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Abstract

Background: The presence of comorbid conditions is strongly related to survival and also affects treatment choices
in cancer patients. This comorbidity is often quantified by the Charlson Comorbidity Index (CCI) using specific
weights (1, 2, 3, or 6) for different comorbidities. It has been shown that the CCI increases at different times and
with different sizes, so that traditional time to event analysis is not adequate to assess these temporal changes.
Here, we present a method to model temporal changes in CCI in cancer patients using data from PCBaSe Sweden,
a nation-wide population-based prospective cohort of men diagnosed with prostate cancer. Our proposed model is
based on the assumption that a change in comorbidity, as quantified by the CCI, is an irreversible one-way process,
i.e., CCI accumulates over time and cannot decrease.

Methods: CCI was calculated based on 17 disease categories, which were defined using ICD-codes for discharge
diagnoses in the National Patient Register. A state transition model in discrete time steps (i.e., four weeks)
was applied to capture all changes in CCI. The transition probabilities were estimated from three modelling
steps: 1) Logistic regression model for vital status, 2) Logistic regression model to define any changes in CCI,
and 3) Poisson regression model to determine the size of CCI change, with an additional logistic regression
model for CCI changes ≥ 6. The four models combined yielded parameter estimates to calculate changes in
CCI with their confidence intervals.

Results: These methods were applied to men with low-risk prostate cancer who received active surveillance (AS),
radical prostatectomy (RP), or curative radiotherapy (RT) as primary treatment. There were large differences in CCI
changes according to treatment.

Conclusions: Our method to model temporal changes in CCI efficiently captures changes in comorbidity over time
with a small number of regression analyses to perform – which would be impossible with tradition time to event
analyses. However, our approach involves a simulation step that is not yet included in standard statistical software
packages. In our prostate cancer example we showed that there are large differences in development of comorbidities
among men receiving different treatments for prostate cancer.
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Background
Comorbidities are known to affect cancer survival, with
5-year mortality hazard ratios ranging from 1.1 to 5.8
depending on levels of comorbidity [1]. A recent system-
atic review reported that presence of specific severe co-
morbidities or psychiatric disorders was associated with
delayed cancer diagnosis, whereas men and women with
chronic diseases with regular medical consultations had
their cancer detected at an earlier stage. Furthermore, a
smaller proportion of cancer patients with comorbidities
received standard treatment than patients without co-
morbidities, and in addition their chance of completing
a course of cancer treatment was lower [1]. For instance,
a study by Griffiths et al. examined impact of comorbid-
ity 12 months before to 84 months after a breast cancer
diagnosis. Overall, 10 % of the women had undetected
comorbidity prior to diagnosis, and these women re-
ceived less aggressive treatment and had higher all-cause
mortality than otherwise healthy women [2]. In the case
of prostate cancer, it has been found that prostate cancer
mortality at ten years after diagnosis was similar for men
aged 70 with high-risk disease, regardless of their co-
morbidities: 15 % in men with no other comorbidities
and 14 % in men with moderate levels of comorbidities.
In contrast, all-cause mortality was substantially lower
for men with no comorbidities (34 %), than for men with
moderate levels of comorbidity (47 %) [3].
Thus, changes in comorbidity are important to include

into analysis as it affects treatment choice and disease
progression of cancer patients. Changes in comorbidity,
as measured by the Charlson Comorbidity index (CCI)
[4, 5], occur multiple times and with different sizes (1, 2,
3, or 6), which is difficult to describe using traditional
time to event analysis. Therefore, we present a method
using a multi-state approach to model temporal changes
in comorbidity for cancer patients using data from
PCBaSe Sweden, a national-wide population-based pro-
spective cohort of men diagnosed with PCa between
1992 and 2012. The proposed method is based on the
assumption that a CCI change is an irreversible process,
i.e., CCI accumulates over time and cannot decrease.

Methods
Study population and data collection
Prostate Cancer data Base Sweden (PCBaSe Sweden)
consists of the National Prostate Cancer Register of
Sweden (NPCR) linked to a number of different nation-
wide registers [6]. NPCR became nationwide in 1998
and covers 98 % of all newly diagnosed, biopsy-
confirmed cases of prostate cancer, as compared to the
Swedish Cancer Registry. Information in PCBaSe on age,
serum PSA, primary treatment, tumour grade and stage,
and cause and date of death was used. Prostate cancer
risk category was defined according to a modification of

the National Comprehensive Cancer Network Guideline
[7]. The linkage of PCBaSe was approved by the Research
Ethics Board at Umeå University.
For the current analysis, we selected men recorded in

NPCR with low risk prostate cancer, diagnosed between
2003 and 2012, who received active surveillance (AS),
radical prostatectomy (RP), or curative radiotherapy
(RT) as primary treatment. Comorbidity was measured
with the CCI and was retrieved from the National
Patient Register and the National Cancer Register [4, 5].
We used 17 groups of diseases with specific weights
(1, 2, 3, or 6) assigned to each disease category, as
defined by Charlson et al. [8]. Information on these
diseases was based on ICD (International Classification
of Diseases) codes for discharge diagnoses. The actual
day for each event was retrieved from the national
healthcare registers. We then applied the specified
weights to the 17 different types of events to calculate
the CCI on a daily basis. Thus, CCI is a time-dependent
covariate that could change multiple times during
follow-up. An overview of all covariates used in our ana-
lyses is provided in Additional file 1: Tables S1 and S2.
Data cannot is not freely available following the legis-

lation of the Swedish Public Access to Information and
Secrecy Act. However, data can be made available to re-
searchers upon request. The steering groups of NPCR
and PCBaSe welcome external collaborations. For more
information please see www.npcr.se/in-english where
registration forms, manuals, and annual reports from
NPCR are found as well as a full list of publications from
PCBaSe.

Analysis
We propose a method based on a state transition model
approach with states and state transitions, as illustrated
in Fig. 1. CCI changes are considered irreversible, i.e.,
CCI accumulates over time and cannot decrease as
indicated by the arrows only pointing towards higher
CCI states in Fig. 1. In each CCI-state there is a pos-
sibility of death, indicated by the arrows pointing to-
wards the death state. Due to the large number of
states and transitions, the proposed model was simpli-
fied as described below. An overview of the R-codes
used for these models is provided in Additional file 1:
Table S3.
Firstly, we simplified follow-up time by discretizing in

time steps whereby an individual could experience death,
a change in CCI of any size, or remain in the previous
CCI state at each time step. In our prostate cancer ex-
ample, we chose a time step of four weeks. The discre-
tised data was arranged using long format, i.e., each
study subject was represented by several rows of data,
one for each time step in which the study subject was
still alive. Age and CCI were updated at each time step.
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Next, we estimated the state transition probabilities in
three-step process:

Step 1: We started by determining a person’s vital status
at the end of each time step. The probability of death
was modelled with a logistic regression analysis applied
to the long format dataset. This first model used death
(yes/no) as the outcome and age (linear), CCI (linear),
and their statistical interaction as regressors.

Step 2: When a man was alive at the end of a time
step, we determined whether a change in CCI had
occurred. This was modelled with a logistic regression
model using CCI-change (yes/no) as the outcome.
The regressors in this second model were treatment
(AS/RP/RT), age (linear), CCI (0/1/2/3/4+), time since
previous CCI change (1, 2–3, 4–6, or >6 months, with
the latter also including no previous CCI change),
time since RP (1, 2–3, 4–6, or >6 months, with the

Fig. 1 Possible CCI-states (blue) and final death-state (black) in the state transition model. The arrows reflect the possible changes in CCI and the
possibility of death
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latter also including no RP), time since RT (1, 2–3,
4–6, or >6 months, with the latter also including no
RT), and a statistical interaction between age and
treatment.
Step 3: When a change in CCI occurred, the final step
defined the size of this CCI change. Here, we made a
second simplification based on the observation that
changes in CCI size approximately follow a Poisson
distribution, with the exception for changes ≥ 6 (Fig. 2).
This exception reflects diseases that contribute to CCI

with a weight of 6. Therefore, this final third step of
the transition model was split into two parts:
3a) First, we applied Poisson regression to the subset of

the long dataset where CCI changes occurred.
Transformed CCI change was the outcome and
calculated as follows: All changes were decreased by
1, except changes of size ≥6, which were decreased
by 6. Thus, the smallest possible outcome was zero,
corresponding to a CCI-change of 1 or 6. The same
regressors as in the model of Step 2 were used.

Table 1 Baseline characteristics of the study population in Prostate Cancer data Base Sweden (PCBaSe) 3.0

Active surveillance (n = 7 544) Radical prostatectomy (n = 9 959) Curative radio therapy (n = 2 734) Total (n = 20,237)

Age, mean (sd) 65.4 (6.0) 61.7 (5.9) 64.8 (5.7) 63.5 (6.2)

Age, n (%)

≤55 362 (4.8) 1315 (13.2) 147 (5.4) 1824 (9.0)

56–60 997 (13.2) 2280 (22.9) 435 (15.9) 3712 (18.3)

61–65 2042 (27.1) 3314 (33.3) 781 (28.6) 6137 (30.3)

66–70 2475 (32.8) 2433 (24.4) 846 (30.9) 5754 (28.4)

70+ 1668 (22.1) 617 (6.2) 525 (19.2) 2810 (13.9)

Educational level, n (%)

High 2116 (28.0) 3327 (33.4) 731 (26.7) 6174 (30.5)

Low 2198 (29.1) 2485 (25.0) 841 (30.8) 5524 (27.3)

Middle 3206 (42.5) 4109 (41.3) 1147 (42.0) 8462 (41.8)

Missing 24 (0.3) 38 (0.4) 15 (0.5) 77 (0.4)

CCI at PCa diagnosis, n (%)

0 6288 (83.4) 9008 (90.5) 2276 (83.2) 17,572 (86.8)

1 734 (9.7) 596 (6.0) 295 (10.8) 1625 (8.0)

2 371 (4.9) 268 (2.7) 108 (4.0) 747 (3.7)

3+ 151 (2.0) 87 (0.9) 55 (2.0) 293 (1.4)

T-stage, n (%)

T1a 513 (6.8) 106 (1.1) 17 (0.6) 636 (3.1)

T1b 126 (1.7) 61 (0.6) 22 (0.8) 209 (1.0)

T1c 5807 (77.0) 7152 (71.8) 1796 (65.7) 14,755 (72.9)

T2 1078 (14.3) 2621 (26.3) 887 (32.4) 4586 (22.7)

TX/Missing 20 (0.3) 19 (0.2) 12 (0.4) 51 (0.3)

N-stage, n (%)

N0 443 (5.9) 980 (9.8) 146 (5.3) 1569 (7.8)

NX 7101 (94.1) 8979 (90.2) 2588 (94.7) 18,668 (92.2)

PSA, mean (sd) 5.5 (2.0) 5.8 (1.9) 6.1 (1.9) 5.7 (2.0)

PSA, n (%)

0–2.0 277 (3.7) 157 (1.6) 28 (1.0) 462 (2.3)

2.1–4.0 1578 (20.9) 1874 (18.8) 368 (13.5) 3820 (18.9)

4.1–6.0 2868 (38.0) 3910 (39.3) 991 (36.2) 7769 (38.4)

6.1–8.0 1848 (24.5) 2568 (25.8) 838 (30.7) 5254 (26.0)

8.1–10 973 (12.9) 1450 (14.6) 509 (18.6) 2932 (14.5)
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3b) To handle CCI changes ≥6, an additional logistic
regression model was applied with CCI change ≥”
(yes/no) as the outcome. In this model, we used
the following regressors: treatment (AS/RP/RT),
CCI (0/1/2+ together with a linear term), time since
previous CCI change (as in Step 2), and age (linear).

The above steps yielded a set of parameter estimates
which were used to simulate CCI in a microsimulation
[9], i.e., a simulation of CCI changes in individual study
subjects. In this simulation, outcomes according to
models 1, 2, 3a, and 3b were generated. The dichotom-
ous outcome from Step 3b indicated whether the simu-
lated Poisson outcome from Step 3a should be increased
by 1 or 6 to recover the actual CCI-change. We per-
formed this simulation of CCI development in 1,000,000
study subjects with pre-defined values for primary treat-
ment, initial CCI, and age.
The modelling-simulation approach [9] made it pos-

sible to calculate confidence intervals for the predicted

CCI at specific time points, and in particular differences
in CCI between exposure groups. The confidence inter-
vals were computed using the unscented transform [10].
This method resembles bootstrap techniques in that the
final estimate varies as a result of repeated simulations
using different values of the regression coefficients. The
different estimates were then used to calculate the confi-
dence intervals. However, the unscented transform is
more efficient since the number of simulations needed is
limited to about twice the number of regression coeffi-
cients, a much smaller number when compared to trad-
itional bootstrap techniques. In accordance with the
unscented transform, the combinations of regression
coefficients were chosen deterministically, based on the
estimated covariance matrices.

Results and discussion
Table 1 illustrates that baseline characteristics in the
three treatment groups were substantially different. For
instance, men treated with RP were younger than men
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on AS or RT. Prostate-specific antigen (PSA) levels were
higher for men on RT than for men on AS or RP. It is
therefore of interest to identify how the effect of treat-
ment on changes in CCI was affected by age and other
predictors.
Figure 3 represents the changes in CCI during 10 years

following AS, RP, and RT for men with prostate cancer
aged 55 and 65, with initial CCI = 0. It also shows abso-
lute differences (with 95 % confidence intervals) in the
proportion of men remaining on CCI = 0 by treatment
regime (RT/AS and RP). Follow-up time started at treat-
ment initiation. There was a rapid increase in CCI for
men treated with RP or RT. This is likely explained by
the fact that in Sweden all medical conditions of a pa-
tient are included in the discharge diagnoses following
an in-hospital episode. Therefore, conditions that were
previously not recorded will occur for the first time after
hospitalisation despite the fact the patient may have had
this condition for a long time. Furthermore, there was a
more rapid increase in CCI for men treated with RT
than AS. For instance, at 10 years after treatment a
higher proportion of men age 65 had died or changed
CCI after RT than after RP, 7.3 % (95 % CI: 5.1–9.5).
The corresponding value for AS versus RP was 4.1 %
(95 % CI: 2.4–5.9).
The following section further clarifies the model speci-

fications and simplifications used in our approach to
model temporal changes in comorbidity. Our choice of
four-week time steps was a trade-off between precision
of dates when CCI changes occurred and computer

resources in terms of memory and CPU. A smaller time
step would make the long format dataset very large. The
implications of our choice of time steps can also be eval-
uated by looking at time intervals with several CCI
changes. For instance, our time steps of four weeks re-
sulted in 2 % of the CCI changes (updated on a daily
basis) being pooled with other changes in the same time
interval (data not shown). A smaller time step would
have alleviated this problem, but at the expense of
increased computer load. Moreover, larger time steps
would also require a thorough examination of the
assumption that changes in CCI follow a Poisson
distribution.
It is also important to note that the Poisson distribu-

tion, as observed for the size of CCI changes in our ex-
ample, was purely based on investigation of our data and
not justified by any probability theory arguments. If all
the CCI changes would have been of size one, a theoret-
ical motivation for the Poisson distribution would have
been justifiable. Nevertheless, the weights used to calcu-
late the CCI (1, 2, 3, or 6) make the theoretical basis for
usage of the Poisson-distribution limited. Thus, this sim-
plification may need further investigation in other re-
search situations as it is not a given that a Poisson
distribution will fit any type of data and, as suggested
above, this may also depend on the size of the time
steps.
Further justification of the validity of our transition

stage models follows from a comparison between
simulated and observed data on CCI changes (Fig. 4).
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Simulated data were obtained using the approach de-
scribed above, whereas observed data were taken from
the traditional Kaplan-Meier estimates with the endpoint
of an increase in CCI of at least one unit. Figure 4 shows
a comparison for men aged 65 with CCI = 1 at time of
prostate cancer diagnosis. The close agreement between
the curves for observed and simulated data supports the
choice of the models defined above.
Finally, our transition stage model required less model

specifications than the traditional time-to-event ap-
proach. It captured the complete change in CCI over
time using four regression models (three logistic and one
Poisson model). This problem would have been difficult
to address using traditional survival analysis such as Cox
proportional hazards regression. These models only deal
with time to a specific event. In the current setting such
an event could, for example, be a transition from CCI = 1
to the CCI = 3. More specifically, each arrow in Fig. 1
could correspond to such an event, so that each arrow in
Fig. 1 would correspond to a separate Cox model. In prac-
tice the cumulated CCI rarely exceeds 15. If we restrict
the problem to CCI ≤ 15, the number of models needed to
fit would be 16 + 15 +… + 1 = 136. When limiting the
problem to CCI ≤ 2, still six Cox models would be needed,
three for CCI and three for death. Even when using a Cox
model for each size of CCI-change, several different Cox
models would be required. Thus, the number of regres-
sion analyses needed when applying our proposed method
is comparatively small.
Moreover, it is not well-defined how to perform simu-

lations like the ones proposed, based on a set of Cox
models. To simulate single event times from a Cox
model one could use the estimated hazard function.
However, when calculating confidence intervals, a meas-
ure of the uncertainty for the hazard function estimate is
required. Such an estimate is possible to retrieve using
the continuous-time stochastic processes described in
[11]. Although possible, this problem is complicated
even when CCI ≤ 2, because the variance-covariance
matrix is practically infinite dimensional. In our complex
simulation, where the results from several different
models need to be combined, the mathematical difficul-
ties would be overwhelming.
The simulation in our framework is much simpler

since we repeatedly take a small step forward in time.
This approach also makes it possible to estimate the un-
certainty by using the unscented transform because the
number of regression coefficients is limited and the esti-
mated variance-covariance matrix is readily available for
each time step.

Conclusions
Our method to model temporal changes in CCI effi-
ciently captures the changes in comorbidity over time

with a small number of regression analyses to perform.
However, our approach involves a simulation step that
is not yet included in standard statistical software
packages.
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