17 (1.0) 0.925 (2.0) 0.924 (3.0) 0.931 (1.0)

T783 90.00 (2.0) 88.16 (3.0) 90.36 (1.0) 0.951 (2.0) 0.946 (3.0) 0.955 (1.0)

T784 93.16 (2.0) 92.17 (3.0) 93.68 (1.0) 0.981 (2.0) 0.982 (1.0) 0.980 (3.0)

T808 94.93 (1.0) 93.97 (3.0) 94.92 (2.0) 0.982 (1.0) 0.979 (3.0) 0.982 (2.0)

T886 84.50 (2.0) 84.50 (2.0) 84.50 (2.0) 0.914 (1.0) 0.882 (3.0) 0.910 (2.0)

T887 84.03 (1.0) 83.14 (2.0) 82.62 (3.0) 0.896 (1.0) 0.892 (2.0) 0.890 (3.0)

Mean 88.08 (2.1) 87.55 (2.4) 89.11 (1.5) 0.939 (1.9) 0.933 (2.3) 0.942 (1.9)

p-value 0.0023 0.2540
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instead of diverse distributed representations: this yields,
on average, 84.11 % accuracy and 0.923 AUC.
A follow-up experiment was conducted to investigate

what the differences in predictive performance stem from.
An attempt to that end was made by looking into the
ensemble models produced with the three strategies and
estimating average tree accuracy versus ensemble accu-
racy. The results of these experiments are depicted in
Fig. 1. The accuracy scores of the ensembles have already
been presented; what is new is instead the average tree
accuracy scores. We can see that RDR-ALL obtains not
only the highest ensemble performance but also the high-
est average tree performance, while RDR-FS similarly
obtains the lowest average tree performance. Diversity is
here crudely estimated as the difference between ensem-
ble performance and average tree performance; we can
observe that RDR-ALL seems to exhibit the least amount
of diversity. A Friedman test shows (Table 4) that the three
strategies have a statistically significant impact on average
tree accuracy (p < 0.0001) and diversity (p < 0.0001).
In fact, RDR-ALL obtains the highest average tree accu-
racy on all 27 datasets. A post-hoc test moreover reveals
(Table 5) that the pairwise differences in average tree per-
formance are statistically significant (p < 0.0001). The
differences in diversity is statistically significant between
all pairs save between FDR and RDR-FS.
Another follow-up experiment was conducted to inves-

tigate whether the size of the semantic space ensemble –
that is, the number of diverse distributed representations
to sample from – has an impact on predictive perfor-
mance. The results of this analysis are depicted in Fig. 2,
showing how the predictive performance is affected as
the semantic space pool size – the number of types of
semantic spaces that are included in the ensemble – is
varied from 1 to 10 with a step-size of 1. As the boxplots
show, the predictive performance, w.r.t. both accuracy and
AUC, tends to improve with the size of the semantic space

Fig. 1 Ensemble inspection: average tree and ensemble performance
with the three strategies. The deltas indicate the amount of diversity
in the ensembles

Table 4 Ensemble inspection: average tree accuracy and
diversity with the three strategies

Strategy
Average tree accuracy Diversity

Mean score Mean rank P-value Mean score Mean rank P-value

FDR 73.22 2.0

<0.0001

0.15 1.9

<0.0001RDR-FS 70.99 3.0 0.16 1.6

RDR-ALL 76.02 1.0 0.13 2.6

ensemble, although notmonotonically so. A Friedman test
confirms (Table 6) that the pool sizes that are investigated
in this study have a statistically significant impact on both
accuracy and AUC (p < 0.0001).

Discussion
Three strategies for utilizing a set of semantic spaces were
explored in this study, of which two proposed to randomly
sample diverse distributed representations when building
each decision tree in the forest. The strategy wherein ran-
dom subsampling was not employed (RDR-ALL) yielded
the highest predictive performance and significantly out-
performed both the variant of this strategy with random
subsampling (RDR-FS) and the strategy wherein the dis-
tributed representations were simply concatenated and
provided to the learning algorithm (FDR). This is a strong
result given that the FDR strategy had previously outper-
formed numerous late fusion strategies, wherein a sepa-
rate ensemble was trained for each context window size
and subsequently combined in various ways [28].
It is interesting that the choice of whether to employ

random subspacing with the RDR approach has such
a substantial and significant impact on predictive per-
formance. As the first follow-up experiment revealed,
RDR-ALL yielded a significantly higher average tree per-
formance at the expense of losing some diversity – in fact,
a significant amount thereof. This can be explained by the
fact that RDR-ALL exploits the entire feature set while
RDR-FS is only allowed to exploit a small subset of the
features: allowing each tree to have access to the entire fea-
ture set improves its predictive performance, but results in
the trees varying less in their predictions, i.e., they become
less diverse. In the RDR approach, diversity is sought in
two ways: by building each tree from a bootstrap repli-
cate of the original dataset and by representing this in a
randomly selected type of distributed representation.

Table 5 P-values of pairwise differences between the three
strategies w.r.t average tree accuracy and diversity

Average tree accuracy Diversity

FDR vs. RDR-FS 0.00007 0.27630

FDR vs. RDR-ALL 0.00001 0.00650

RDR-FS vs. RDR-ALL <0.0001 0.00004
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Fig. 2 Predictive performance as the size of the semantic space ensemble is varied

It would of course be possible not only to sample from
a type of distributed representation as defined by the
employed context window size, but also from, for instance,
a given data type. This would, however, not allow the
entire feature set to be exploited by each tree – a compo-
nent that proved important to the success of the RDR-ALL
strategy – as well as exclude the possibility for the learn-
ing algorithm to exploit interactions between data types.
This is indeed a possible explanation for the relative inef-
fectiveness of the late fusion strategies explored in the
previous study [28], as it did not allow for interactions
to be exploited between different context window sizes.
This potential limitation holds, however, also for the RDR
approach.
In the FDR and RDR-FS strategies, the original fea-

tures were transformed to their distributed counterparts
prior to applying random subspacing. An alternative to
this, which could be explored in future work, would be
to apply random subspacing first and then conduct the

Table 6 Average performance with different semantic space
ensemble sizes

Pool size
Accuracy AUC

Mean score Mean rank P-value Mean score Mean rank P-value

1 84.80 8.7

<0.0001

0.934 9.3

<0.0001

2 86.12 6.5 0.945 8.0

3 86.31 5.6 0.949 7.0

4 86.43 5.2 0.950 6.4

5 86.45 4.9 0.951 5.7

6 86.45 5.4 0.952 4.6

7 86.43 4.7 0.953 3.7

8 86.60 4.4 0.953 3.3

9 86.27 5.1 0.954 3.1

10 86.98 4.4 0.957 3.8

feature transformation. This would allow the distributed
representations to be kept in tact, while exploiting random
subspacing as means for creating diversity.
Like in most ensemble models, the size of the ensemble

had a significant impact on its performance. In this study,
a limited pool of ten window sizes was experiment with
and it was shown that performance tended to increase
with the size of the pool to sample from. In comparison
to the previous study [28], the trend is much more stable
with RDR-ALL than with FDR, which was used in a sim-
ilar analysis. This could possibly be the consequence of
merely averaging over a larger number of results, as not
all combinations of semantic spaces to include were eval-
uated then. In any case, this is a desirable property of an
ensemble – that its performance is not too w.r.t. sensitive
to the selected number of constituent models. A general
rule of thumb when using random forest, for instance, is
that the more trees, the better. This generally seems to be
the case with the RDR-ALL utilization strategy. It would
be interesting to observe if the trend were to continue with
even larger pool sizes.

Conclusions
A strategy for utilizing a set of diverse distributed rep-
resentations of clinical events, - modeled in an ensemble
of semantic spaces - in conjunction with ensemble tech-
niques used in the random forest learning algorithm was
proposed: it is based on the notion of randomly sampling
a type of distributed representation for each tree in the
forest. It was shown that, when employing this approach,
allowing each tree to exploit the entire transformed, dis-
tributed feature set was more effective than applying
random subspacing, which is used in the random forest
learning algorithm. The proposed utilization strategy sig-
nificantly outperformed an early feature fusion approach
whereby the diverse distributed representations are sim-
ply concatenated. The improved predictive performance
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seems to stem from higher average tree performance
rather than increased diversity. It was also shown that the
proposed utilization strategy exhibits a desirable property
of ensembles, namely that performance improves with the
size of the ensemble.

Acknowledgements
This work was partly supported by the project High-Performance Data Mining
for Drug Effect Detection at Stockholm University, funded by Swedish
Foundation for Strategic Research under grant IIS11-0053.

Declarations
Publication costs for this article were funded by the project High-Performance
Data Mining for Drug Effect Detection at Stockholm University. This article has
been published as part of BMCMedical Informatics and DecisionMaking Vol 16
Suppl 2 2016: Selected articles from the IEEE International Conference on
Bioinformatics and Biomedicine 2015: medical informatics and decision
making. The full contents of the supplement are available online at http://
bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-
16-supplement-2.

Authors’ contributions
AH designed the study, carried out the experiments and drafted the
manuscript. JZ contributed to the study design and themanuscript. HD and HB
commented on themanuscript. All authors read and approved themanuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 21 July 2016

References
1. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records:

towards better research applications and clinical care. Nat Rev Genet.
2012;13(6):395–405.

2. Zhao J, Henriksson A, Boström H. Detecting adverse drug events using
concept hierarchies of clinical codes. In: Proceedings of IEEE International
Conference on Healthcare Informatics. IEEE; 2014. p. 285–93.

3. Zhao J, Henriksson A, Asker L, Boström H. Detecting adverse drug
events with multiple representations of clinical measurements. In:
Proceedings of IEEE International Conference on Bioinformatics and
Biomedicine. IEEE; 2014. p. 536–43.

4. Eriksson R, Werge T, Jensen LJ, Brunak S. Dose-specific adverse drug
reaction identification in electronic patient records: temporal data mining
in an inpatient psychiatric population. Drug Saf. 2014;37(4):237–47.

5. Singh A, Nadkarni G, Gottesman O, Ellis SB, Bottinger EP, Guttag JV.
Incorporating temporal ehr data in predictive models for risk stratification
of renal function deterioration. J Biomed Inform. 2015;53:220–8.

6. Zhao J, Henriksson A, Kvist M, Asker L, Boström H. Handling temporality
of clinical events for drug safety surveillance. In: American Medical
Informatics Association (AMIA) Annual Symposium. American Medical
Informatics Association; 2015.

7. Zhao J. Temporal weighting of clinical events in electronic health records
for pharmacovigilance. In: IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). IEEE; 2015. p. 375–81.

8. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF, et al. Extracting
information from textual documents in the electronic health record: a
review of recent research. Yearb Med Inform. 2008;35:128–44.

9. Liu H, Lussier YA, Friedman C. Disambiguating ambiguous biomedical
terms in biomedical narrative text: an unsupervised method. J Biomed
Inform. 2001;34(4):249–61.

10. Henriksson A. Representing clinical notes for adverse drug event
detection. In: Proceedings of the Sixth International Workshop on Health
Text Mining and Information Analysis (Louhi). Association for
Computational Linguistics; 2015. p. 152–8.

11. Harris ZS. Distributional structure. Word. 1954;10(2-3):146–162.
12. Turney PD, Pantel P, et al. From frequency to meaning: Vector space

models of semantics. J Artif Intell Res. 2010;37(1):141–88.

13. Cohen T, Widdows D. Empirical distributional semantics: methods and
biomedical applications. J Biomed Inform. 2009;42(2):390–405.

14. Henriksson A. Semantic Spaces of Clinical Text: Leveraging Distributional
Semantics for Natural Language Processing of Electronic Health Records.
Sweden: Stockholm University; 2013.

15. Skeppstedt M, Ahltorp M, Henriksson A. Vocabulary expansion by
semantic extraction of medical terms. In: Proceedings of the Symposium
on Languages in Biology and Medicine (LBM). Database Center for Life
Science; 2013.

16. Henriksson A, Conway M, Duneld M, Chapman WW. Identifying
synonymy between SNOMED clinical terms of varying length using
distributional analysis of electronic health records. In: AMIA Annual
Symposium Proceedings. American Medical Informatics Association;
2013. p. 600–9.

17. Henriksson A, Skeppstedt M, Kvist M, Duneld M, Conway M. Corpus-
driven terminology development: populating Swedish SNOMED CT with
synonyms extracted from electronic health records. In: Proceedings of the
2013 Workshop on Biomedical Natural Language Processing (BioNLP).
Association for Computational Linguistics; 2013. p. 36–44.

18. Henriksson A, Moen H, Skeppstedt M, Daudaravicius V, Duneld M.
Synonym extraction and abbreviation expansion with ensembles of
semantic spaces. J Biomed Semant. 2014;5(6):1–25.

19. Jonnalagadda S, Cohen T, Wu S, Gonzalez G. Enhancing clinical concept
extraction with distributional semantics. J Biomed Inform. 2012;45(1):
129–40.

20. Henriksson A, Dalianis H, Kowalski S. Generating features for named
entity recognition by learning prototypes in semantic space: The case of
de-identifying health records. In: Proceedings of IEEE International
Conference on Bioinformatics and Biomedicine. IEEE; 2014. p. 450–7.

21. Henriksson A, Hassel M, Kvist M. Diagnosis Code Assignment Support
Using Random Indexing of Patient Records – A Qualitative Feasibility
Study. In: Artificial Intelligence in Medicine. Berlin/Heidelberg: Springer;
2011. p. 348–52.

22. Henriksson A, Hassel M. Election of Diagnosis Codes: Words as
Responsible Citizens. In: Proceedings of the 3rd International Louhi
Workshop on Health Document Text Mining and Information Analysis.
CEUR Workshop Proceedings; 2011. p. 67–74.

23. Henriksson A, Hassel M. Optimizing the dimensionality of clinical term
spaces for improved diagnosis coding support. In: Proceedings of Louhi
Workshop on Health Document Text Mining and Information Analysis.
NICTA; 2013.

24. Moen H, Marsi E, Ginter F, Murtola LM, Salakoski T, Salanterä S. Care
episode retrieval. In: Proceedings of the 5th International Workshop on
Health Text Mining and Information Analysis (Louhi)@ EACL. Association
for Computational Linguistics; 2014. p. 116–24.

25. Henriksson A, Kvist M, Hassel M, Dalianis H. Exploration of adverse drug
reactions in semantic vector space models of clinical text. In: Proc. of ICML
Workshop on Machine Learning for Clinical Data Analysis. University of
Pittsburgh; 2012.

26. Henriksson A, Kvist M, Dalianis H, Duneld M. Identifying adverse drug
event information in clinical notes with distributional semantic
representations of context. J Biomed Inform. 2015;57:333–49.

27. Henriksson A, Zhao J, Boström H, Dalianis H. Modeling heterogeneous
clinical sequence data in semantic space for adverse drug event
detection. In: Proceedings of IEEE International Conference on Data
Science and Advanced Analytics. IEEE; 2015.

28. Henriksson A, Zhao J, Bostrom H, Dalianis H. Modeling electronic health
records in ensembles of semantic spaces for adverse drug event
detection. In: Proceedings of IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). IEEE; 2015. p. 343–50.

29. Henriksson A. Ensembles of Semantic Spaces: On Combining Models of
Distributional Semantics with Applications in Healthcare. Sweden:
Stockholm University; 2015.

30. Henriksson A, Moen H, Skeppstedt M, Eklund AM, Daudaravicius V,
Hassel M. Synonym extraction of medical terms from clinical text using
combinations of word space models. In: Proceedings of Semantic Mining
in Biomedicine (SMBM). Institute of Computational Linguistics, University
of Zurich; 2012. p. 10–17.

31. Henriksson A. Learning multiple distributed prototypes of semantic
categories for named entity recognition. Int J Data Min Bioinforma.
2015;13(4):395–411.

http://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-16-supplement-2
http://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-16-supplement-2
http://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-16-supplement-2


Henriksson et al. BMCMedical Informatics and DecisionMaking 2016, 16(Suppl 2):69 Page 95 of 162

32. Sahlgren M. The word-space model: using distributional analysis to
represent syntagmatic and paradigmatic relations between words in
high-dimensional vector spaces. Sweden: Stockholm University; 2006.

33. Lapesa G, Evert S, im Walde SS. Contrasting syntagmatic and
paradigmatic relations: Insights from distributional semantic models. In:
Proceedings of the Third Joint Conference on Lexical and Computational
Semantics (*SEM). Association for Computational Linguistics; 2014.
p. 160–70.

34. Lapesa G, Evert S. A large scale evaluation of distributional semantic
models: parameters, interactions and model selection. Trans Asso
Comput Linguis. 2014;2:531–45.

35. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
36. Dietterich TG. Ensemble methods in machine learning. In: Multiple

Classifier Systems. Berlin/Heidelberg: Springer; 2000. p. 1–15.
37. Austen-Smith D, Banks JS. Information aggregation, rationality, and the

condorcet jury theorem. Am Polit Sci Rev. 1996;90(01):34–45.
38. Kuncheva LI, Whitaker CJ. Measures of diversity in classifier ensembles

and their relationship with the ensemble accuracy. Mach Learn.
2003;51(2):181–207.

39. Krogh A, Vedelsby J. Neural network ensembles, cross validation, and
active learning. In: Advances in Neural Information Processing Systems.
Cambridge MA: MIT Press; 1995. p. 231–8.

40. Howard R, Avery A, Slavenburg S, Royal S, Pipe G, Lucassen P,
Pirmohamed M. Which drugs cause preventable admissions to hospital?
a systematic review. Br J Clin Pharmacol. 2007;63(2):136–47.

41. Hazell L, Shakir SA. Under-reporting of adverse drug reactions. Drug Saf.
2006;29(5):385–96.

42. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. In: ICLR Worshop. arXiv; 2013.

43. Baroni M, Dinu G, Kruszewski G. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors.
In: Association for Computational Linguistics. Association for
Computational Linguistics; 2014. p. 238–47.

44. Goldberg Y, Levy O. word2vec Explained: deriving Mikolov et al.’s
negative-sampling word-embedding method. arXiv; 2014. arXiv preprint
arXiv:1402.3722.

45. Panov P, Džeroski S. Combining bagging and random subspaces to
create better ensembles. In: Proceedings of Symposium on Intelligent
Data Analysis. Berlin/Heidelberg: Springer; 2007. p. 118–29.

46. Dalianis H, Hassel M, Henriksson A, Skeppstedt M. Stockholm EPR
Corpus: a clinical database used to improve health care. In: Swedish
Language Technology Conference. Lund Institute of Technology; 2012.

47. Stausberg J, Hasford J. Drug-related admissions and hospital-acquired
adverse drug events in germany: a longitudinal analysis from 2003 to
2007 of icd-10-coded routine data. BMC Health Serv Res. 2011;11(1):134.

48. Östling R. Stagger: an open-source part of speech tagger for swedish.
North Eur J Lang Technol (NEJLT). 2013;3:1–18.

49. Garcia S, Herrera F. An extension on “statistical comparisons of classifiers
over multiple data sets” for all pairwise comparisons. J Mach Learn Res.
2008;9(12):2677-2694.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Modeling heterogeneous clinical events in semantic space
	Semantic space ensemble utilization strategies
	Data source
	Experimental setup

	Results
	Discussion
	Conclusions
	Acknowledgements
	Declarations
	Authors' contributions
	Competing interests
	References

