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Abstract

Background: The purpose of this study is to investigate factors that motivate nurses to protect privacy in electronic
medical records, based on the Decomposed Theory of Planned Behavior.

Methods: This cross-sectional study used questionnaires to collect data from nurses in a large tertiary care military

hospital in Taiwan.

Results: The three hundred two (302) valid questionnaires returned resulted in a response rate of 63.7 %. Structural
equation modeling identified that the factors of attitude, subjective norm, and perceived behavioral control of the
nurses significantly predicted the nurses’ intention to protect the privacy of electronic medical records. Further,
perceived usefulness and compatibility, peer and superior influence, self-efficacy and facilitating conditions,

respectively predicted these three factors.

Conclusions: The results of our study may provide valuable information for education and practice in predicting
nurses’ intention to protect privacy of electronic medical records.
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Background

International advocacy has grown considerably to use
healthcare information technologies (HITs), such as elec-
tronic medical records (EMRs), to enhance healthcare
service quality and decrease costs [1-3]. Despite ex-
pected clinical and economic benefits for EMRs, the
privacy of health care data remains a concern for both
patients and healthcare organizations, impacting the use
of EMRs [4].

Nursing plays an important role in patient care ser-
vices since health care organizations recognize nurses as
both coordinators and providers of these services [5].
Nurses comprise the largest portion of healthcare pro-
fessionals and interact more with EMRs than other
health care professionals due to the nature of their work
[6]. The adoption of EMRs should assist nurses in pro-
viding nursing care and completing record-keeping
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routines more efficiently and effectively. Clinically,
nurses collect and disseminate confidential patient infor-
mation as part of their daily routines [7]. Consequently,
besides caring for patients, the role of the nurse includes
protecting the personal information of patients [7] as
stated in the Code of Ethics for Nurses from the Ameri-
can Nurses Association [8] and the Nightingale Pledge
[9]. Further, the privacy rules of Health Insurance Port-
ability and Accountability Act (HIPAA) require health-
care providers to secure the privacy of patients’ health
information [10]. Failure of nurses to safeguard patient
privacy will erode nurse/patient relationships and impact
the quality of the treatment provided [11]. Further, if
nurses do not maintain the privacy of the information in
EMRs, thus inappropriately disclose such information;
patients may receive serious harm [12]. Unfortunately,
most violations of patient privacy in medical facilities
result from staff abuse or misuse of the right to access
patient records [13].

Previous nursing studies regarding privacy mainly
focused on providing opinion reports describing the
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importance of protecting patient privacy [7, 11]. How-
ever, little research has explored empirically the factors
influencing nurses to protect the privacy of EMRs. By
knowing these influencing factors, medical facilities can
formulate strategies to motivate nurses’ intention to pro-
tect the privacy of EMRs. Consequently, the primary
purpose of our study is to explore empirically the factors
motivating nurses to protect EMRs privacy based on the
Decomposed Theory of Planned Behavior (DTPB) [14].

Literature review

Electronic medical records

Generally, managers consider Information Technologies
(ITs) to be an effective tool for improving efficiency and
effectiveness in organizations. Although the healthcare
industry has lagged behind other industries in the
utilization of ITs, many medical facilities have under-
stood the benefits that ITs offer and have adopted ITs
[1]. The EMR is one type of IT that healthcare managers
expect will reduce cost and improve the quality of health
care [1, 2]. EMRSs refer to the array of computer software
applications commonly used to communicate orders for
medical care, to document pertinent facts regarding a
patient’s medical history, and to disseminate results of
diagnostics testing [4].

Health care professionals often use another term,
electronic health records (EHRs), interchangeably with
EMRs. However, these two terms are different in sev-
eral ways. First, EMRs are legal records created in
hospitals and are the source of EHRs [15]. EMRs pri-
marily contain the medical and treatment history of
the patients in one hospital and only used by health-
care professionals within that hospital [16]. On the
other hand, EHRs also contain wellness information
[15, 16]. Thus, EHRs provide a broader view on a pa-
tient’s care than EMRs.

Additionally, health care professionals have used the
concept of personal health records (PHRs) to preserve
patient data. PHRs refer to “an electronic application
through which individuals can access, manage and
share their health information, and that of others for
whom they are authorized, in a private, secure, and
confidential environment” ([17], p. 122). PHRs gather
health data entered by individuals and can provide in-
dividuals’ health information to healthcare profes-
sionals under authorizations by those individuals [18].
Further, PHRs can also capture data from EMRs to
share over many hospitals, since patients could re-
ceive care from different hospitals [17]. Thus, our
study adopts the term EMRs, since we focus on the
electronic medical record in one hospital where most
of the information is medical data gathered at that
hospital, rather than data related to wellness and data
gathered across institutions.
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International proponents in the healthcare industry
consider the wide-scale adoption of EMRs as essential
[1, 2]. In 2012, 44 % of U.S. healthcare practitioners used
some kind of EMRs [19]. In Taiwan, about 65.2 % of
hospitals have adopted EMRs [20]. The rate of EMRs
adoption in Japan in 2011 was 51.5 % in large hospitals
[21]. In their study of EMRs adoption in China, Shu et
al. [22] report that about 69.3 % of hospitals have their
physicians using EMRs to place orders. An estimate is
that by 2020, approximately 50 % of practitioners in
USA will be using functional EMRs [1]. Accenture [23]
even predicted that global EMRs market would reach
$22.3 billion (USD) by the end of 2015. Thus, the study
of EMRs is important.

Privacy

Privacy is an individual’s right to determine which
personal information to share with whom and for what
purposes [11]. The invasion of privacy occurs when indi-
viduals cannot control the disclosure and usage of their
personal information [24]. In healthcare settings, privacy
refers to the ability of individuals to prevent certain dis-
closure of personal health information to others [25]. In
addition to personal information such as the basic health
information of height and blood pressures, the medical
records may also include the more sensitive personal
information such as sexually transmitted diseases, abor-
tions, emotional problems, and physical abuse [24, 25].
Researchers have found that individuals have increasing
concerns pertaining to whether organizations (including
medical facilities) are proficient in safeguarding their
personal information [24] including health-related infor-
mation [26]. With the increasing usage of EMRs, more
personal health information is stored and even shared
among medical facilities and their staffs, which places
the privacy of patients’ personal health information at a
greater risk [7].

Research framework and hypotheses development

Among the well-known intention-behavior models,
scientists have widely adopted the Theory of Planned
Behavior (TPB) [27] to predict an individual’s behav-
ior in numerous settings including healthcare-related
settings [28-30]. The TPB postulates that an individ-
ual’s behavioral intention is a function of attitude,
subjective norm, and perceived behavioral control.
Attitude refers to the positive/negative evaluations by
an individual toward performing a behavior [28]. Sub-
jective norm means the perceptions that significant
referents desire the individual to perform or not per-
form a behavior [14]. Perceived behavioral control
refers to the perceptions of internal and external
constraints on behavior [27]. TPB [27] has been
widely adopted to predict individual’s behavior in
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various disciplines. However, Taylor and Todd [14]
argue that to better understand the relationships be-
tween multiple beliefs and the three antecedents of
intention (i.e., attitude, subjective norm, and perceived
behavioral control), further decomposition of attitu-
dinal beliefs is required. Since their seminal work on
the Decomposed Theory of Planned Behavior [14],
numerous studies have adopted the model to predict
individuals’ intention toward a specific behavior. Pre-
vious research [28, 31-33] on individuals’ attitudes to-
wards HITs has demonstrated DTPB performs better
than TPB.

Our study adopted the DTPB [14] as the research
framework to investigate nurses’ behavioral intentions
to protect the privacy of EMRs. As Fig. 1 shows, the
three primary antecedents (i.e., attitude, subjective
norm, and perceived behavioral control) directly influ-
ence behavioral intentions can be decomposed into
multidimensional constructs. Perceived usefulness
(PU), perceived ease of protection (PEOP), and com-
patibility (COM) influence attitude (AT). Further, peer
influence (PI) and superior influence (SI) collectively
influence subjective norm (SN). In addition, self-
efficacy (SE) and facilitating conditions (FC) influence
perceived behavioral control (PBC). Figure 1 shows
the justification of the research framework and the
research constructs and their associations.

Effects of perceived usefulness, perceived ease of protection,
and compatibility on attitude

According to DTPB [14] as we use in this study, attitude
refers to the extent that a nurse holds a favorable or un-
favorable evaluation of protecting the privacy of EMRs

Fig. 1 Research framework (Adapted with permission. Copyright
1995 INFORMS. Shirley Taylor, Peter A. Todd (1995) Understanding
Information Technology Usage: A Test of Competing Models.
Information Systems Research 6(2):144-176, the Institute for
Operations Research and the Management Sciences, 5521 Research
Park Drive, Suite 200, Catonsville, Maryland 21228, USA). Note: PU
(perceived usefulness), PEOP (perceived ease of protection), COM
(compatibility), PI (peer influence), SI (superior influence), SE (self-
efficacy), FC (facilitating conditions), AT (attitude), SN (subjective
norm), PBC (perceived behavioral control), Bl (behavioral intention)

Page 3 of 11

[27]. Taylor and Todd [14] decompose attitude into
three constructs (i.e., perceived usefulness, perceived
ease of use, and compatibility) to predict users’ inten-
tions to adopt new ITs. In our study setting, perceived
usefulness depicts that protecting the privacy of EMRs is
beneficial to nurses and hospitals. Perceived ease of use,
originally defined as a person’s belief that using a
particular system would be free of effort [34], is not suit-
able in our study context since we aim to investigate
nurses’ intentions to protect the privacy of EMRs, not to
adopt an IT. Consequently, we use ‘perceived ease of
protection, which refers to the degree that nurses believe
protecting the privacy of EMRs would be free of effort,
thus corresponding to the ‘perceived ease of use.” While
compatibility refers to protecting the privacy of EMRs
when nurses perceive the protection is consistent with
existing values, needs, and experiences of nurses. Previ-
ous studies [14, 28, 31, 35-37] affirm that perceived ease
of use (protection), perceived usefulness, and compati-
bility significantly influence individuals’ attitude towards
new ITs. Accordingly, the following hypotheses are
proposed:

H;: Perceived usefulness has a positive influence on
nurses’ attitudes toward protecting privacy of EMRs.
H,: Perceived ease of protection has a positive
influence on nurses’ attitudes toward protecting privacy
of EMRSs.

Hj: Compatibility has a positive influence on nurses’
attitudes toward protecting privacy of EMRSs.

Effects of peer influence and superior influence on
subjective norm

Subjective norm is a type of subjective social pressure
derived from a similar group of people (e.g., friends,
colleagues, or superiors), influencing an individual’s
attitude toward his/her intentions [27]. Individuals are
more likely to comply with others’ expectations when
those referent others have the ability to reward the
desired behavior or punish non-behavior [38]. That is,
peer behaviors may play an important role in motivat-
ing individuals to perform a specific behavior. Taylor
and Todd [14] also confirm that the influences of
both peers and superiors have direct effects on sub-
jective norms. Consequently, a reasonable supposition
is that peers or superiors would influence nurses’ per-
ceived subjective norm. This reasoning leads to the
following hypotheses:

H,: Peer influence has a positive influence on nurses’
subjective norms toward protecting privacy of EMRs
Hs: Superior influence has a positive influence on
nurses’ subjective norms toward protecting privacy of
EMRs
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Effects of self-efficacy and facilitating conditions on per-
ceived behavioral control

Based on prior studies [14, 38], perceived behavioral
control refers to the internal and external constraints
on protecting privacy of EMRs and in our study in-
cludes self-efficacy and facilitating conditions. Self-
efficacy refers to the self-confidence of nurses in their
ability to protect the privacy of EMRs, while facilitat-
ing conditions refers to resources such as EMRs re-
lated hardware, software, and usability in expediting
privacy-protection behaviors that are compatible with
existing hardware and software in hospitals. Extant
literature [27, 28] confirms that the self-efficacy and
facilitating conditions affect an individual’s perceived
behavioral control. Therefore, the following hypoth-
eses are proposed:

Hg: Self-efficacy has a positive influence on nurses’ per-
ceived behavioral control toward protecting privacy of
EMRs

H;: Facilitating conditions have a positive influence on
nurses’ perceived behavioral control toward protecting
privacy of EMRs

Effects of attitude, subjective norm, and perceived
behavioral control on behavioral intention

Based on TPB [27], three primary constructs including
attitude, subjective norm, and perceived behavioral
control predict an individual’s behavioral intention. Vari-
ous literature [14, 28, 30] also suggests that these rela-
tionships exist. Transferring the rationale of TPB into
our study, we suggest that if nurses hold positive atti-
tudes toward privacy measures proposed by the hospital,
they will be more willing to engage in EMRs privacy
protection behavior. Moreover, individuals’ perceived
social pressure from people they care about usually can
influence them to perform a given behavioral action
[27]. If nurses believe that their colleagues, superiors, or
even friends expect protection of patient privacy, they
will be more likely to protect the privacy of EMRs. Fi-
nally, individuals usually assess whether they have the
requisite resources to overcome obstacles encountered
to perform a specific behavior [27]. Consequently, nurses
who feel capable of protecting patient privacy are more
willing to engage in privacy-protecting activities related
to EMRs. In light of above discussions, we propose the
following hypotheses:

Hg: Nurses’ attitudes have a positive influence on their
behavioral intention to protect privacy of EMRs

Hg: Nurses’ subjective norms have a positive influence
on their behavioral intention to protect privacy of
EMRs
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Hio: Nurses’ perceived behavioral controls have a
positive influence on their behavioral intention to
protect privacy of EMRs

Methods

Design

To assess the perceptions of nurses regarding privacy
protection of EMRs, we undertook a cross-sectional sur-
vey at a tertiary care military hospital in Taiwan. The
hospital, with 732 beds, provides tertiary care service to
both military and civilians patients resulting in more
than 19,860 annual patient admissions in 2013. The hos-
pital adopted EMRs in 2009, with all nurses document-
ing care records in EMRs. This fact indicates that the
nurses should have adequate knowledge concerning the
operations of EMRs to participate in this study.

Instrument development

The constructs in our research framework were mea-
sured using 32 items from previous validated works
[14, 38]. An expert panel consisting of one senior
hospital manager and two experienced researchers in
the field of healthcare information management
inspected these items. The panel considered one (1)
of the items redundant and suggested removal of this
item; while the researchers modified other items
based on the recommendations from the experts (See
Appendix 1 for the removed item). We used a 7-
point Likert scale (1 for ‘strongly disagree’ and 7 for
‘strongly agree’) to assess the survey items since a 7-
point scale is currently the most widely used type of
scale [39] and is more reliable than a 5-point scale
[40]. Further, a 7-point scales can prevent people
from being too neutral in their responses [41] and is
comparable with a 5-point scale [42]. Table 1 depicts
the final measurement items for constructs of interest
and their sources.

Survey procedure and ethics approval

We used a field survey to test the proposed model. We
obtained approval from the Institutional Review Board
(IRB) of Kaohsiung Armed Forces General Hospital
prior to proceeding with the investigation. The IRB
waived the mandate for obtaining informed consent
from subjects. We distributed questionnaires to all of
the 474 registered nurses in the subject hospital. In
December 2012, nurses, voluntarily and anonymously,
completed the paper-and-pencil survey. In all, we col-
lected 307 responses, indicating a response rate of
63.7 %. We had 302 responses for analysis since we
eliminated five questionnaires because of partial
answers.
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Table 1 Constructs of interest and corresponding items

Constructs [tems  Measure

(abbreviation)

Perceived usefulness ~ PU1
(PU) [14]

Protecting EMRs privacy is beneficial
to me

PU2  The advantages of protecting EMRs
privacy outweigh the disadvantages

PU3 Protecting EMRs privacy will improve
patients’ trust on hospitals

Perceived ease of PEOP1

protection (PEOP) [14]

The instructions for protecting EMRs
privacy is easy to follow

PEOP2 It is easy to learn how to protect EMRs
privacy

PEOP3 It is easy to protect EMRs privacy

Compatibility (COM) ~ COM1  Protecting EMRs privacy fits into my
[38] work style
COM2 | think that protecting EMRs privacy fits
well with the way | like to work
COM3  Protecting EMRs privacy is compatible
with all aspects of my work
Peer influence (PI) PI My friends would think that | should
[14] protect EMRs privacy

PI2 My colleagues would think that |
should protect EMRs privacy

Superior influence (S) S My superior would think that | should
[14] protect EMRs privacy

SI2 I will protect EMRs privacy because my
superior asks for

Self-efficacy (SE) [14] ~ SE1 I could easily protect EMRs privacy if |

wanted to

SE2 | could protect EMRs privacy if there
was no one around to tell me what to
doas|go

SE3 I would feel comfortable in protecting
EMRs privacy

Facilitating conditions  FC1
(FO 141

The equipment (computers, printers,
etc) for EMR systems is compatible
with other hardware | use in hospital

FC2 The software for EMR systems is
compatible with other software | use in
hospital

FC3 I could use EMR systems to query
patient’s medical records

Attitude (ATT) [38] ATT1  Protecting EMRs privacy is a good idea

ATT2 | think protecting EMRs privacy is a wise
idea
ATT3 | like the idea of protecting EMRs
privacy
ATT4  Protecting EMRs privacy is fun
Subjective norm (SN)  SN1 People who influence my behavior
[38] would think that | should protect EMRs
privacy

SN2 People who are important to me would
think that | should protect EMRs privacy

PBC1 | would be able to protect EMRs privacy

Page 5 of 11

Table 1 Constructs of interest and corresponding items
(Continued)

Perceived behavioral ~ PBC2

control (PBC) [38]

| have the knowledge necessary to
protect EMRs privacy

PBC3 | have the resources necessary to

protect EMRs privacy

Behavioral intention Bl
(BI) [38]

| intend to protect EMRs privacy
BI2 | predict | would protect EMRs privacy
BI3 | plan to protect EMRs privacy

Common method bias

Regarding common method bias, we wused the
Harman’s single factor test [43] to check whether
significant method effects occurred on our hypothe-
sized relationships. We use confirmatory factor ana-
lysis (CFA) to detect this issue as suggested by
literature [43]. All the manifested items were modeled
as the indicators of a single factor and the CFA
results revealed poor fit between the collected data and
the model (e.g., y2/df. = 9.97; CFI=.74; RMSEA =.17).
Common method bias should not be a problem in our
study.

Results

Descriptive statistics

Of the 302 valid responses, 296 were female (98 %) and
six (6) were male (2 %). Nearly 75 % of the respondents
were 30-49 years of age. In addition, the majority of re-
spondents (99.3 %) were college- or university-educated.
Further, about 8.6 % of the respondents were managerial
level staff. All of the respondents had experiences in
using EMRs in the subject hospital, indicating these re-
spondents should have had adequate background know-
ledge about the survey content to render a meaningful
response. Table 2 shows the respondents’ demographics.

Data analysis

We empirically validated the proposed model using par-
tial least squares (PLS), supported by SmartPLS® 2.0 M3
software [44]. PLS (a variance-based structural equation
model) reduces the effect of measurement error by cre-
ating a weighted sum from multiple indicators of a latent
variable to account for measurement error. As such, PLS
handles measurement error differs from covariance-
based structural equation, which explicitly includes
measurement error in the research model [45].
Currently, researchers have no clear census concerning
whether measurement error should be modeled or elimi-
nated [46]. We chose PLS for its ability to handle latent
constructs with non-normality and with small to
medium sample sizes [47].
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Table 2 Respondent characteristics
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Table 3 Descriptive statistics and reliability measures

Variable Category Frequency Percentage  Construct Items Mean SD  Loadings AVE CR Cronbach’s a
Gender Male 6 2 PU PU1 6.09 094 97 92 97 96
Female 296 98 PU2 601 097 96

Age (years) 18-29 58 192 PU3 6.07 095 .95
30-49 226 74.8 PEOP PEOPT 568 103 95 91 97 95

50-64 18 6 PEOP2 568 103 .95

Education level High school 2 7 PEOP3 564 104 96
College 281 93 COM COM1 577 094 98 9% 98 98

University 19 6.3 COM2 575 094 98

Working position Non-managerial 276 914 COM3 576 093 98
Managerial 26 8.6 Pl PI1 580 101 97 95 98 95

PI2 589 098 .98
Measurement model Sl St 605 093 .97 93 9% 93

We first assessed the measurement model according ) 597 100 9
to three tests: reliability, convergent validity, and SET 586 096 94 91 97 o5

discriminant validity [47]. Reliability can be gauged
via factor loading, composite reliability (CR), and
Cronbach’s o [47]. The factor loadings of all con-
structs exceeded the suggested criterion of .7 [48],
demonstrating adequate item reliability (see Table 3).
In addition, the figures of CR and Cronbach’s «o
scores were higher than the recommended .7 thresh-
olds, indicating acceptable reliability. Regarding con-
vergent validity, the value of average variance
extracted (AVE) exceeded .5 implying convergent
validity [48] (see Table 3). Meanwhile, the inter-
construct correlations matrix (see Table 4) demon-
strates that the square root of AVE for each construct
exceeded the correlation of the specific construct with
any other constructs in the model, thus indicating
sufficient discriminant validity [48].

Structural model

After validating the measurement model, we then
assessed the hypotheses by examining the structural
model. We used the bootstrapping procedure to test the
statistical significance of each path coefficient. Figure 2
presents the structural model results with path coeffi-
cient and t-statistics. Regarding hypotheses H;, H,, and
Hs, the results significantly supported only H; and Hs.
That is, attitude was influenced by perceived usefulness
(p=.30, t=5.84) and compatibility (=.58, t=28.78),
while perceived ease of protection was not a significant
predictor of attitude (B =.09, t=1.36). In terms of hy-
potheses Hy, and Hs, the results revealed significant
support for both hypotheses. That is, subjective norm
was influenced by peer influence (B=.53, t=9.26) and
superior influence (p=.43, t="7.37), and peer influence
is the strongest predictor of subjective norm. Further,
hypotheses Hg and H; were confirmed that both self-
efficacy (B =.60, t=10.55) and facilitating conditions (3

SE2 570 112 95
SE3 575 102 96
FC FC1 560 106 95 o1 97 9
FC2 562 107 97
FC3 559 105 94
ATT ATT1 600 090 93 88 97 96
ATT2 588 094 96
ATT3 587 095 96
ATT4 572 105 90

SN SN1 590 09 99 98 99 82
SN2 589 099 99
PBC PBC1 588 092 96 93 98 96

PBC2 581 100 97
PBC3 575 099 96

Bl BI 592 0% 97 92 97 9%
BI2 588 097 96
BI3 597 092 94

CR denotes composite reliability, AVE denotes average variance extracted

=.36, t =5.98) positively affect perceived behavioral con-
trol. Regarding hypotheses Hg, Ho, and Hjo, the results
demonstrated that attitude (f=.28, £=3.75), subjective
norm (B =.17, £=2.14), and perceived behavioral control
(p=.50, t=6.59) contributed to behavioral intention to
protect privacy of EMRs. Perceived usefulness and com-
patibility jointly explained about 82 % of the variance of
attitude while peer influence and superior influence
roughly accounted for 82 % of the variance of subjective
norm. In addition, self-efficacy and facilitating condi-
tions collectively explained about 80 % of the variance of
perceived behavioral control. Overall, the model ex-
plained about 83 % of the determined variance in the be-
havioral intention to protect the privacy of EMRs.
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Table 4 Inter-construct correlations
PU PEOP COM PI S| SE FC ATT SN PBC BI
PU .96

PEOP 67 .95

coMm 82 74 .98

PI 70 74 81 .98

S| 61 73 73 77 .96

SE 73 .70 83 82 74 .95

FC 70 62 .76 73 61 76 .95

ATT 77 79 88 82 80 80 .70 .94

SN J1 75 .79 86 84 82 70 84 .99

pBC 71 75 84 82 76 86 81 83 B84 .96

BI 69 78 82 84 78 82 75 84 83 88 .96

Diagonal means the square root of Average Variance Extracted

Further, we adopted the global fit measure (GoF) to val-
idate the overall PLS model and used the formula as

/- —
\/ Average Variance Extracted(AVE) x R* ) to compute
the GoF [49]. The average AVE =.93 and average R’

=.82, resulting in a GoF =.87 demonstrated that our
model was valid [49].

Discussion

Effects of perceived usefulness, perceived ease of
protection, and compatibility on attitude

In agreement with the assertion of DTPB, we found
that perceived usefulness (PU) has a positive
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relationship with attitude [14]. The result is also con-
sistent with prior studies in both healthcare [29, 31,
32, 50] and non-healthcare studies [35, 51], indicating
that PU is a stable measure in predicting attitude
across differing study contexts. The support of H;
demonstrates that an increase in perceived usefulness
would strengthen nurses’ attitude toward protecting
the privacy of EMRs. In the light of this finding,
demonstrating the benefits and importance of protect-
ing EMRs privacy to nurses is essential to foster their
positive attitudes. To that end, providing appropriate
privacy training may be vital for directing nurses’ be-
liefs regarding the usefulness of protecting the privacy
of EMRs. In that way, nurses may hold more a posi-
tive attitude toward protecting EMRs privacy.

The result of failed support for H, is not in line
with what the original DTPB postulates. That is,
perceived ease of use (PEOU) should have a positive
relationship with attitude [14]. However, Lee et al.
[52] found that PEOU is an unstable predictor in
other contexts. They found only 58 out of 101 studies
revealed a significant relationship between perceived
ease of use with dependent variables. Although our
result did not support the DTPB and related studies
in non-healthcare context [35, 38], the results are in
line with some prior literature conducted in health-
care context [31, 32]. More specifically, our finding is
consistent with literature using physician subjects
[32]. Chau and Hu [32] found that physicians might
not consider perceived ease of use as an important
factor since they can learn technology quickly. But

~

PUI 97 ATTI | | ATT2 | | ATT3 | | ATT4
P2 % oy 30 684+ o\
PU3 o
PEOPI 95 09 (136 ATT (R’=.82)
PEOP2 PEOP 28 (3.75)%**
PEOP3 96 SNI || sN2
coMml 158 (8.78)x
comz|e com 9 99
o o8 3006y ] 17 2.14)% ,
o )P20:20) SN (R=82) BI (R’=.83)
Pl
98
PI2 97 04
sk .96, .
= .97 SI 43 (7.37) 50 (6.59)%+*
BII BI2 BI3
s 96
SEI 94 60 (10.55)5%(  PBC (R*=.80)
.95 SE
SE2
96~y 96
SE3 96
- o5 FC PBCI PBC2 PBC3
F 4
B 36 (5.98)x+
FC2
94 * EEEY
FC3 p <.05, ¥**p < .001
Fig. 2 Structural model results with (3 and t-statistics (in parenthesis)(Adapted with permission. Copyright 1995 INFORMS. Shirley Taylor, Peter A.
Todd (1995) Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research 6(2):144-176, the Institute
for Operations Research and the Management Sciences, 5521 Research Park Drive, Suite 200, Catonsville, Maryland 21228, USA)
J
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Hung et al. [28] found that perceived ease of use sig-
nificantly predict physician’s intention to use Medline
systems. Our study used nurses as the study subjects
and the evidence revealed an insignificant outcome.
One possible reason might be that since nurses are
familiar with protecting privacy of paper-based med-
ical records, they have no concerns in conducting
such protective behavior in digitized medical records.
Most nurses should have adequate information liter-
acy after graduation in Taiwan [53] and consequently,
nurses might not view ease to protect the privacy as
an issue of particular importance.

Regarding Hj, we validated compatibility to be a sig-
nificant predictor of nurses’ attitude toward protecting
the privacy of EMRs. The result is consistent with the
postulation of DTPB [14] and other studies [31, 54, 55].
Tung et al. [56] found that nurses are willing to use elec-
tronic logistic information systems only if the system is
consistent with their existing values, experiences, and
needs. For nurses, the primary value of protection priv-
acy is not different between paper-based and digitized
medical records. Further, nurses are used to practicing
in a traditional way, that is, documenting/querying pa-
tient’s medical records in the nurses’ stations under the
regulation of privacy policies. Therefore, most of the
procedures for effectively protecting the privacy of
EMRs should not be different from protecting paper-
based medical records. However, nurses can also query
medical records anywhere with proper devices and net-
work connectivity away from nurses’ stations, which may
require nurses to undertake a different approach and to
possess sufficient IT-related skills for protecting the
privacy of EMRs. Consequently, the significant result
may imply that hospitals should ensure that any proce-
dures or ITs employed for improving the protection of
EMRs privacy should be consistent with nurses’ work
practices and designed according to nurses’ experiences
and needs.

Effects of peer influence and superior influence on
subjective norm

DTPB decomposed subjective norms into peer influence
and superior influence due to the possible incongruence
of opinions among various referent groups [14]. While
other studies proposed differing referent groups, these
differing referent groups consistently exert significant
effects on subjective norms. Our study is consistent with
DTPB [14] and previous healthcare-related study [29]
that decomposed subjective norm into peer influence
and superior influence.

Nurses, as a profession, share a common terminology,
training, professional culture, and work environments
and a tendency towards compliance with organizational
norms and expectations [57]. The support of H, may
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imply that hospitals must equip nurses with adequate
ethical knowledge and skills concerning the privacy-
protection of EMRs. When nurses understand what
kinds of actions are appropriate for accessing EMRs,
they may prevent other nurses from committing illegal
acts. Further, the support of Hs also demonstrates that
hospitals should use the knowledge that superior influ-
ence reinforces perceptions of subjective norms to train
managers, such as head nurses, to supervise other nurses
in protecting the privacy of EMRs. Most hospitals have
existing privacy policies for protecting EMRs and these
policies mandate healthcare professionals, including
nurses, adhere. Managers are obligated to ensure that
health professionals strictly follow these policies. This
practice may explain why superior influence is a signifi-
cant predictor of subjective norms regarding EMRs
privacy-protection.

Effects of self-efficacy and facilitating conditions on per-
ceived behavioral control
As hypothesis Hg postulated, self-efficacy is a significant
predictor of perceived behavioral control (PBC). Self-
efficacy primarily concerns nurses’ self-confidence in
their ability to protect the privacy of EMRs. In Taiwan,
nursing schools usually provide lectures or courses con-
cerning patient privacy and information security [53].
Meanwhile, the hospital in this study has acquired the
ISO 27001 certification that mandates hospitals hold
information-security training programs regularly. Conse-
quently, besides having adequate knowledge regarding
EMRSs, nurses in our study should be equipped with suf-
ficient privacy-protection knowledge. Further, nurses
have adopted ethical codes that address the responsibil-
ity toward protecting patient privacy. Thus, nurses are
ethically bound to hold all information in confidence
[58]. This responsibility may explain why self-efficacy is
a significant predictor of perceived behavioral control
and the findings are in line with prior literature [14, 28,
29, 37, 59]. This significant finding may indicate that
hospitals should provide nurses with sufficient ethical
knowledge and IT skills for protecting the privacy of
EMRs. We suggest that hospitals could organize con-
tinuous training programs regarding ethics, information
security concepts/procedures, and IT skills to enhance
their capabilities in protecting the privacy of EMRs.
Regarding hypothesis H, facilitating condition is a
strong determinant of nurses’ perceived behavioral con-
trol toward protecting the privacy of EMRs. Facilitating
condition refers to resources such as EMRs related hard-
ware, software, and usability for facilitating privacy-
protection behavior that are compatible with existing
hardware and software in hospitals. Since the hospital in
this study adopted EMRs in 2009, the hospital leadership
has integrated all computer hardware, software, and



Ma et al. BMC Medical Informatics and Decision Making (2016) 16:13

management procedures required for EMRs within the
existing Hospital Information Systems (HISs). However,
since most hospitals have joined Taiwan’s National
Health Insurance Program, EMRs are subject to frequent
change in regulations. Hence, nurses may expect that
hospitals ensure subsequent changes in regulations that
influence EMRs are compatible with existing HISs. This
review would mandate the analysis of the requirements
carefully whenever the National Health Insurance pro-
gram implements essential changes that affect EMRs.
These recommendations support previous studies [29,
38] and suggest that hospitals should ensure continued
compatibility with the EMRs. Thus, nurses should per-
ceive a lesser degree of constraint when protecting the
privacy of EMRs.

Effects of attitude, subjective norm, and perceived
behavioral control on behavioral intention to protect
privacy of EMRs

Hg stated that the attitude of nurses would directly influ-
ence their intention to protect the privacy of EMRs. In
words, nurses with positive opinions of the need for
privacy of EMRs will be more likely to protect the priv-
acy of EMRs, while nurses who simply do not care will
be less likely to protect the privacy of EMRs. Attitude is
a stable predictor of behavioral intention in previous
studies [28-30, 52, 60, 61] and our finding is consistent
with results from many previous studies. Based on this
finding, we suggest hospitals formulate relevant strat-
egies for cultivating nurses with positive opinions on
privacy of EMRs issues. Such strategies could include
holding provisional seminars or constant training pro-
grams concerning ethics to strengthen nurses’ attitude
toward EMRs privacy issue. Further, these training pro-
grams could focus on introducing the consequences of
violating EMRs privacy policy as the awareness of these
issues may lead to a change in nurses’ attitude toward
EMRs privacy.

As stated in Hog, the subjective norm of nurses will
positively influence their intention to protect the priv-
acy of EMRs. The results demonstrate that nurses
have beliefs that depend on the social norm of refer-
ent groups (peer nursing workers and their superiors
in our study). These results suggest that social influ-
ence plays a critical role in nurse’s privacy-protective
intentions and are in line with previous studies [28,
30, 61, 62]. Our findings may suggest that protecting
the privacy of EMRs among nurses can be improved
by leveraging referent groups or important others that
influence nurses’ intention to protect privacy. As Mil-
holland [58] stated, nurses do not want providers or
others to inadvertently access patient information.
Therefore, nurse managers need to be sensitive to the
privacy issues to guide their staffs in protecting
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patients from unauthorized invasions of privacy. The
study produced results that corroborate the findings
of original DTPB [14].

Hjo asserts that the perceived behavioral control of
nurses has a significant impact on their intention to pro-
tect the privacy of EMRs. In words, when nurses per-
ceive higher control of or feel they are capable of
protecting the privacy of EMRs, they are more likely to
engage in such protective behavior. The results are con-
sistent with previous studies [28, 30, 31, 37, 52, 61, 62].
Based on the findings, we suggest that hospitals improve
nurses’ control perceptions via providing adequate re-
sources and skills to facilitate nurses’ behavioral
intention to protect the privacy of EMRs. To achieve the
above-mentioned goal, hospitals could provide proper
training programs concerning ethics and IT skills to en-
hance nurses’ perceptions of controllability to protect
the privacy of EMRs.

Limitations and future study directions

Although the results of this study provide educational
and pragmatic implications, some limitations create sev-
eral opportunities for further research. First, our study
only measured nurses’ behavioral intention of protecting
the privacy of EMRs, which might not be representative
of nurses’ actual protecting behavior. Future studies can
collect data from nurses’ actual behavior to understand
better the relationships among these constructs. Second,
we conducted the study using a cross-sectional design,
which may lead to a snapshot presentation of the
current setting. Thus, additional research would add
value to the theoretical development by using longitu-
dinal studies. Third, since our study only targeted nurses
in one Taiwanese military hospital, we cannot safely
generalize the findings to other hospitals or to other
countries. Future research should select the respondents
from more representative samples. Finally, although
common method bias does not seem to be a serious
problem in our study, future study should avoid com-
mon method bias before data collection.

Conclusions

Our study examined a model based on DTPB to ex-
plain what motivates nurses to protect patient privacy
in EMRs. Using responses collected from 302 nurses
practicing in a tertiary care military hospital in
Taiwan, we were able to validate the research model
empirically in terms of the overall fit and explanatory
power as well as the individual causal relationships
specified. The model explains about 83 % of the vari-
ance in the behavioral intention. Our findings support
nine of the 10 proposed hypotheses. The rejected hy-
pothesis showed that perceived ease of protection has
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no influence on nurses’ attitude toward protecting the
privacy of EMRs.

Our study has important implications. As EMRs con-
tinue to permeate healthcare industries, hospitals should
pay attention to privacy issues as well as the benefits of
EMRs. The evidence of our study suggests the develop-
ment of training interventions that foster nurses’ positive
attitudes toward the privacy of EMRs. This training
should place emphases on acquainting nurses with the
benefits of protecting the privacy of EMRs using protect-
ive procedures consistent with nurses’ needs and prior
experiences. Additionally, our study shows that subject-
ive norm contributes to nurses’ intention to protect the
privacy of EMRs; and that the influence of nurses’ peers
and supervisors enhance such perceptions. Finally, per-
ceived behavioral control also contributes to nurses’
privacy-protection intentions about EMRs. Hospitals
should augment these control perceptions by providing
sufficient skills training and resources.

Contributions

This study adopted the DTPB as the theoretical under-
pinning to investigate nurses’ behavioral intention to
protect privacy of EMRs. Our findings demonstrate that
DTPB provides a strong explanation of nurses’ intention
to protect the privacy of EMRs with an R-square statistic
for behavioral intention of 83 %. Further, the findings
also provide insights for hospital managers to formulate
strategies to boost nurses’ intention to protect the priv-
acy of EMRs. Adding to the growing body of literature
about privacy-protection among nurses, this study is
particularly relevant to hospital managers facing the pos-
sibility of unauthorized invasions of patient privacy in
EMRs.

Appendix 1

Removed items

Constructs [tems [tems removed Reason(s) for removing
(abbreviation) retained items

Perceived PU1/ PU4: Overall, Two out of three
usefulness puU2/ protecting EMRs experts considered PU4
(PU) PU3 privacy will be is similar to PU1, PU2,

and PU3; and
suggested removal.

advantageous
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