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Abstract

Background: In radiology, a vast amount of diverse data is generated, and unstructured reporting is standard.
Hence, much useful information is trapped in free-text form, and often lost in translation and transmission. One
relevant source of free-text data consists of reports covering the assessment of changes in tumor burden, which are
needed for the evaluation of cancer treatment success. Any change of lesion size is a critical factor in follow-up
examinations. It is difficult to retrieve specific information from unstructured reports and to compare them over
time. Therefore, a prototype was implemented that demonstrates the structured representation of findings,
allowing selective review in consecutive examinations and thus more efficient comparison over time.

Methods: We developed a semantic Model for Clinical Information (MCI) based on existing ontologies from the
Open Biological and Biomedical Ontologies (OBO) library. MCI is used for the integrated representation of measured
image findings and medical knowledge about the normal size of anatomical entities. An integrated view of the
radiology findings is realized by a prototype implementation of a ReportViewer. Further, RECIST (Response
Evaluation Criteria In Solid Tumors) guidelines are implemented by SPARQL queries on MCI. The evaluation is based
on two data sets of German radiology reports: An oncologic data set consisting of 2584 reports on 377 lymphoma
patients and a mixed data set consisting of 6007 reports on diverse medical and surgical patients. All measurement
findings were automatically classified as abnormal/normal using formalized medical background knowledge, i.e.,
knowledge that has been encoded into an ontology. A radiologist evaluated 813 classifications as correct or
incorrect. All unclassified findings were evaluated as incorrect.

Results: The proposed approach allows the automatic classification of findings with an accuracy of 96.4 % for
oncologic reports and 92.9 % for mixed reports. The ReportViewer permits efficient comparison of measured
findings from consecutive examinations. The implementation of RECIST guidelines with SPARQL enhances the
quality of the selection and comparison of target lesions as well as the corresponding treatment response
evaluation.

Conclusions: The developed MCI enables an accurate integrated representation of reported measurements and
medical knowledge. Thus, measurements can be automatically classified and integrated in different decision
processes. The structured representation is suitable for improved integration of clinical findings during
decision-making. The proposed ReportViewer provides a longitudinal overview of the measurements.
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Background
In radiology, a vast amount of diverse data is generated
(image data, secondary captures, texts, etc.). Obviously,
these data facilitate the generation of fountains of know-
ledge and pools of evidence supporting decision-making
as well as therapy planning and monitoring. Unfortu-
nately, because unstructured reporting is the norm,
much useful information is trapped in free-text form,
and often lost in translation and transmission [1, 2].
The assessment of changes in tumor burden is an im-

portant task during the evaluation of cancer treatment
success. Tumor shrinkage and disease progression must
be assessed and reported to evaluate therapy response.
Increasingly many different measurements are per-
formed and reported in radiology (volumes, perfusion or
diffusion measurements, spectroscopy results, etc.).
However, most of these data are measurements of the
size of a lesion or an organ in different dimensions. The
change of the lesion size is still the critical factor in
follow-up examinations (sonography, computed tomog-
raphy, magnetic resonance imaging) during therapy or
surveillance. The RECIST (Response Evaluation Criteria
In Solid Tumors) guideline allows a standardized as-
sessment of tumor burden and tumor response during
therapy [3]. Here, a sum of the diameters (short axis
for lymph nodes, longest diameter for the remaining
lesions) for all target lesions is calculated and re-
ported as the baseline or follow-up sum and indicates
therapy response/failure [3].
In general, the increase in available clinical data and

availability of medical knowledge provide the basis for
better and more effective decision-making. A common
assumption is that the more data we have about a par-
ticular patient, the more effectively this patient can be
treated. However, this requires the automatic and lon-
gitudinal integration of findings from different reports
in decision processes such as diagnosis or treatment
evaluation. Today, however, improved quality of treat-
ment on the one hand and limited funding on the
other hand are in conflict. In the current situation, the
availability of more data entails increased efforts for
the clinicians and thus higher costs. This is mostly due
to three challenges:

1 Only a small amount of the data is structured, while
a high percentage of relevant data is unstructured.

2 Existing data are not sufficiently linked to medical
knowledge and thus do not include the appropriate
level of detail for decision-support systems.

3 Finding descriptions are not longitudinally
integrated. Thus, the comparison of findings
from consecutive examinations to evaluate the
change of the health status requires extensive
manual effort.

As a result of these problems, most of the available
data are simply not used to their full potential during
clinical decision-making. To overcome these problems,
structured representations of findings are needed that
allow the selective retrieval and better integration of use-
ful data. For instance, during diagnosis and examination
processes, attention is mainly focused on abnormalities.
For blood tests, a classification of measurement values
(low, normal, high) is commonly provided. However,
for image findings, this kind of automatic normality
classification is missing, since radiology findings are
more complex (see, e.g., Fig. 1).
Much work has already been performed on developing

structured representations for clinical findings; this is
commonly realized through a combination of an infor-
mation model with reference terminologies [4–6]. The
role of the information model is to define the schema
according to which the terminology is used. In previous
work [7], we created a corresponding Model for Clinical
Information (MCI) that is based on ontologies from
the Open Biological and Biomedical Ontologies (OBO)
library [8, 9]. RadLex [10], the Foundational Model of
Anatomy [11], and other ontologies are employed as refer-
ence terminologies. Further, in [12], we demonstrated how
structured representations of measurement findings can
be extracted from free-text radiology reports. The contri-
bution of this paper is twofold:

Fig. 1 Example of an abnormal mediastinal lymph node. An axial
image of a contrast-enhanced computed tomography examination
of the thorax. The size of a lymph node is specified by measuring
the longest in-plane diameter and the corresponding short axis in
the orthogonal direction
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1 We describe classes and properties of MCI that are
used for the structured representation of size
measurements typically found in radiology reports
and medical knowledge about the normal size of
anatomical entities.

2 We show how measurement information is enriched
using formalized medical background knowledge in
order to provide different views on the data required
by radiologists and referring physicians for more
efficient decision-making. For instance, we classify
findings as normal or abnormal and identify possible
target lesions according to RECIST guidelines.

In a prototype implementation (ReportViewer), we
demonstrate the usage of our structured representations.
The ReportViewer allows selective review of reported
findings from consecutive examinations and thus more
efficient comparison of radiological findings over time.
Before we conclude, the classification algorithm is evalu-
ated and related work is discussed.

Methods
In this section, we describe the Model for Clinical Infor-
mation (MCI), focusing on structured representations of
measured image findings. Then we describe the know-
ledge model with normal size specifications of anatom-
ical entities and how it is used to classify image findings
as well as integrating RECIST guidelines. Finally, the
ReportViewer prototype is presented.
This single-center investigation was approved by the

institutional review board of the University Hospital
Erlangen, and all procedures were in accordance with
the Helsinki Declaration. The need for informed consent
was waived.

The model for clinical information
As described in [7], the Model for Clinical Information
(MCI) is based on selected upper- and mid-level on-
tologies from the Open Biological and Biomedical

Ontologies (OBO) Foundry. The OBO Foundry follows
the idea of ‘coordinated evolution of orthogonal ontol-
ogies’ that are based on a common architecture to support
biomedical data integration [8]. The common architecture
necessary for this alignment is provided by a common
upper-level ontology - namely the Basic Formal Ontology
(BFO) [13]. Additionally, the OBO Foundry has developed
naming conventions described in [14] that support the co-
ordinated creation of ontologies in a common framework.
MCI follows the OBO naming conventions and reuses all
classes of BFO and other selected classes and properties
from the Relations Ontology (RO) [15], the Ontology for
General Medical Science (OGMS) [16], the Information
Artifact Ontology (IAO) [17], the Ontology for Biomedical
Investigations (OBI) [18], the Phenotypic Quality Ontol-
ogy (PATO) [19], the Units Ontology (UO) [20], and the
Foundational Model of Anatomy (FMA) [11]. These
ontologies define the basic classes and properties that
provide the foundation of our model, and already
provide a basic structure for the representation of
clinical findings. In total, MCI contains 551 classes
(447 imported), 107 object properties (83 imported),
and 33 data properties (15 imported).

Basic representation of clinical findings
OGMS defines a clinical finding as “a representation that
is either the output of a clinical history taking or a physical
examination or an image finding, or some combination
thereof” [16]. In its most basic form, a clinical finding
describes a quality of some material entity (Fig. 2).
Additionally, the quality can be specified by a measure-
ment; e.g., the measured length of the spleen (Fig. 3)
can be represented by using this pattern.

Extensions for detailed representation of measurement
findings
The basic pattern of clinical findings is useful and pro-
vides an effective structure for extensions that we devel-
oped in order to express image findings at the required

Fig. 2 The basic pattern of a clinical finding. A clinical finding always describes a quality of some material entity. Additionally, the quality can be a
described by a measurement, and the location of the described entity can be specified
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level of detail. In the following paragraphs, we describe
the extensions (i.e. classes and properties) required for
precise representation of specific finding types and the
orientation of measurements.

Types of clinical findings
Clinical findings are central information objects beyond all
patient data because they are the main input for decision-
making, such as providing a diagnosis or treatment evalu-
ation. For selective retrieval and usage of sought informa-
tion, MCI defines approximately 30 subclasses of clinical
findings [7]. In particular, MCI defines a normal finding as
“a clinical finding describing some normal quality that

inheres in some anatomical structure.” The class of abnor-
mal findings is defined accordingly and is disjoint with nor-
mal findings. The distinction between abnormal and
normal findings is important during radiological reading
because it affects the management and the prognosis of
the patient. Figure 4 shows the representation of a normal
finding related to the spleen length from Fig. 3.

Orientation of measurements
We import several qualities from PATO; however, some
extensions needed to be made to capture the orientation
aspect of the measured qualities more precisely. As
shown in Fig. 5, PATO defines several size qualities, in
particular subclasses of 1-D extent such as length, width,
height and diameter.
To precisely express image findings, MCI adds the fol-

lowing qualities: the craniocaudal diameter is defined as a
diameter that is along the craniocaudal axis, and the left-
right diameter is defined as a diameter that is orthogonal
to the sagittal plane and parallel to some left-right axis.
For instance, the height of the spleen is measured along
the craniocaudal axis (as shown in Fig. 6) and thus can be
more precisely specified as the craniocaudal diameter of
the spleen.
Most of the measurements in radiology are taken in

one of the three main body planes (axial or transverse
plane, coronal plane, sagittal plane). MCI imports corre-
sponding classes from FMA. To define relations to these
planes and axis, we defined the following object proper-
ties: “parallel to” is defined as ‘a symmetric property that
holds between anatomical planes that do not intersect’
and “orthogonal to” is defined as ‘a symmetric property
that holds between anatomical planes that are linearly
independent’.

Fig. 3 Example of a normal spleen. An axial image of a contrast-
enhanced computed tomography examination of the upper abdomen.
The size of the spleen in the axial plane is specified by measuring the
length and width at the hilum

Fig. 4 Spleen with normal length. A length measurement finding was represented with OBO classes and relations. Boxes with round corners
denote classes, otherwise instanced. Named arrows denote relations between instances. Arrows without labels denote rdf:type relations from
individuals to corresponding classes
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In the description of solid tumors and lymph nodes, the
size is specified by the longest 1-D extension and the cor-
responding longest perpendicular 1-D extension within a
specific plane, i.e. the short axis (as shown in Fig. 1). Here,
the orientation of the measurement is defined by the

shape of the particular anatomical entity (tumor, lymph
node, etc.). Accordingly, MCI defines the following two
subclasses of 1-D extent: the longest (in plane) axis is ‘a 1-
D extent describing the longest straight line, where all
points of the line are within the respective object’. The
short axis is ‘a 1-D extent describing the longest straight
line of an object in orthogonal direction to the longest axis
of that object’.
Usually, lesions and organs are measured in 3 dimen-

sions. However, due to different reasons, measurements
are sometimes performed in 2 or just 1 dimension. Inter-
estingly, during the evaluation according to the RECIST
guidelines, only the short axis (lymph nodes) or the longest
diameter (remaining lesions) is considered [3]. In other
words, the length of the short axis is the relevant quality
for classification of malignancy/abnormality [21–24]. The
final representation of a RECIST-compliant measurement
finding of a lymph node is shown in Fig. 7.

Knowledge models
Detailed representation of image findings and the dis-
tinction between normal and abnormal findings is im-
portant, and MCI provides corresponding classes.
However, the distinction is often not explicit in the data:
in a radiology report, a size of the spleen might be sim-
ply specified as ‘spleen 7 × 12 × 15 cm’ without any inter-
pretation. Formalized medical knowledge can be used to
classify this measurement finding as splenomegaly, i.e.
an enlarged and thus abnormal spleen. Further, in a
diagnostic process, finding data needs to be interpreted
with respect to diseases. For example, a splenomegaly is
an abnormal enlarged spleen and can be related to in-
flammation or to specific types of cancer such as lymph-
oma. Further, only lesions with a certain minimal size
can be used as target lesions for treatment evaluation. In
the following subsections, we show how the MCI is used
to represent medical knowledge about the normal and
abnormal size of anatomical entities, and how RECIST
guidelines for target lesions can be formalized.

Normal size specifications
The medical literature contains much information about
normal qualities of anatomical entities as well as descrip-
tions of typical abnormal or pathological structures such
as cysts, lesions or enlarged lymph nodes. The main
function of these specifications is to define which mani-
festation of a quality of some anatomical entity is con-
sidered to be normal and which is not. Radiologists refer
to these specifications from medical literature when they
classify observed findings as normal, abnormal or patho-
logical. For instance, a lymph node with a short axis of
0.7 cm is considered to be normal, since ‘normal lymph
nodes are ≤ 1 cm in the short axis’. Accordingly, a lymph
node of size 2.65 cm in the short axis is classified as

Fig. 5 Size qualities. PATO defines several qualities for size. MCI adds
four qualities defined as necessary for the representation of
image findings

Fig. 6 Craniocaudal extension of the spleen. A coronal slice of a
contrast-enhanced computed tomography examination of the upper
thorax/upper abdomen. The height of the spleen is measured in
parallel to the craniocaudal axis

Oberkampf et al. BMC Medical Informatics and Decision Making  (2016) 16:5 Page 5 of 12



abnormal. Similar specifications are available for many
other anatomical entities (see e.g. [21–27]). The different
types of specifications are listed in Table 1.
The motivation for formalizing this knowledge is to

automate this kind of classification in order to add
information about the finding type. Thus, we enrich
descriptions of clinical findings and enhance the data
quality. As shown in Fig. 8, MCI defines classes for the dif-
ferent types of normal size specifications (i.e. interval,
upper bound and lower bound). The pattern of these
specifications is similar to the pattern of clinical findings
described above.
The actual definition of which size of particular ana-

tomical entities is considered to be normal depends on
the guidelines used. However, we emphasize that the

model is able to represent the necessary types of specifi-
cations (upper bound, lower bound and interval) and
can be adapted to whichever guideline the user prefers.
A representation of this type of medical knowledge is
given in Fig. 8. In total, the knowledge model contains
40 size specifications related to 33 different anatomical
entities. By using the RadLex subclass hierarchy, the
overall coverage is enhanced: for instance, size descrip-
tions about ‘lymph node’ apply to more than 250 sub-
classes in RadLex.

Normality classification of image findings
In [12], we demonstrated how structured representations
of measurement findings can be extracted from free-text
radiology reports by using Natural Language Processing
technology in combination with the knowledge models
described above. Here, we demonstrate how it is used to
automatically classify image findings. First, we are given
some size finding where the anatomical entity (E), the
measured quality (Q) and the measured value are speci-
fied (as e.g. in Fig. 4). Then we check the knowledge
model and retrieve the most specific size specification
according to the Entity-Quality (EQ) methodology [28].
Only the normal size specifications with the most spe-
cific pair (anatomical entity E’, quality Q’) are retrieved.
Most specific means that there is no size specification
with anatomical entity E” and quality Q” such that E” is
on the subclass path between E and E’, and Q” is on the

Fig. 7 Lymph node size in the axial plane. According to RECIST guidelines, the size of lymph nodes is specified by the longest 1-D extension
(longest axis) and the corresponding longest perpendicular 1-D extension (short axis) within the axial plane

Table 1 Commonly used range specifications to describe the
normal size of anatomical entities

Range type Examples: anatomical entity E, quality Q, bound/range

Upper bound lymph node (RID13296), short axis, 1 cm

submental lymph node (RID7710), short axis, 1.5 cm

spleen (RID86), length, 15 cm

Lower bound ascending aorta (RID580), diameter root, 4 cm

Interval kidney (RID205), cranio-caudal diameter, 8–13 cm

wall of gallbladder (RID33779), thickness, 0.1–0.3 cm

ureter (RID229), width, 0.4–0.7 cm
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subclass path between Q and Q’. If there are two such
normal size specifications, the one with a shorter sub-
class path from E to E’ is considered the most specific.
Thus, e.g., for a measurement of a submental lymph
node, a different normal size specification is retrieved
than for a measurement of a mediastinal lymph node.
After retrieval, the normal range is compared to the actual
measurement value. For example, the length of the spleen
(9.6 cm) is compared to the normal length (7–10 cm), and
accordingly the length is classified as normal and the find-
ing as a normal finding. Since the classification of meas-
urement findings is based on value comparisons, it is not
realized by defining logical axioms in OWL. Instead, we
use SPARQL to retrieve relevant data from the triple store
and to classify findings by comparing their measurement
values to normal size specifications of our knowledge
model. The resulting finding type is then written back to
the triple store.

Response Evaluation Criteria In Solid Tumors (RECIST)
The RECIST (Response Evaluation Criteria In Solid
Tumors) guideline allows a standardized assessment
of tumor burden and tumor response during therapy.
Here, a sum of the diameters (short axis for lymph nodes,
longest diameter for the remaining lesions) for all target
lesions is calculated and reported as the baseline for
follow-up sum and indicates therapy response/failure. At
baseline, tumor lesions (longest diameter ≥ 10 mm) and
lymph nodes (short axis diameter ≥ 15 mm) can be con-
sidered and selected as target lesions. Up to a maximum
of five lesions that are representative of all involved organs
may be identified as target lesions (these should allow
reproducible repeated measurements). The sum of the
diameters of all target lesions is calculated and re-
ported at baseline and during follow-up [3].
The following criteria are used to determine objective

tumor response:

– Complete Response: Disappearance of all target
lesions (any pathological lymph nodes, whether
target or non-target, must have reduction in short
axis to <10 mm).

– Partial Response: At least a 30 % decrease in
the sum of diameters of target lesions
(reference = baseline sum diameters).

– Progressive Disease: At least a 20 % increase in the sum
of diameters of target lesions (reference = the smallest
sum in the study; this includes the baseline sum if that
is the smallest in the study). For Progressive Disease,
the sum must also exhibit an absolute increase
of ≥ 5 mm. The appearance of one or more new
lesions is also considered as Progressive Disease.

– Stable Disease: Neither sufficient decrease to qualify
for Complete/Partial Response nor sufficient
increase to qualify for Progressive Disease [3].

Currently, automatic image segmentation algorithms
are already used to detect lesions and lymph nodes in
CT or MRI images (see e.g. [29–34]). Thus, automatic
extraction of structured representations of lesion and
lymph node size from images is within reach. With
structured representations (e.g. in Fig. 7), large parts of
the RECIST criteria can be automated and improved. In-
deed, the guidelines represent rules and most of them
are easily implemented using SPARQL:

1 Selection of target lesions: For each multidirectional
measurement of a lymph node or lesion, the value
for the short axis (longest axis respectively) is
compared to the RECIST minimal value 15 mm
(10 mm respectively). If the value is larger, then the
finding about the lymph node (or lesion) is classified
as a potential target lesion. The actual selection of
final target lesions from the set of potential lesions is
performed by the radiologist.

Fig. 8 Normal size specification. The thickness of the wall of the gallbladder is normally in the range of 1–3 mm
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2 Verification of selected set of target lesions: It is
verified that there are at most five target lesions
selected and that each organ appears at most twice
as the location of the lesion. This is realized by a
SPARQL ASK query.

3 Calculation of RECIST sum: The values for short
axis (lymph nodes) and longest axis (other lesions)
are summed for all target lesions. The resulting
value is represented as shown in Fig. 9.

4 Classification of response: Classification of complete
response and partial response is verified by SPARQL
queries. Similarly, the increase for a progressive
disease is verified. The appearance of new lesions
has to be assigned manually by the radiologist. If not
otherwise classified, the examination is assigned as a
stable disease.

ReportViewer
In addition to the classification of each finding as
normal or abnormal, information about the change of
findings over time is of importance. For instance, ra-
diologists compare the size of lesions or specific ana-
tomical entities such as lymph nodes or organs over
time to evaluate the treatment success. For instance,
the size of the spleen was measured in 3 dimensions
in consecutive examinations and the radiologist ‘in-
fers’ that the spleen size/volume increased, decreased
or did not change. The comparison to the initial and
the previously performed examination is required in
many clinical processes such as differential diagnosis,
monitoring or treatment evaluation. For instance, the
radiologist has to examine which findings are progres-
sive, regressive, stable or new.
Even though we have structured representations of find-

ings that were extracted from text, automatic comparison

requires the linking of consecutive findings. For findings
about anatomical entities that can be identified only once
in the human body (e.g. the liver or the spleen), this is
possible. However, for lymph nodes and multiple lesions
in one organ, the linking is not reliable: Two findings
about a mediastinal lymph node from consecutive ex-
aminations do not necessarily describe the same en-
tity. For lesions, the situation is similar: Two findings
about a liver lesion from different reports do not ne-
cessarily describe the same lesion. Without a precise
marking of the lesions by the radiologist, a direct and
reliable link cannot be established.
Thus, we decided to provide the radiologist with an

integrated view of findings from consecutive examina-
tions. The ReportViewer (Fig. 10) allows selective re-
trieval of findings from consecutive examinations. For
instance, one can display findings about a particular
anatomical entity (such as the spleen) or finding of a
particular body region (thorax, abdomen, mediasti-
num, etc.) from consecutive examinations. Extracted
and classified measurements are displayed next to the
original report sentence. In total, the prototype imple-
mentation allows the radiologist to efficiently compare
findings from consecutive examinations without losing
the context information. As shown, e.g., in Fig. 10,
the size of the axillary lymph node can be easily com-
pared longitudinal (size changed from 3.5 to 1.4 to
1 cm). Thus the ReportViewer potentially facilitates
follow-up examination.

Results and discussion
In this section, we evaluate the normal classification and
discuss related work.

Evaluation of normal classification
Data sets
The evaluation is based on two data sets of radiology re-
ports: Firstly, an oncologic data set was used consisting
of 2584 German radiology reports (27 different readers)
on 377 lymphoma patients. The imaging modality was
mainly computed tomography (CT), but magnetic reson-
ance imaging (MRI) and ultrasound (US) were also used.
Secondly, a mixed data set consisting of 6007 German
radiology reports (27 different readers) on diverse med-
ical and surgical patients was used. The imaging modal-
ity was CT. The inspected body regions for both data
sets were mainly abdomen, thorax and head, but also
include various other regions from the whole body.
Sentences with measurements were annotated with
anatomical entities defined in RadLex, and the radiolo-
gist manually selected the best annotation to describe
the measurement. For example, for the sentence ‘lymph
nodes within aortopulmonary window and pretracheal
unchanged with a size of up to 1.6 × 1.2 cm’ [Original

Fig. 9 RECIST sum: this is calculated based on a set of target lesions.
Adjacent items are represented by subclass relationships, i.e. the
RECIST sum calculation is a subclass of data transformation

Oberkampf et al. BMC Medical Informatics and Decision Making  (2016) 16:5 Page 8 of 12



in German: Die LK im aortopulmonalen Fenster und
prätracheal größenunverändert mit einer Größe von bis
zu 1,6 × 1,2 cm.], the pair (‘1.6 × 1.2 cm’, ‘aortopulmonary
lymph node’) was selected by the radiologist. In total,
420/393 findings were classified in the oncologic/mixed
data set (including 170/184 lesions and cysts).

Evaluation
All measurement findings, i.e. the pairs (measurement,
anatomical entity), were automatically classified and for
each data set, the radiologist was provided with an Excel
spreadsheet that provided each classified finding, the
sentence, the ‘measurement, anatomical entity’ pair and
the classifier result (normal, abnormal or unclassified).
Then the radiologist evaluated the classified finding as
correct or incorrect. All unclassified findings were evalu-
ated as incorrect. Accuracy was 96.4 % for oncologic re-
ports and 92.9 % for mixed reports. Detailed evaluation
results are summarized in Table 2. For both data sets,
the number of incorrect classifications (i.e. false positives
and false negatives) was very small (Table 2). However,
both data sets have a significant number of unclassified
findings that occur when the anatomical entities are not
covered by the knowledge model.

Firstly, there are size findings about anatomical entities
that are too unspecific to be classified as normal or abnor-
mal. For instance, ‘portion of soft tissue’ is never classified
for that reason (6 times for the oncologic data set and 9
times for the mixed data set). Similarly, ‘fluid’, ‘duct’ and
‘wall’ are not sufficiently specific for classification.

Fig. 10 Screenshot of the ReportViewer showing extracted and classified measurement findings describing entities that are part of the thorax
from consecutive examinations. The change of the size of the axillary lymph node from enlarged to normal is visible. Red = abnormal/pathologic
finding, green = normal/non-pathologic finding

Table 2 Evaluation results for the classification of normal and
abnormal findings extracted from radiological reports

Oncologic data set Mixed data set

All cases 420 393

True normal 115 86

True abnormal 290 279

False normal 2 2

False abnormal 2 1

Unclassified 11 25

Accuracy 96.4 % (405/420) 92.9 % (365/393)

The oncologic data set contains reports from lymphoma patients; the mixed
data set contains reports from diverse medical and surgical patients. ‘True
normal’ means that the algorithm correctly classified a finding as normal
(accordingly for ‘true abnormal’). ‘False normal’ means that the algorithm
falsely classified a finding as normal while the radiologist classified it as
abnormal (accordingly for ‘false normal’). The term ‘unclassified’ means that
the algorithm was not able to classify the finding
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Secondly, there are anatomical entities that are simply
not yet covered by the knowledge model. For instance,
the finding ‘2.8 × 0.7 cm, rib’ is not classified because the
knowledge model does not contain a normal size specifi-
cation for the rib. Similarly, findings about pleura, tra-
chea, right ventricle, bulla, infrarenal aorta, mucosa, L2
vertebral body, T10 vertebral body, L4 vertebral body,
aortic arch, crus of diaphragm and set of biliary ducts
were not classified. The rate of correctly classified find-
ings for the oncologic data set is significantly higher
than for the mixed data set, because fewer findings
remained unclassified (11 out of 250). This is because
the mixed data set contains reports from patients with
diverse disease background and thus there are more
measured anatomical entities that are not covered by the
knowledge model. This can be resolved by extending the
knowledge model for corresponding entities.
Most of the incorrect classifications are spleen mea-

surements. For instance, the finding ‘14.8 × 8.5 cm,
spleen’ was incorrectly classified as normal. This is be-
cause the classification algorithm simply maps 14.8 cm
to the height (normal range: 11–15 cm) and the length
(normal range: 7–10 cm). However, the size was mea-
sured in the axial plane and thus describes the length
and width, and accordingly a splenomegaly, i.e. an ab-
normal spleen. On the other hand, the finding ‘9 × 3.5 ×
6.5 cm, spleen’ was incorrectly classified as abnormal
since the algorithm detected that the value 3.5 cm is
below the normal width of 4–6 cm. However, according
to the radiologist, this deviation is not considered to be
abnormal. Here, the algorithm needs to be adapted ac-
cordingly. Further, the finding ‘4 cm, ascending aorta’
was incorrectly classified as normal. In this case, the size
was compared to the normal size of the aorta at the root
(normally at least 4 cm); however, the ascending aorta is
normally slightly smaller, and thus 4 cm should have
been classified as abnormal since it represents an ectasia
of the ascending aorta. This fault can be avoided by ex-
tending the knowledge model with more granular size
descriptions.

Related work
In the biomedical domain, there is much work on
structured representation of measurements from a wide
variety of examinations. The contribution of our work
is the integrated representation of image findings and
medical knowledge. Here, we review existing modeling
approaches.
We reused many different ontologies from the OBO

library, and consequently patterns of these ontologies were
reused. For example, the basic representation of a clinical
finding is defined analogously to the representation of
human phenotypes in the Human Phenotype Ontology
(HP) [35, 36]. This has the advantage that clinical findings

defined by MCI can be automatically classified in terms of
HP such as splenomegaly, lymphadenopathy, etc. The pat-
tern of scalar measurements is reused from the Ontology
for Biomedical Investigations (OBI) [37].
In [38], the representation of phenotype measurement

data is presented in which three aspects of a measure-
ment are captured: the measurement itself, the method
of how the measured values were obtained, and the con-
dition of the measurement. While in laboratory tests
these three aspects are of high relevance, for the radi-
ology findings described here, the measurement method
and condition (e.g. imaging modality or usage of a con-
trast agent) are of minor importance.
Another important related work is the Annotation and

Image Markup (AIM) standard [39] that provides a data
model for capturing image annotation and markup data.
In particular, image measurements discussed in this
paper are covered by AIM. Also, RadLex IDs are used as
the controlled vocabulary for anatomical entities and ob-
servation characteristics. Thus, the approach and the
knowledge model on normal size specifications could
also be applied to image measurements specified in
AIM, when qualities of measurements (length, width,
thickness, etc.) are expressed at a similar level of granu-
larity as PATO.
The Biological Spatial Ontology (BSPO) [40] is a small

ontology specialized for cross-species representation of
spatial anatomical entities. BSPO defines very useful
classes for the representation of anatomical boundaries,
planes and axes as well as many properties for spatial re-
lations such as ‘anterior to’, ‘right of ’, ‘on the distal side
of ’, etc. The problem, however, is that some classes and
properties (with high relevance for our use case) were
not fitting our need: Firstly, the ‘orthogonal to’ relation
of BSPO is not symmetric and holds only between axes
and planes - not between two axes within one plane.
Secondly, the definition of the anterior-posterior axis
does not match the human anatomy: In BSPO, the
anterior-posterior axis is orthogonal to the axial plane
and has the synonymous craniocaudal axis. For humans,
however, the anterior-posterior axis is orthogonal to the
coronal plane and different than the craniocaudal axis.
Thus, we decided to reuse classes for planes and axes

from FMA instead and define orthogonal-to and
parallel-to relations in MCI directly.
Biomarkers are measurable qualities of an organism

that can be used to determine its status or condition
(e.g. with respect to diseases or disorders). Since the
structured representation of image measurements allows
the analysis of large patient cohorts, MCI also supports
the development of imaging biomarkers. Regarding this
aspect, the Quantitative Imaging Biomarkers Ontology
(QIBO) [41] was created to support the creation of
biomarkers from clinical imaging data in general. The
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aim of QIBO is “to represent, integrate and harmonize
heterogeneous knowledge across the domain of im-
aging biomarkers” [41]. However, QIBO is no longer
maintained.
In radiology, structured reporting has been discussed

for a long time. For example, in DICOM structured
reporting (SR) [42], a hierarchical schema for the repre-
sentation of image findings is presented that describes
‘Content Items’ by reference to some template and def-
inition of properties such as the specification of a diam-
eter or description of the measured entity. In contrast to
DICOM SR, however, our representation is aligned with
existing ontologies of the OBO library and thus auto-
matically linked to further knowledge resources. In [43],
the structure of DICOM SR findings and representations
along UMLS semantic types is analyzed. Findings are
distinguished as anatomical findings, lesion findings and
quality findings. The goal is to link finding descriptions
to diseases by using the GAMUTS ontology.
We mention that there are numerous Natural Lan-

guage Processing (NLP) techniques to extract informa-
tion from text. NLP techniques are employed by our
approach for annotation of text with ontology concepts.
In comparison to pure NLP approaches (such as [44]),
however, our approach formalizes knowledge and thus
is able to classify findings even when no interpret-
ation such as ‘normal’, ‘unremarkable’, etc. occurs in
the report text.

Conclusions
In the biomedical domain, much work on the structured
representation of measurements from a wide variety of
examinations has been accomplished. The proposed
MCI enables an accurate integrated representation of re-
ported measurements and medical knowledge. Thus,
measurements can be automatically classified and inte-
grated in different clinical decision processes. The struc-
tured representation is suitable for better integration of
clinical findings during decision-making. The proposed
ReportViewer provides a longitudinal overview of the
measurements. Further, MCI provides classes that are
required for a RECIST-compliant representation of
lymph node measurements and other lesions. Implemen-
tation of RECIST guidelines with SPARQL enhances the
quality of the selection and comparison of target lesions,
and the corresponding treatment response evaluation. In
future work, we plan to contextualize the knowledge
model with respect to the patient background such as
age, gender, weight, height and other characteristics.
Further, the integration with existing image segmenta-
tion algorithms will be a promising next step.
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