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Abstract

Background: The survival of patients with breast cancer is highly sporadic, from a few months to more than
15 years. In recent studies, the gene expression profiling of tumors has been used as a promising means of
predicting prognosis factors.

Methods: In this study, we used gene expression datasets of tumors to identify prognostic factors in breast
cancer. We conducted log-rank tests and used unsupervised clustering methods to find reciprocally expressed
gene sets associated with worse survival rates. Prognosis prediction scores were determined as the ratio of gene
expressions.

Results: As a result, four prognosis prediction gene set modules were constructed. The four prognostic gene sets
predicted worse survival rates in three independent gene expression data sets. In addition, we found that cancer

patient with poor prognosis, i.e., triple-negative cancer, HER2-enriched, TP53 mutated and high-graded patients
had higher prognosis prediction scores than those with other types of breast cancer.

Conclusions: In conclusion, based on a gene expression analysis, we suggest that our well-defined scoring
method of the prediction of survival outcome may be useful for developing prognostic factors in breast cancer.

Background

Breast cancer is one of the most common cancer types
in women. In 2015, an estimated 234,190 new cases will
be diagnosed, and 40,730 deaths from breast cancer will
occur [1]. Prognosis and therapy selection for those with
breast cancer are usually affected by clinical and path-
ology features based on conventional histology and im-
munohistochemistry findings [2]. In general cases, the
menopausal status of the patient, the stage of the dis-
ease, the grade of the primary tumor, the estrogen (ER)
and progesterone receptor (PR) status, and the level of
human epidermal growth factor type 2 receptor (HER2)
expression have been used for prognosis predictions.
More recently, various uses of molecular profiling in
breast cancer also includes ER and PR status testing,
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HER2/neu receptor status testing, and gene profile test-
ing with, for example, MammaPrint [3] or Ocnotype DX
[4, 5].

With regard to clinical intervention, it is critical to iden-
tify which patients are at risk of developing a more fatal
type of breast cancer. Well-known prognostic factors such
as ER and HER2 can be used to predict which patients
face higher levels of risk. However, in addition to these
traditional makers, there are still novel prognostic factors
which are required for predictions of survival for patients
with ill-defined breast cancer types. Triple-negative breast
cancer is one of the subtypes currently having no such
prognostic factors and no targeted drug therapies. Re-
cently, several gene signatures have been identified to pre-
dict prognostic outcomes. Tang et al. found that a
decreased level of BECENI gene expression in human
breast cancer is associated with poor prognosis [6]. The
CENPA gene was a significantly independent prognostic
marker for patients with ER-positive breast cancer [7].
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More recently, Al-Ejeh et al. identified eight genes
(MAPT, MYB, MELK, MCM10, CENPA, EXOI, TTK and
KIF2C) associated with poor survival in breast cancer pa-
tients through biological evidence pertaining to TNBC,
metastases, and patient survival [8]. In the latest studies,
Liu et al. identified and validated five genes (CDKI,
DLGAPS, MELK, NUSAPI, and RRM?2), the expression
levels of which were strongly associated with shorten sur-
vival time [9]. Although these significant genes were iden-
tified, still remains a need for a more comprehensive and
exhaustive analysis to find novel prognostic factors.

In this study, to identify prognostic factors based on
gene expressions, we undertook a statistical gene expres-
sion data analysis using 1981 breast tumor expression
profiles. All of the genes were used individually in our
analysis. The expression of each gene was identified as
high or low with regard to poor survival, and we clus-
tered genes using an unsupervised method. Finally, we
found four matched gene sets along with four modules
identified through each gene set which could be used as
prognostic markers (Fig. 1). Our results showed that
four gene set modules were significantly associated with
the worst survival rates; they were strongly associated
with a higher tumor grade, 7P53 mutation, ER-negative,
HER2-enriched or basal-like subtypes, as well as triple-
negative breast cancer.

Method

Gene expression profiles

We obtained four independent publicly available breast
cancer datasets for survival analysis. One is the Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) in the United Kingdom and Canada [10].
These data were accessed through Synapse (synapse.sage-
base.org, Synapse ID: syn1688369). The other three data-
sets were collected from the Gene Expression Omnibus
(GSE25066 [11], GSE2034 [12], GSE3494 [13]). The
METABRIC data set is used for training, and three GSE
datasets (GSE25066, GSE2034, and GSE3494) are used for
validation. To investigate genes related to triple-negative
cancer, we used three breast cancer gene expression data-
sets: METABRIC, GSE2109 [14] and GSE25066. In the
METABRIC dataset, normalized expression levels of a
total of 54,675 probes were measured in 1981 breast
tumor samples. Data were transformed to a compatible
24,924-gene format by selecting the median values of each
probe expression. In the three independent GEO datasets,
the normalized expression levels of 22,283 probes were
measured in 508, 286, and 251 breast tumor samples.
These data were also transformed to a 13,433-gene ex-
pression format by selecting the median value of each
probe expression. Table 1 indicates used five microarray
datasets in this study.
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Fig. 1 Overall workflow The expression profiles of 24,924 genes
were used for the survival log-rank test. Two gene groups were
chosen as highly expressed genes (H1, H2), and low-expressed
genes (L1, L2) associated with poor survival were clustered according
to positive correlations. Negative correlations were used for pairing
across differentially expressed gene sets. Finally, four paired gene sets
were selected. To estimate the prognostic scores, the ratio of the level

of high- and low-expressed genes was defined as the score

Prognostic factor gene set selection

A total of 24,924 genes in METABRIC dataset were used
in this research. To identify high/low expressed genes
based on patient’s poor survival, we implemented a log-
rank test and used an expression fold-change between
patients who separated to first quartile and forth quartile
corresponding to each gene expression level. This
process was implemented by each gene. Hazard ratio
was calculated between first and forth quartile patient
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Table 1 The dataset used in this study
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Dataset grade age ER status TNBC Total Platform

1 2 3 <40 40 ~ 60 >60 + -
METABRIC 170 775 952 118 754 1109 1505 435 317 1981 lllumina HT 12v3
GSE25066 32 180 259 85 327 96 297 205 178 508 Affymetrix HG U133A
GSE2034 NA NA NA NA NA NA 209 77 NA 286 Affymetrix HG U133A
GSE3494 67 128 54 16 90 145 213 34 NA 251 Affymetrix HG U133A
GSE2109 31 113 136 NA NA NA NA NA 47 351 Affymetrix HG U133A

Here, 1981, 508, 286 and 251 samples of gene expression profiles were used from the METABRIC, GSE25066, GSE22034, and GSE3494 datasets, respectively. The
METABRIC data set is used for training, and three GSE (GSE25066, GSE2034, and GSE3494) datasets are used for validation. METABRIC, GSE25066, and GSE2109
datasets were used to find differentially expressed genes (DEGs) between TNBC vs. non-TNBC. The numbers located in table represent the number of samples

according to breast cancer characteristics

groups and adjusted p-value cutoff was determined as
0.001. Therefore, if hazard ratio is greater than one with
proper threshold and patients’ expression fold-change
(first/fourth) is greater than 2, we selected the gene as a
high-expressed gene in poor survival. Similarly, if hazard
ratio is less than one with proper p-value cutoff and an
expression fold-change (fourth/first) is less than 0.5, we
selected the gene as a low-expressed gene in poor sur-
vival (Additional file 1: Figure S1). In the log-rank test of
every 24,924 gene, we found 413 highly expressed genes
associated with poor survival and 411 low-expressed
genes associated with poor survival.

Identification of four prognostic modules

To construct the list of candidate genes for predicting
patient’s outcome, we initially used over 20,000 genes
and we selected a list of prognostic candidate genes by
using a survival log-rank test. However, since too many
number of genes showed significance in the log-rank
test, we proposed an algorithm for minimizing and clus-
tering genes according to their significance and co-
expressed pattern. For clustering the two previously
defined gene sets, we used the maximal clique algorithm
[15] with Pearson correlation coefficient scores. Among
the 413 high-expressed genes, we connected genes if
two genes had a Pearson correlation coefficient which
exceeded 0.4. We then determined the maximal clique
in the 413 genes, after which we eliminated these genes
and found the next maximal clique. Similarly, for the
411 low-expressed genes associated with poor survival,
we also clustered genes with a minimum Pearson correl-
ation coefficient of 0.4. To avoid the cluster which has
too small number of genes, we used only two major
clusters. Here, we used clusters for high/low expression
gene sets which have over 15 independent genes. After
clustering, we obtained two high-expressed gene groups
associated with poor survival and two low-expressed
gene groups. The connections between the high- and the
low-expressed genes were also identified with a Pearson
correlation coefficient of -0.4 through the maximal bi-
clique generation algorithm [16]. Finally, there were four

matched gene sets which are strongly connected to each
other, as represented by high correlation values from the
gene expression data. Each gene set has high-expressed
and low-expressed genes associated with poor survival.
Thus, we identified four prognosis prediction scores as
the ratio between the median of the high-expressed gene
level to the low-expressed gene level in the four matched
gene sets. We defined the module 1 score as the ratio of
the 26 high-expressed genes associated with poor survival
to the 17 low-expressed genes associated with poor sur-
vival. Similarly, Modules 2, 3 and 4 scores were respect-
ively defined as the ratios between the eight, nine, and
four high-expressed genes associated with poor survival to
the 10, nine, and eight low-expressed genes associated
with poor survival. Because we used the maximal clique
algorithm to cluster each gene set, there was a strong cor-
relation between the expression levels of each high-
expressed gene and low-expressed gene associated with
poor survival (Pearson’s r>0.4). Between high-expressed
genes and low-expressed genes, the maximum Pearson
correlation coefficient was found to be -0.4.

Survival analysis

We analyzed three sets of detailed clinical data from each
of the studies used. These were GSE2034, GSE25066, and
GSE3494. We used the Disease-Free Survival (DFS) clin-
ical information in GSE2034 and GSE25066, and the Dis-
tant Recurrence Free Survival (DRFS) in GSE3494. In a
Kaplan Meier survival plots, the median of a measured
module’s score was used to dichotomize the data, allowing
stratification into high and low groups within each of the
three individual datasets.

Genes associated with triple negative breast cancer

To investigate genes related to triple negative breast
cancer (TNBC), after comparing the three independ-
ent expression profiles, we selected 230 up-regulated
genes and 237 down-regulated genes in TNBC (Cut
off p-value<0.05, FDR<0.05, from t¢-test, log fold
change < 0.5) from METABRIC, GSE2109 and GSE25066
datasets.
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Results

Worse survival with four modules

Patients whose tumors had the highest score among the
four modules had the worst prognosis. To validate each
score, we used the three datasets of GSE2034, GSE25066,
and GSE3494. We selected four matched gene sets from
METABRIC data set which consist of about 20,000 genes
on Illumina HT 12v3 platform. However, in the test data-
sets, the expression profiles consist of about 12,000 genes
on Affymetrix HG U133A platform. Therefore, all genes
obtained from METABRIC were not matched in test data-
sets. In module 1, among 44 METABRIC genes, 37 genes
were used for validation. In module 2, module3 and mod-
ule 4, we used 11, 27 and 8 matched genes among 17, 36,
14 METABRIC genes, respectively. According to Kaplan
Meier survival plots of the three independent sets, high-
scoring patients had poor survival rates in the scores of all
of the modules. In the GSE2034, GSE25066 and GSE3494
datasets with module 1, patients dichotomized by the prog-
nosis prediction score from 23 high-expressed and 14 low-
expressed gene expressions were associated with the worst
survival prognosis (Fig. 2a-f). Patients whose tumors had
high scores on module 1 had the worst prognosis (P =
0.0036, P<0.0001, and P<0.0001, respectively). With
modules 2, 3, and 4, similarly, patients whose tumors had
high scores had the worst prognosis. In GSE2034, patients
whose tumors had high module 1, 2 and 3 scores had the
worst. In GSE3494, patients whose tumors had high
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module 1, 2 and 3 score had the worst prognosis. Only the
cases of GSE2034 and GSE3494 with module 4 were not
significantly different (Additional file 1: Table S1). We also
investigated a lot of possible cases of prediction for dif-
ferently matched gene set according to manifold
threshold. The significance of those results was repre-
sented in Additional file 1: Table S1.

Prognostic factor gene set in module 1

Among the four modules in this research, the module 1
signature strongly represented a high hazard ratio with
significant p-values (Fig 2a-c). Figure 3a shows the ex-
pression pattern of the 28 and 17 prognostic factor
genes. The 28 genes in the upper part of the figure rep-
resent high-expressed genes associated with poor sur-
vival, and these genes are co-expressed relative to each
other (Pearson’s r>0.4). The 17 genes in the lower part
of the figure represent low-expressed genes associated
with poor survival; these genes are also strongly co-
expressed relative to each other (Pearson’s r>0.4). In
METABRIC, when gene expressions were compared
across different tumor types without dichotomization,
the module 1 gene score was significantly higher in the
HER2-enriched group with the basal-like type (Fig. 3b).
Similarly, the triple-negative breast cancer type, ER-
negative, and the 7P53 mutation type had higher scores
than the other breast cancer types (Fig. 3c and d). The
significance levels of the genes used in module 1 were
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also confirmed using BreastMark [17], which identifies
putative prognostic biomarkers. BreastMark gave hazard
ratios which were statistically significant for 41 out of 44
genes including previously defined prognostic genes
(Table 2, Additional file 1: Table S2). In 26 high-
expressed genes in module 1, 16 genes are previously de-
fined as prognostic genes, and among 17 low-expressed
genes, 8 genes are previously defined as prognostic genes

(Additional file 1: Table S2). 26 genes out of module 1
were differentially expressed genes (DEGs) in TNBC and
non-TNBC (19 upregulated genes and 11 down-
regulated genes in TNBC) (Table 2).

Discussion
The discovery of prognostic factors is crucial work in
breast cancer biomarker research. In this study, using a
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Table 2 The gene list used for module 1
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Gene Description METABRIC BreastMark[17]
HR p-value HR p-value
High-expressed genes CHEK1 2, ° checkpoint kinase 1 2.16 8.1E-11 132 3.9E-06
FOXM1 © forkhead box M1 2.58 44E-16 1.58 5.5E-13
CCNA2 2 P cyclin A2 253 58E-15 147 3.0E-09
CcDC202,° cell division cycle 20 2.50 9.6E-15 1.54 5.8E-13
TTK @, b TTK protein kinase 2.28 1.5E-12 1.50 1.2E-11
CENPA @ P centromere protein A 2.56 44E-16 1.54 6.6E-13
KIF2C @ ° kinesin family member 2C 249 56E-15 1.64 2.2E-16
BUB1 ® BUBT1, mitotic checkpoint serine/threonine kinase 250 2.1E-14 1.61 2.2E-15
MCM6 minichromosome maintenance complex component 6 2.09 3.5E-10 1.56 8.8E-14
LMNB2 ° lamin B2 217 3.2E-1 1.38 2.6E-07
CDC45 P cell division cycle 45 2.53 2.6E-14 1.50 43E-12
ANLN @ anillin actin binding protein 227 6.1E-12 148 1.18-07
MCM10 ® minichromosome maintenance 10 replication initiation factor 2.30 15E-12 1.62 9.8E-14
CDCA8 % © cell division cycle associated 8 228 1.0E-12 1.55 3.8E-13
MELK ° maternal embryonic leucine zipper kinase 2.56 3.6E-15 1.60 0
CCNB2 @ cyclin B2 279 0 1.72 0
CEP55 2 P centrosomal protein 55 kDa 255 9.1E-15 1.56 1.8E-13
DLGAPS 2, ° discs, large (Drosophila) homolog-associated protein 5 2.16 3.8E-10 146 3.6E-10
HJURP © Holliday junction recognition protein 2.79 0 161 23E-15
CDCAS5 @ cell division cycle associated 5 2.76 0 1.29 1.3E-03
TRIP132,° thyroid hormone receptor interactor 13 218 5.0E-11 144 6.6E-09
GTSE1 2 P G2 and S-phase expressed 1 2.54 1.7E-14 1.35 5.5E-07
CDCA3 2 ® cell division cycle associated 3 229 53E-12 148 83E-10
PRR11 proline rich 11 2.09 1.3E-10 1.18 2.6E-06
FAMS83D ° family with sequence similarity 83 member D 2.66 2.2E-16 145 2.6E-06
GTPBP4 ° GTP binding protein 4 1.73 1.6E-06 1.36 4.2E-07
Low-expressed genes ESR1 ° estrogen receptor 1 0.54 2.6E-08 0.84 2.1E-02
GATA3 P GATA binding protein 3 0.57 40E-07 092 1.6E-01
LRIG1 leucine-rich repeats and immunoglobulin-like domains 1 049 3.0E-10 0.65 14E-12
RABEP1 ° rabaptin, RAB GTPase binding effector protein 1 0.57 54E-07 0.75 2.3E-06
CIRBP P cold inducible RNA binding protein 044 1.1E-12 0.70 3.9E-09
EVL P Enah/Vasp-like 0.55 1.1E-07 0.78 1.0E-04
WDR19 WD repeat domain 19 0.52 1.5E-08 0.77 4.5E-05
SCUBE2 ® signal peptide, CUB domain, EGF-like 2 0.55 1.7E-07 0.75 1.1E-04
KIF13B ® kinesin family member 13B 0.55 3.8E-07 0.64 2011
TBC1D9 ° TBC1 domain family member 9 0.55 1.2E-07 0.82 9.5E-04
ANKRA2 ® ankyrin repeat family A member 2 0.55 6.2E-08 093 2.3E-01
DYNLRB2 dynein, light chain, roadblock-type 2 049 1.3E-09 093 3.9E-01
NME5 ° NME/NM23 family member 5 044 3.8E-12 0.77 4.6E-05
CAPN8 calpain 8 0.54 1.5E-07 067 2.5E-02
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Table 2 The gene list used for module 1 (Continued)
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CASC1 ® cancer susceptibility candidate 1
BBOF1 basal body orientation factor 1
RUNDC1 RUN domain containing 1

044 1.8E-12 0.79 1.0E-04
046 PRI 0.78 7.5E-05
0.55 1.0E-07 0.75 3.0E-04

High expressed genes: high-expressed gene group associated with poor survival, Low expressed genes: low-expressed gene group associated with poor survival, °genes
associated with the cell cycle process. PDifferentially expressed genes between triple-negative and non-triple-negative breast cancer, HR: hazard ratio, p-value: log-rank test

large-scale transcriptomic dataset, we found that four
types of prognostic gene sets are strongly related with
poor patient outcomes. We used each of the four gene
set expressions to evaluate three independent breast tu-
mors and found that scores based on gene expression
gave generally consistent predictions of outcomes. When
comparing tumor characteristics and scores, tumors
with high scores were more likely to have TP53 muta-
tions, to be HER2-enriched or to have basal-like intrinsic
subtypes, triple-negative status, and worse survival rates.

The twenty six genes and 17 genes used in module 1
were strongly co-expressed in METABRIC dataset, and
the ratio of the expression levels of the two DEG groups
were used as a prognostic marker in this research.
Among these high-expressed genes associated with poor
survival of patients, many were associated with genes in-
volved in the cell cycle process [18], including several
well-defined genes as prognostic factor. Recently, Abdel-
Fatah et al. showed that high CHEK1 expression level is
linked to poor prognosis in breast cancer and aggressive
breast cancer [19]. HJURP was also recently identified as
an independent biomarker of cancer outcome in luminal
A patients [20]. Breast cancer progression can include
the FOXM1-CDCAS signature which assists as a promis-
ing therapeutic target and potential prognostic factor
[21]. In addition, Kwok et al. showed that the knock-
down of FOXM1 with thiostrepton in micelle nanoparti-
cles reduced tumor growth rates and increased apoptosis
[22]. Thus, they showed that FOXMI is one of the pri-
mary cellular targets of thiostrepton in breast cancer
cells. Karra et al. discovered that high CDC20 and
securin immunoexpression are correlated with unusually
poor outcomes of breast cancer patients [23]. BUBI has
important roles in the proliferation or progression of
breast cancer, and the nuclear BUB1 immunohistochem-
ical status is considered to be an influential prognostic
factor in human breast cancer patients [24]. Liu et al.
identified and validated five hub genes (CDK1, DLGAPS,
MELK, NUSAPI, and RRM?2), the expression levels of
which were strongly associated with poor survival.
Highly expressed MELK revealed poor survival in luminal
A/B molecular subtypes of breast cancer [9]. Furthermore,
among low-expressed genes associated with poor survival,
several well-defined genes were found to be prognostic
factor. The role of GATA3 in breast cancer as a tumor
suppressor has been established. Interestingly, the GATA3

down-regulation is required for the progestin-induced up-
regulation of cyclin A2(CCNA2) and for progestin-
induced in vivo and in vitro breast cancer cell growth [25].
Thompsons et al. presented low expression of LRIGI is a
prognostic factor for breast cancer patients [26]. Cheng et
al. showed patients with negative SCUBE2 protein-
expression tumors had worse prognosis than those with
positive SCUBE?2 protein-expression tumors in breast can-
cer [27]. The latest studies suggested the deregulation of
NMES, DNALI1 in malignant breast cancer [28]. In
addition, 30 genes out of 44 module 1 genes were DEGs
in TNBC and non-TNBC (19 upregulated genes and 11
down-regulated genes in TNBC). Thus, we confirmed that
the DEGs of classical poor prognosis breast cancer type
were also related to our results.

Conclusions

In conclusion, our finding presents the score of progno-
sis prediction modules that are strongly associated with
shortened survival times in breast cancer, and the score
of the module is consistently high in aggressive breast
cancer types such as TNBC and ER-negative and HER2-
enriched types. In addition, we found that this score is
associated with the tumor grade in breast cancer. Thus,
we suggest the inclusion of these enriched genes as ag-
gressive cancer markers; 26 co-expressed and 17 genes
can be used as new prognostic markers, and we expect
that these investigations can be adapted to research on
target therapies for ill-defined breast cancer types.
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