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Abstract

Background: Poincaré delay maps are widely used in the analysis of cardiac interbeat interval (RR) dynamics. To
facilitate visualization of the structure of these time series, we introduce multiscale Poincaré (MSP) plots.

Methods: Starting with the original RR time series, the method employs a coarse-graining procedure to create a family
of time series, each of which represents the system’s dynamics in a different time scale. Next, the Poincaré plots are
constructed for the original and the coarse-grained time series. Finally, as an optional adjunct, color can be added to
each point to represent its normalized frequency.

Results: We illustrate the MSP method on simulated Gaussian white and 1/f noise time series. The MSP plots of
1/f noise time series reveal relative conservation of the phase space area over multiple time scales, while those of white
noise show a marked reduction in area. We also show how MSP plots can be used to illustrate the loss of complexity
when heartbeat time series from healthy subjects are compared with those from patients with chronic (congestive)
heart failure syndrome or with atrial fibrillation.

Conclusions: This generalized multiscale approach to Poincaré plots may be useful in visualizing other types of time series.

Keywords: Atrial fibrillation, Complexity, Congestive heart failure, Fractal, Heart rate, Multiscale, Nonlinear dynamics,
Poincaré plot, Time series, Visualization

Background
The use of delay (also called return) maps is central to
the qualitative and quantitative analysis of dynamical
systems [1, 2]. The phase space realization with dimen-
sion of two and delay of one is referred to as a Poincaré
plot [1–3]. This graphical method is widely used to
visualize and quantify short- and longer-term properties
of heart rate variability (HRV) [3–11].
Here we propose a multiscale generalization of the Poin-

caré plot method, prompted by the observation that physio-
logic systems generate fluctuations over a broad range of
scales. These fluctuations are a marker of the complexity of
biologic dynamics, especially in healthy organisms under

“free-running” conditions [12–15]. A variety of computa-
tional tools, including fractal and multifractal methods
[16–18], multiscale entropy [19–22], and multiscale time
irreversibility [23, 24] have been proposed to probe the
temporal richness of physiologic signals and of their dy-
namical alterations with senescence and pathology.
We sought to develop a complementary graphical

method to aid in visualizing the multiscale properties of
cardiac interbeat interval and other types of time series,
in conjunction with these computational analyses. We
were further motivated by the pedagogic need for graph-
ical techniques to assist students and trainees in devel-
oping an intuitive sense for concepts and terms such as
multiscale, self-similarity (fractality) and complexity loss.
To this end, we adapted and extended the methodology
of delay (Poincaré) maps. Classical Poincaré maps are
single-scale, since they graph the value of one data point
of the original time series against the next. The novelty
of our method consists in the generation of multiscale
Poincaré (MSP) plots. This multiscale implementation is
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accomplished via a simple coarse-graining procedure
[19, 21] that produces multiple rescaled “copies” of the
original signal. For each coarse-grained time series, we
create a Poincaré plot, which is then assembled into the
final montage. Furthermore, as a potentially useful, but
optional adjunct, the data points in each plot are color-
coded using an estimated normalized probability density
function to further enhance visualization of time series
properties.
To introduce and illustrate the MSP method, we first

apply it to synthetic Gaussian white and 1/f-type noise
time series. The technique is then applied to RR inter-
val time series obtained in health, chronic (congestive)
heart failure and atrial fibrillation. The primary goal here
is to introduce this method as a simple-to-implement
visualization tool.

Methods
The MSP technique consists of three steps: i) construc-
tion of the coarse-grained time series; ii) construction of
a Poincaré plot for the original and each of the coarse-
grained time series, and iii) colorization of the Poincaré
plots based on an estimated normalized probability
density function.

Coarse-graining technique and construction of MSP
montage
Considering a time series X of length N, X = {x1,
x2, x3, …, xN − 1, xN}, its Poincaré plot is the scatter
plot representing the set of points: (x1, x2), (x2,
x3), …, (xN − 1, xN) [4–6, 8].
The coarse-grained time series [19, 21] are obtained

using a non-overlapping moving average low-pass filter.
The window length, s, determines the scale of the
coarse-grained time series {Σs(j)}. The elements of the
coarse-grained time series for scale s are determined ac-
cording to the equation:

ΣsðjÞ ¼ 1
s

Xjs

i¼ðj−1Þsþ1

xi; 1≤j≤
N
s

Here, the Poincaré plots for the original and the
coarse-grained time series are constructed and assem-
bled into the MSP montage.

Colorization of MSP plots
The traditional monochromatic Poincaré plot can be en-
hanced by adding color to each of its data points to con-
vey information about their normalized frequency of
occurrence [25–27]. The probability density function
can be estimated by employing the histogram technique
(used here), or employing kernel density-based or other
methods [27–29]. Specifically, we used the Matlab®,
dscatter function to compute the smoothed normalized

two-dimensional histogram of {(xi, xi+1)} [30]. We
employed the Matlab® “jet” color-map (Fig. 1). We note
that alternative color schemes [31, 32] and functions can
be used for the same purpose.

Results and discussion
For illustrative purposes, we applied the MSP method to
synthetic white and 1/f noise time series and to RR inter-
vals time series in health and selected pathologic states.

MSP plots for synthetic white and 1/f noise time series
Figure 2 shows the MSP montage for a Gaussian white
noise time series comprising 20,000 data points. The
traditional Poincaré plot (equivalent to scale 1) has a cir-
cular shape, due to the normal distribution of the uncorre-
lated data points (where a uniformly distributed random
time series would be represented by a square shape). As
expected, the Poincaré plots for scales >1 show the same
mean (centroid) with a progressive decrease in circular
area. This decrease is due to the relation between the ra-
dius of these plots and the standard deviation of each time
series. The coarse-graining procedure, by averaging con-
secutive uncorrelated random points, creates time series
with consecutively lower variance. Specifically, the vari-
ance of each coarse-grained time series decreases with the
scale as σs

2 = σ2 /s, where s is the scale and σ2 and σs
2 repre-

sent the variance of the original and coarse-grained time
series, respectively.
Figure 3 shows the MSP montage for a 1/f time series,

which represents a complex, fractal structure character-
ized by correlations between data points across multiple
time scales. The conventional (single-scale) Poincaré
plot of a 1/f noise time series has an elliptical shape indi-
cating positive correlations between consecutive data
points (large values more likely to be followed by large
values and low values more likely to be followed by low
values). The standard deviation of 1/f noise coarse-
grained time series remains constant across scales [21].
Thus, the area of the Poincaré plots remains approxi-
mately constant across scales, a consequence of the frac-
tal structure of the 1/f noise signal. (The slight decrease
in the area is attributable to the filtering of very high fre-
quency components in a finite time series).

Fig. 1 Color scheme map. The interval [0,1] is divided into 256
adjacent intervals, each of which is assigned a color following the
Matlab® “jet” color scheme
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Fig. 2 Multiscale Poincaré (MSP) plots of synthetic white noise time series (20,000 data points) for scales s = 1 to 12. Note that Σs (i) represents
the ith data point of the coarse-grained time series for scale s. The data points are colorized based on their estimated normalized probability
density function (see text and Fig. 1)

Fig. 3 Multiscale Poincaré (MSP) plots of synthetic 1/f noise time series (20,000 data points) for scales s = 1 to 12. Note that Σs (i) represents
the ith data point of the coarse-grained time series for scale s. The data points are colorized based on their estimated normalized probability
density function (see text and Fig. 1)
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MSP plots for RR interval time series
The MSP technique was then applied to recordings from
an open-access dataset of deidentified cardiac interbeat
interval time series from Holter monitor (~24 h) record-
ings (http://www.physionet.org/challenge/chaos/) [33].
This database includes RR interval time series from osten-
sibly healthy subjects, as well as patients with congestive
(chronic) heart failure (CHF) syndrome, and patients with
permanent atrial fibrillation (AF). Here we describe the
geometry of the MSP plots from one subject in each of
these three groups, representing the extremes of health
and heart disease. The MSP plots for the other subjects in
each group showed similar characteristics.

Healthy heartbeat dynamics
Figure 4 presents the RR interval time series of a healthy
subject, their coarse-grained time series for scales 5 and
10 and corresponding colorized Poincaré plots. The area
of these plots is maintained across scales, reminiscent of
what is seen with simulated 1/f time series (Fig. 3).
The geometry of the traditional Poincaré plot of heart-

beat intervals in health and disease has been the subject of
extensive study [4, 6, 11, 34, 35]. The traditional (scale 1)
Poincaré plot for healthy subjects exhibits a “comet-like”
shape [4]. We confirm this tapered (teardrop) morphology
[36, 37], and also find that both the overall shape of the

map and its area are preserved across scales. Furthermore,
the teardrop appearance for scale 1 is consistent with the
previously reported correlation of the average value of the
RR interval with the variance of the time series, i.e.,
shorter RR intervals are associated with lower dispersion
(variance) of the RR intervals [4, 38]. The MSP representa-
tion (Fig. 5 - top panels) highlights information by show-
ing that this asymmetric “tail,” present at scale 1, is
preserved across scales for the healthy subject.

Chronic Heart Failure (CHF) and Atrial Fibrillation (AF)
Dynamics
Previous reports [3–5] have shown that the area of the
Poincaré plot of RR interval time series is markedly
smaller for patients with severe CHF (but still in sinus
rhythm) than healthy subjects. Here, we extend this
finding by showing that the area is invariant under the
coarse-graining operation. Our results (Fig. 5 - middle
panels) are consistent with an overall reduction in multi-
scale complex variability with heart failure [17, 21].
Prior studies [25, 39] have shown that the Poincaré plots

(scale 1) of RR interval time series from subjects with AF
are reminiscent of those derived from white noise signals.
MSP plots (Fig. 5 - bottom panels) highlight these results.
In addition, they show that the resemblance between the
Poincaré plots of the AF subject and those of white noise

Fig. 4 The left panels present the cardiac interbeat (RR) interval time series (top) from a healthy subject and the coarse-grained time series for scales 5
(middle) and 10 (bottom). The right panels present the corresponding Poincaré plots, which have been colorized based on their estimated normalized
probability density functions (see text and Fig. 1). The original RR time series was filtered to remove outliers (using http://physionet.org/tutorials/hrv-
toolkit/HRV.src/filt.c, with visual assistance). (The MSP plots are derived from dataset # n2nn from the PhysioNet database described in the text)
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signals is most apparent for relatively short time scales
(in this example, scales < 10, approximately lower than
15 s). In both white noise and AF cases, the areas of the
Poincaré plots decrease with scale. Such behavior is
attributable to the uncorrelated structure of the time
series fluctuations. However, for larger time scales, the
Poincaré plots for the subject with AF show the classical
elliptical shape indicative of long-range correlations [40].
This finding is consistent with previous studies [40, 41]
reporting that the absolute value of the scaling exponents
derived from log-log power spectral plots of RR intervals
time series from subjects with AF are closer to 1 (fractal
noise) than to 0.5 (white noise) or 2 (brown noise) across
the lower frequency bands, with a “cross-over” toward
those of white noise at higher frequencies.
The persistence of correlated behavior at higher scales

(lower frequencies) in AF may be related to the degree to

which the atrioventricular (AV) junction and autonomic
nervous system function are preserved in this common
arrhythmia. Whether AF associated with the most severe
derangements of AV nodal conduction (and concomitant
myocardial disease) shows a complete breakdown of cor-
relations is an intriguing question with basic and clinical
implications. The MSP method may be of use in screening
“big datasets” in order to gain some intuition about the
multiscale behavior of RR intervals in AF in different clin-
ical subsets. We hypothesize that permanent AF associ-
ated with heart failure would have a less complex
structure by this method than so-called “lone” AF, which
is not associated with clinically apparent heart disease.
In this regard, Fig. 6 shows an example of AF [25]

from another patient. The multiscale Poincaré plots re-
veal a different pattern of variability on both shorter and
longer time scales compared with that shown in the

Fig. 5 “Collapse of complexity” with severe pathology. The MSP plots are derived from a healthy subject in sinus rhythm (top), a patient with
chronic heart failure (CHF) in sinus rhythm (middle) and a patient with atrial fibrillation (AF) (bottom). The MSP plots correspond to the original
time series (left column) and their derived coarse-grained time series for scales 5 (second column), 10 (third column) and 15 (right column). The
“wedge” shaped appearance of the AF plots at lower scales relates to the constraints on physiologic conduction imposed by refractoriness of the
AV node. (The sinus rhythm time series of the healthy subject and the patient with CHF syndrome were filtered to remove outliers using
http://physionet.org/tutorials/hrv-toolkit/HRV.src/filt.c, and visual assistance). We note that the scales correspond to slightly different mean rates in
each subject. For example, scale 10 corresponds to means of 10 points. Thus, if the RR mean is around ~1 s (healthy case) this coarse-grained
time scale will be ~10 s, but when the mean RR is around 0.6 s (AF case), the same time scale will correspond to ~6 s. (The MSP plots are from
subjects # n2nn, c3nn and a5nn, respectively, from the PhysioNet database available at http://www.physionet.org/challenge/chaos/) [33]
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bottom panel of Fig. 5. First is a short time scale cluster-
ing of RR intervals, embedded in the overall map. These
additional clusters correspond to alternation of RR inter-
vals which has been noted before in some cases of AF
[25, 39, 42], but remains to be mechanistically explained
and clinically investigated further. One possible explan-
ation is dual-pathway AV conduction [25, 39]; another is
a Wenckebach variant of conduction block in the AV
node. The finding was not due to ventricular ectopy here.
Second, the MSP plots add information by revealing that
this anomalous pattern is scale-specific, as it is not appar-
ent with coarse graining. In contrast, MSP analysis of RR
time series from healthy subjects shows that the “tail” at
the lower left portion of the plots (due to decreased vari-
ance with increased heart rate) is present across scales
(Fig. 4). While “anecdotal,” these examples support the
possible utility of using MSP plots in evaluating subsets of
RR time series in health and disease having quantitatively
and qualitatively different interbeat interval dynamics that
may not be readily discernible using conventional time
series inspection and analysis. More generally, the above
findings are consistent with the concept that perturbations
related to advanced aging and pathology (e.g., heart fail-
ure, atrial fibrillation, etc.) may be most evident in distur-
bances in higher frequency fluctuations, those required for
“fine-tuning” adaptiveness [13, 14, 43].

Use of colorization
Finally, we note that the colorization of the MSP plots,
an optional feature of the multiscale renderings, is
intended to facilitate rapid assessment of the values of
the most frequently observed pairs of RR intervals
(mode) as well as of the shape of the probability density
function. For example, Fig. 5 shows that the most
frequently observed values are ~1 s for the healthy sub-
ject, ~0.75 s for the patient with CHF and ~ 0.5 s for the
patient with AF. In addition, Fig. 5 also shows that the

probability density function is skewed to the left in the
case of the healthy subject and to the right in case of the
CHF patient and the subject with AF on short time
scales. Whether quantitative analyses developed for trad-
itional Poincaré plots [5, 6, 8, 11, 35, 44] can be usefully
extended to MSP plots is of interest but outside the
scope of this brief methodological note. We also
emphasize that these plots are intended to complement
current quantitative methods of time series analysis (e.g.,
Fourier, fractal/multifractal, and entropy-related ana-
lyses, to name but a few).

Conclusions
We introduce a novel delay map implementation termed
multiscale Poincaré (MSP) plots, to facilitate visualization
of multiscale structure of cardiac interbeat interval time
series. The method comprises: i) a coarse-graining oper-
ation that generates a family of time series; ii) delay map
construction for the original and the coarse-grained time
series; and iii) colorization of the delay maps based on an
estimated normalized probability density function. The
method appears to be useful in depicting concepts such as
scaling behavior in health and disease and contrasting
“real-world” and simulated data. Future studies are needed
to evaluate its use in heart rate dynamics, as well as its
potential utility in studying other types of time series.
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Fig. 6 Another example of atrial fibrillation (AF). The MSP plots correspond to the original time series (left column) and their coarse-grained time
series for scales 5 (second column), 10 (third column) and 15 (right column), respectively. This case of AF differs from that in Fig. 5 (bottom
panels) by showing 4 sub-areas of RR clusters evident at scale 1, three of which disappear at higher scales (i.e., lower frequencies). Furthermore,
the MSP plots at the higher scales are more circular than those in Fig. 5 (bottom panels), suggesting more random behavior in the case shown
here at these scales. The differences between these recordings, which are not readily apparent from the original time series or other conventional
representations, support the potential utility of MSP plots in exploring the dynamics of different subsets of AF. (The MSP plots are from subject #
a1nn from http://www.physionet.org/challenge/chaos/) [33]
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