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Abstract

Background: Prostate specific antigen (PSA) is an important biomarker to monitor the response to the treatment,
but has not been fully utilized as a whole sequence. We used a longitudinal biomarker PSA to discover a new
prognostic pattern that predicts castration-resistant prostate cancer (CRPC) after androgen deprivation therapy.

Methods: We transformed the longitudinal PSA into a discrete sequence, used frequent sequential pattern mining to
find candidate patterns from the sequences, and selected the most predictive and informative pattern among the
candidates.

Results: Patients were less likely to be CRPC if, after PSA values reach nadir, the PSA decreases more than 0.048 ng/ml
during a month, and the decrease occurs again. This pattern significantly increased the accuracy of predicting CRPC
by supplementing information provided by existing PSA patterns such as pretreatment PSA.

Conclusions: This result can help clinicians to stratify men by the risk of CRPC and to determine the patient that
needs intensive follow-up.

Keywords: Prostate specific antigen, Longitudinal biomarker, Frequent sequential pattern mining, Prediction

Background
Prostate cancer has been themost common cancer in men
worldwide [1–3]; it accounted for 27 % of new cancer
cases in 2014 [3]. Androgen deprivation therapy (ADT)
is the primary treatment of metastatic prostate cancer.
ADT is conducted by suppressing androgens by castra-
tion, inhibiting the action of androgen using competing
compounds known as anti-androgens, or by combining
these treatments. Unfortunately, some patients proceed to
castration-resistant prostate cancer (CRPC), whereas oth-
ers retain hormone-sensitive prostate cancer (HSPC). For
those who will be possibly endangered to CRPC, inten-
sive follow-up and additional systematic therapies are
required. Thus clinicians must assess the risk of progres-
sion to CRPC.
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Prostate specific antigen (PSA) has been an important
biomarker for diagnosis and prognosis of ADT. PSA level
is measured during follow-up to monitor the response to
the treatment. Generally, PSA level decreases after ADT
begins, reaches the lowest level (nadir), then stabilizes for
some period. If the cancer develops, PSA level increases.
PSA has been used in therapeutic decision making by
stratifying the risk of development to CRPC [4]. Char-
acteristics of PSA variation are summarized as patterns
such as pretreatment PSA level, nadir, time to nadir, and
doubling time; these patterns have clinical significances
as prognostic factors to predict CRPC [5–10]. However,
the accuracy of these patterns as predictors is still unclear.
They are computed based on only one or two PSA val-
ues before or around nadir even though PSA accumulates
consistently after the treatment.
Patterns generated from a fully-utilized PSA sequence

may increase the accuracy of predicting CRPC. Although
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the latter parts of PSA accumulation reflect the progres-
sion to CRPC [4], they have been discarded for three
reasons: (1) Collection of PSA data from electronic med-
ical records has been limited [11]; (2) Computing the
characteristic patterns with the whole PSA sequence is
more complicated than with one or two representative
values; and (3) The relationship between PSA after nadir
and CRPC has not been fully quantified. However, the
patterns of PSA after nadir can provide insight into this
relationship.
Thus we aim to exploit longitudinal PSA data to discover

a new prognostic pattern that predicts CRPC after ADT,
and to demonstrate clinical significance of the new pat-
tern. We will compare this pattern with existing patterns.

Methods
We described a framework that discovers the prognostic
pattern from the longitudinal PSA. This framework con-
sists of three parts: transformation, pattern mining, and
pattern selection.

Materials
Patients.We exploited data in electronic medical records
(EMRs) that include longitudinal PSA level and other clin-
ical variables. The EMR data were from an observational
longitudinal database at Seoul, St. Mary Hospital, Korea;
the database has been described in detail previously [12].
Among 1068 men diagnosed from January 2006 to June
2012 at our institution, 458 were treated as ADT. We only
included 370 men who had not received any other treat-
ment such as radical prostatectomy or radiation therapy
and for whom PSA level data were available.
Longitudinal PSA. Each patients had a set of longitudi-

nal PSA values that were recorded during follow-up every
one to six months. The time to nadir has been investi-
gated as the primary time point at which the kinetics of
PSA level changes [6]; thus we separated the longitudi-
nal PSA sequences into before and after nadir. Among the
total of 2883 PSA values, 1238 were before nadir and 1645
were after nadir.We excluded PSA after CRPC because we
should predict CRPC before it occurs. Some patients had
only before or after nadir. After separation, 261 men had
PSA after nadir, and 306 men had PSA before nadir.
Other variables. Patients had 14 demographic and clin-

ical features: Age, laboratory results of Alb, Plt, Hb, Ca;
medication information on intermittent treatment, drug
order; bone metastasis, clinical stage; Gleason score, MRI
prostate volume, pretreatment PSA, nadir, time to nadir.
Patients also had two outcome variables: dichotomous
factor for CRPC occurrence, and the time to CRPC. The
CRPC variables were determined after being reviewed
by the single urologist (Y.H.P.). Missing values were
imputed using random survival forest [13]. To provide
clinical background profiles of patients, the representative

characteristics of the patients that have PSA after nadir
were evaluated. Existence of bone metastasis can be cause
of CRPC [14], and CRPC patients are more likely to have
high Gleason score [15]. The p-value of the most rep-
resentative features to predict CRPC by univariate Cox
regression was assessed (Table 1).

Transformation
PSA velocity
We first converted PSA level to PSA velocity (PSAV)
[ng/(ml · mo)]:

PSAV = PSAt2 − PSAt1
t2 − t1

, (1)

where PSAti is PSA [ng/ml] at time ti [mo] [16]; so PSA
sequence was converted into PSAV sequence, which can
capture directions and the amount of PSA change. PSAV
≥ 0 and ≤ 0 referred to increasing and decreasing
PSA level per month, respectively. PSAV is sometimes
expressed as logarithm [17], but we did not log-transform
PSA because log(PSA) change means relative change (i.e.
multiple of previous PSA) rather than absolute change.We
discriminated small change from large change when the
ratio of two PSA values was the same. For example, PSA
changes from 0.003 to 0.001 and from 30 to 10 have the
same log(PSA) changes, but different PSAV.

Table 1 Characteristics and p-value of patients that have PSA
after nadir

Total CRPC p-value

Number of patients 261 96 -

Mean follow-up ± s.d. 38.7 ± 3.5 15.8 ± 2.4 -

Mean age ± s.d. 74 ± 0.9 75.2 ± 1.7 0.011

Mean time to nadir ± s.d. 10.3 ± 1.3 8.9 ± 1.9 0.001

Mean pretreatment PSA ± s.d. 119.4 ± 39.4 151.5 ± 80.3 0.054

Mean PSA nadir ± s.d. 12.8 ± 11.7 6.6 ± 4.2 0.142

Bone metastasis

Yes 41 15 0.490

No 220 79

Gleason score 0.117

≤ 6 59 (22.6 %) 20 (21.2 %)

7 72 (27.5 %) 21 (22.3 %)

≥ 8 130 (49.8 %) 53 (56.3 %)

ADT type

Leuprin only 154 44 0.012

Zoladex only 36 10

Leuprin → Zoladex 9 6

Zoladex → Leuprin 49 27

Anti-androgen only 13 7
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Discretization
PSAV was abstracted using discretization methods
because continuous PSAV contains noise that might
reduce its generalizability. We denoted PSAV state as the
discretized PSAV; so PSAV sequence was converted to
PSAV state sequence. Two discretization methods were
used: equal-frequency binning and entropy-based dis-
cretization. We used both methods and compared them
to avoid biased discretization split-points.

• Equal-frequency binning is an unsupervised
discretization technique that splits continuous
variables into a specified number of bins to have
equal frequency. We set bin size to five. These PSAV
states were labeled as Low (Lq), Medium low (MLq),
Medium (Mq), Medium high (MHq), and High (Hq).
This method did not distinguish PSAV of CRPC from
PSAV of HSPC.

• Entropy-based discretization is a supervised
discretization technique that finds split-points with
minimum entropy, and recursively partitions the
intervals until a stopping criterion is met [18]. PSAV
values were separated into three PSAV states, which
were labeled as Low (Le), Medium (Me), and High
(He). Because entropy is increased when PSAV of
CRPC and PSAV of HSPC are mixed, this method
generated PSAV states so that PSAV values from
CRPC and HSPC belonged to distinct PSAV state as
much as possible.

As an example of the transformation using after-nadir
longitudinal PSA by entropy-based discretization we con-
sider the PSA sequence (Figs. 1 and 2) from a patient
treated with twomedications (Zoladex and Leuprin) inter-
mittently. PSA level reached nadir at 15 months after
treatment began (Fig. 1). The PSA values were converted
into PSAVs (Fig. 2), and then PSAVs were assigned to one
of the PSAV states (i.e. Le, Me, He) that separate PSAVs
by the dashed lines (Fig. 2). The interval of PSAV states
is computed by entropy-based discretization. PSAV values
at (∞,−1), [−1, 6), and [ 6,∞) are discretized as Le,Me,
and He, respectively. Consequently, the PSA sequence
becomes the PSAV state sequence Me → Me → Me →
Le → Me → Me → Me → Me → Me → Me → Le.

Pattern mining
To fully utilize longitudinal PSA data, we split PSAV
state sequence into before- and after-nadir PSAV state
sequences, and investigated the whole PSAV state
sequence at the same time. We then used the frequent
sequential pattern mining (FSPM) method to find new
prognostic patterns. This method is the most widely used
method for a set of discrete sequences. This method is
also more computationally advantageous for a set of short

Fig. 1 PSA sequence. Example of transformation based on after-nadir
longitudinal PSA by entropy-bases discretization

and single sequences than are other methods that were
mostly devised to analyze heterogeneous and large-scale
data [19–22]. The PSAV state sequences were also short
due to the short follow-up periods. We used FSPM to find
candidate prognostic PSA patterns.
Particularly we used PrefixSpan algorithm for FSPM,

which is a pattern-growth approach that builds prefix
patterns that concatenate with suffix patterns to find fre-
quent patterns [18, 23]. For examples, let assume that
we have PSAV state sequences in Table 2 and minimal
frequency of 0.1. We began with length-one prefix. The
number of instance of length-one sequential patterns is L:
5, ML: 4, M: 6, MH: 1, H: 2. We discarded MH with fre-
quency (=1/18) < 0.1. We then divided the search space
with each prefix and searched sequential patterns start-
ing with the prefix. We listed up the subset of PSAV state
sequences starting with the prefix and discarded PSAV
state sequence with frequency < 0.1. We repeated these
process until the prefix becomes the whole PSA state
sequence.

Fig. 2 PSAV sequence and PSAV state. Example of transformation
based on after-nadir longitudinal PSA by entropy-bases discretization.
PSA sequence (Fig. 1) was transformed to PSAV sequence (Fig. 2),
then PSAV state (Le ,Me ,He) sequence. Dashed lines: borders between
PSAV states (labeled)
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Table 2 Example of PrefixSpan

PSAV state sequences

1 L → L → L → MH → M

2 L → M → ML → L

3 H → ML → M → M → ML

4 H → M → L → M → ML → M

We restricted the patterns to have a support ≥ 0.3 to
ensure the enough frequency, and a length ≤ 3 to avoid
over-fitting. The discovered set of candidate patterns were
the subset of PSAV state sequences. The patterns were
time-ordered but not always consecutive.

Selection
Predictive pattern selection
To select the predictive patterns among the candidates set
that were generated from FSPM, we evaluated the accu-
racy by measuring the area under the receiver-operating
characteristic curve (AUC) and Harrell’s concordance
index (C-index) [24]. Each candidate pattern p was used
as the predictor of CRPC because, by contraposition, if
HSPC patients have a pattern p, a patient without the pat-
tern p would be CRPC, and vice versa. We used baseline
set containing the 14 demographic and clinical features
that were extracted from the EMRs. We added each can-
didate pattern p to the baseline B (i.e. B ∪ p) to evaluate
the pattern p. We evaluated the discriminative power of
the pattern p using

�AUC = AUC(B ∪ p) − AUC(B), (2)

and

�C-index = C-index(B ∪ p) − C-index(B) (3)

where AUC(X) denotes AUC of a logistic regression to
predict CRPC using dataset X, and C-index(X) denotes
the C-index of a Cox regression to predict time to CRPC
using dataset X. They represent the net increase in AUC
and C-index compared to the baseline. Ten-fold cross vali-
dation was used. A paired t-test with 95 % confidence level
was conducted to identify patterns that increase the AUC
and C-index significantly; patterns that had p-value ≤
0.05 were excluded. The remaining significantly predic-
tive patterns among the candidate set became the final
candidate set from which the last pattern was selected.

Informative pattern selection
Among the significantly predictive patterns, we chose
the most informative pattern. We preferred specific and
rare patterns to broad and prevalent ones if the patterns
have similar accuracy, because the former pattern pro-
vides relatively more information than the latter one. We
formulated the relative information as follows:

Lemma 1. Let p1, p2 denote patterns that the prediction
accuracy are not significantly different, and let I(p) denote
the relative amount of information expressed by pattern p.
Then I(p2) ≤ I(p1) if

1. p2 is a sub-pattern of p1 or
2. The interval of p1 is a subset of interval of p2 or
3. The frequency of p1 is smaller than frequency of p2.

Cases 1 and 2 indicate that all patients that have p1 also
have p2; thus p1 is more specific than p2. For example, p2
is the sub-pattern of p1 if p1 = L → L, p2 = L because
L is a sub-pattern of L → L (Case 1). When p1 = Le,
p2 = Lq where Le has the interval of PSAV ≤ −0.048, and
Lq has the interval PSAV ≤ −0.005, then p1 is more spe-
cific than p2 (Case 2). Case 3 implies that p1 occurs more
rarely than p2. If p1 is rare than p2 although p1 and p2 have
similar prediction accuracy, it means that the amount of
information that p1 carries per instance. For example, if
p1 = Le, p2 = Mq where the frequency of p1 is 14.4 %,
and the frequency of p2 is 59.3 %, then p1 is more infor-
mative than p2 because p1 is more rare than p2 in spite of
the same prediction accuracy. We compared the amount
of information using Lemma 1, and selected from the can-
didate set the final prognostic pattern that has the largest
amount of information.

Comparison
We compared the progression to CRPC of the final pattern
with that of pretreatment PSA, nadir, and time to nadir,
which are known as the prognosis factors of CRPC. We
computed the log-rank statistics of Kaplan-Meier analysis
to test survival difference between patients with and with-
out the pattern. The thresholds of pretreatment, nadir, and
time to nadir were 100 ng/ml, 0.2 ng/ml, and 12 months,
respectively [6].

Software
We used R3.0.3 [25] with two packages: survival
[26, 27] for the significance test, Cox regression and log-
rank test; and randomSurvivalForest [13, 27] for
the imputation. We also used JAVA API, SPMF [28] to
implement FSPM.

Results
We separated the longitudinal PSA data into before and
after nadir. For the after-nadir dataset, we had 261 patients
(HSPC: 167, CRPC: 94), and the mean follow-up time
was 38.7 ± 3.5 months; the mean time to CRPC was
15.8 ± 2.4 months. Median PSAV was 0.022 ng/(ml · mo)
(from -1521 to 2091). (Analysis of the before-nadir data
did not reveal any prognostic patterns (Appendix A)).
We discretized the continuous PSAV values into five and

three PSAV states by equal-frequency binning (Table 3) or
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Table 3 Discretization to PSAV state after nadir by equal-frequency
binning

PSAV state
Interval

Frequency [%] Value [ng/(ml·mo)]

Lq (0, 20] (, −0.005]

MLq (20, 40] (−0.005, 0.005]

Mq (40, 60] (0.005, 0.068]

MHq (60, 80] (0.068, 0.454]

Hq (80, 100] (0.454, )

Lq = Low,MLq = Medium low,Mq = Medium,MHq = Medium high, Hq = High

entropy-based discretization (Table 4). Equal-frequency
binning generated PSAV states of which frequency was
evenly distributed over the five states. Entropy-based
method generated three PSAV states; 85 % were Me, 14 %
were Le, and 1 % were He.Me occurred in both CRPC and
HSPC, Le occurred only in HSPC, and He occurred only
in CRPC.
We found the candidate patterns from the set of after-

nadir PSAV state sequences. Among the after-nadir 261
patients’ sequences, we found 13 HSPC and 3 CRPC fre-
quent patterns by equal-frequency binning (Table 5); and
6 HSPC and 2 CRPC frequent patterns by entropy-based
discretization (Table 6). The PSAV state sequences from
CRPCwere rather uncommon among them; thus we could
not find many frequent patterns from CRPC. In contrast,
the PSAV state sequences from HSPC contained patterns
that occurred repeatedly.
We computed the�AUC and�C-index when each can-

didate pattern was added to the baseline, and checked the
significances of the �AUC and �C-index by calculating
the p-values of paired t-tests. Five patterns from HSPC
and the after-nadir were predictive in that they increased
the AUC and C-index significantly (Table 7), but none of
the patterns from CRPC or the before-nadir were pre-
dictive. The two equal-frequency binning patterns were
observed: (1) Lq: PSA decline ≥ 0.005 ng/ml per month
after nadir, (2) Lq → Lq: two PSA declines ≥ 0.005 ng/ml
per month after nadir; they showed the AUC of 0.81 and
C-index of 0.78 – 0.79. The two entropy-based discretiza-
tion patterns with Le were observed: (1) Le: PSA decline ≥
0.048 ng/ml per month after nadir, (2) Le → Le: two

Table 4 Discretization to PSAV state after nadir by entropy-based
discretization

PSAV state
Interval

Frequency [%] Value [ng/(ml·mo)]

Le (0, 14.1] (, −0.048]

Me (14.1, 99.2] (−0.048, 5.43]

He (99.2, 100] (5.43,)

Le = Low,Me = Medium, He = High

Table 5 After-nadir candidate patterns by equal-frequency
binning

Pattern (support)
HSPC CRPC

Lq (0.51), Lq → Lq (0.34) Mq (0.45)

MLq (0.54), Mq → Lq (0.31) MHq (0.43)

Mq (0.54), Mq → Mq (0.35) Hq (0.36)

MHq (0.54), MHq → Lq (0.40)

Hq (0.48), MHq → Hq (0.31)

MHq → MHq (0.36)

Hq → Lq (0.34)

Hq → Hq (0.32)

Lq ,MLq ,Mq ,MHq ,Hq = PSAV state (Table 3)

PSA declines ≥ 0.048 ng/ml per month after nadir; they
showed the AUC of 0.81 – 0.82 and C-index of 0.77 – 0.81.
One entropy-based discretization pattern with Me before
Le was observed; this was Me → Le: PSA decline from
0.048 to 5.43 ng/ml per month followed by PSA decline ≥
0.048 ng/ml per month after nadir; this pattern showed
the AUC of 0.84 and C-index of 0.81.
The most informative pattern among the five predictive

patterns was Le → Le. Because the AUC and C-index
among the predictive patterns were not significantly dif-
ferent, we compared the relative amount of informa-
tion using Lemma 1 regardless of AUC and C-index. By
Lemma 1.1,

I(Le) ≤ I(Le → Le),
I(Le) ≤ I(Me → Le),
I(Lq) ≤ I(Lq → Lq).

(4)

We then had I(Le → Le), I(Me → Le), and I(Lq → Lq)
after excluding patterns with small amounts of informa-
tion. By Lemma 1.2,

I(Lq → Lq) ≤ I(Le → Le). (5)

Table 6 After-nadir candidate patterns by entropy-based
discretization

Pattern (support)
HSPC CRPC

Le (0.49) Me (0.88)

Me (0.95) Me → Me (0.55)

Le → Le (0.33)

Le → Me (0.38)

Me → Le (0.49)

Me → Me (0.81)

Le ,Me = PSAV state (Table 4)
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Table 7 Mean and s.d. of logistic regression and Cox regression
when each candidate pattern is added to baseline

Pattern
Logistic regression Cox regression

Mean AUC s.d. Mean C-index s.d.

Baseline 0.6951 0.0686 0.6898 0.0429

Lq 0.8102 0.0549 0.7938 0.0323

Lq → Lq 0.8110 0.0500 0.7815 0.0384

Le 0.8103 0.0665 0.8090 0.0442

Le → Le 0.8245 0.0352 0.7733 0.0623

Me → Le 0.8446 0.0459 0.8174 0.0411

Finally, we compared I(Le → Le) and I(Me → Le) by
Lemma 1.3,

I(Me → Le) ≤ I(Le → Le). (6)

Thus the final pattern was Le → Le.
We conducted a Kaplan-Meier analysis of the pattern

Le → Le and the other PSA patterns, and found that
patients with Le → Le showed slow progressions to
CRPC, and that patients without Le → Le showed fast
progressions to CRPC (Figs. 3, 4, 5 and 6). The log-rank
statistics of all PSA patterns had p-values ≤ 0.05. When
compared with other PSA patterns, this pattern Le → Le
had comparable prognostic power.

Discussion
The objective of this study was to exploit the longitudi-
nal measurements of PSA to discover a new prognostic
pattern that predicts CRPC. The results of this study
demonstrated that ADT patient is more likely to retain
HSPC if, after PSA values reach nadir, PSA level decreases
more than 0.048 ng/ml during a month, then the decrease
occurs again; thus two PSA declines ≥ 0.048 ng/ml per
month after nadir could be the prognostic pattern. This

Fig. 3 Pattern Le → Le . Time vs. CRPC-free rate to measure survival
difference. p ≤ 0.001

Fig. 4 Pretreatment PSA. Time vs. CRPC-free rate to measure survival
difference. p = 0.003

pattern was significantly related to the survival time to
CRPC.
This finding has not been described in previous research

on how different forms of PSA kinetics are associated with
prognosis [5–10]. The most representative PSA prognos-
tic patterns are pretreatment PSA, nadir, time to nadir
or doubling time. Previous studies did not investigate
all available PSA values, but instead used only one or
two PSA values before or around nadir; thus the predic-
tive value of PSA change during ADT was not clearly
evaluated. In contrast, our pattern was computed from
the whole PSA sequence, including even the latter parts.
Although the initial response to ADT has important clin-
ical significance, the subsequent response that is inferred
from PSA after nadir might also contain information that
can be used to predict CRPC. Incorporating PSA level as
the sequence might enable us to understand the response
to ADT more specifically.

Fig. 5 PSA nadir. Time vs. CRPC-free rate to measure survival difference.
p = 0.031
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Fig. 6 Time to PSA nadir. Time vs. CRPC-free rate to measure survival
difference. p = 0.021

We found that the two substantial declines after PSA
nadir ensured sensitivity to ADT. The concept of the two
substantial declines after PSA nadir can be confusing for
clinicians, because nadir PSA means the lowest PSA value
around a given point of observation. The occurrence of
two substantial declines after PSA nadir implies that PSA
fluctuates after nadir. PSA might increase due to some
reasons such as intermittent treatment, and decline as
sensitively reacting to ADT. We can further infer that the
main difference between HSPC and CRPC is on whether
PSA level fluctuates as the response to ADT.
The importance of this study is that the PSA decline

after nadir helps to stratify men by the risk of CRPC
and to determine the patient population that needs inten-
sive follow-up. Risk assessment of the disease progression
to CRPC has been based on the early PSA values, (i.e.
before or around nadir) and has been limited to mea-
suring the initial response. PSA after nadir has been
neglected due to the complicated nature of computation,
but we demonstrated that considering the after-nadir PSA
pattern significantly increased the accuracy of the risk
assessment by supplementing the early risk assessment
obtained using the before-nadir PSA. Thus we can eas-
ily identify high-risk men who need in-depth follow-up.
Therapeutic decision-making based on appropriate risk
stratification enables clinicians to use clinical resource
effectively.
This study has two main limitations. The first limita-

tion is that the PSA decline pattern may occur at any
time after nadir, so clinicians must wait until the pattern
occurs, which must occur after the nadir. This means that
clinicians must wait a long time to check whether PSA
level declines; this delay is a disadvantage because rapid
risk assessment is preferable when designing therapies for
high-risk patients. However, FSPM with time constraints
can solve this problem [18]. The time-gap between the

PSAV states in the discovered pattern can be restricted.
The PSAV states that occur within a specified gap reduce
the time required to detect the occurrence than PSAV
states without the gap. The second limitation is that anal-
ysis of the PSA decline pattern was focused on predicting
HSPC. The median time to CRPC was only 15.8 months,
whereas the median follow-up of all population was 38.7
months. The PSAV sequence from CRPC was not long
enough to discover meaningful patterns, so most frequent
patters were from HSPC. We predicted CRPC indirectly
by predicting HSPC using the PSA decline pattern. A
prognostic pattern that occurs frequently in CRPC can
help detect CRPC directly, and this prognostic pattern
from CRPC can be discovered if the quantity of data is
increased and the follow-up time is extended.

Conclusions
This study discovered a prognostic PSA pattern that pre-
dicts CRPC for ADT using FSPM, and demonstrated the
clinical significance of the pattern. A patient in which PSA
declined twice by ≥ 0.048 ng/ml per month after nadir
was predicted to retain HSPC, and a patient in which
these declines did not occur was predicted to develop
CRPC; the prediction had the AUC of 0.82 if the pattern
was combined with pretreatment PSA, nadir, and time to
nadir. These results can help risk stratification of ADT
patients.

Appendix A: Results of before-nadir PSA values
For the before-nadir dataset, we had 306 patients
(HSPC: 233, CRPC: 73), and the mean follow-up time was
37.7± 3.5 months; the mean time to CRPC was 17.5± 0.3
months.Median PSAVwas -0.12 ng/(ml ·mo) (from -1917
to 1686). After discretization, equal-frequency binning
gave five discrete PSAV states (Table 8); but the entropy-
based discretization could not be applied because the
PSAV distributions of CRPC and HSPC were too simi-
lar. Among the 306 patients’ PSAV state sequences, we
discovered 6 HSPC and 5 CRPC frequent patterns from
equal-frequency binning (Table 9). We computed the
AUC and C-index when each frequent pattern is added to

Table 8 Discretization to PSAV state before nadir by
equal-frequency binning

PSAV state
Interval

Frequency [%] Value [ng/(ml·mo)]

Lbq (0, 20] (, −5.567]

MLbq (20, 40] (−5.567, −0.611]

Mbq (40, 60] (−0.611, −0.026]

MHbq (60, 80] (−0.026, 0.005]

Hbq (80, 100] (0.005, )

Lbq = Low,MLbq =Medium low,Mbq =Medium,MHbq =Medium high,Hbq =High



Kim et al. BMCMedical Informatics and DecisionMaking 2016, 16(Suppl 1):63 Page 8 of 63

Table 9 Before-nadir candidate patterns by equal-frequency
binning

Pattern (support)
HSPC CRPC

Lbq (0.78) Lbq (0.64)

MLbq (0.52) MLbq (0.61)

Mbq (0.41) Mbq (0.52)

MHbq (0.36) Lbq → Mbq (0.31)

Hbq (0.37) MLbq → Mbq (0.33)

Lbq → MLbq (0.33)

Lbq ,MLbq ,Mbq ,MHbq ,Hbq = PSAV state (Table 8)

the baseline, but we could not find patterns that increase
AUC and C-index significantly.
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