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Abstract

Background: One of the primary obstacles to the widespread adoption of openEHR methodology is the lack of
practical persistence solutions for future-proof electronic health record (EHR) systems as described by the openEHR
specifications. This paper presents an archetype relational mapping (ARM) persistence solution for the archetype-based
EHR systems to support healthcare delivery in the clinical environment.

Methods: First, the data requirements of the EHR systems are analysed and organized into archetype-friendly concepts.
The Clinical Knowledge Manager (CKM) is queried for matching archetypes; when necessary, new archetypes are
developed to reflect concepts that are not encompassed by existing archetypes. Next, a template is designed for
each archetype to apply constraints related to the local EHR context. Finally, a set of rules is designed to map the
archetypes to data tables and provide data persistence based on the relational database.

Results: A comparison study was conducted to investigate the differences among the conventional database of
an EHR system from a tertiary Class A hospital in China, the generated ARM database, and the Node + Path database.
Five data-retrieving tests were designed based on clinical workflow to retrieve exams and laboratory tests. Additionally,
two patient-searching tests were designed to identify patients who satisfy certain criteria. The ARM database achieved
better performance than the conventional database in three of the five data-retrieving tests, but was less efficient in
the remaining two tests. The time difference of query executions conducted by the ARM database and the
conventional database is less than 130 %. The ARM database was approximately 6-50 times more efficient
than the conventional database in the patient-searching tests, while the Node + Path database requires far
more time than the other two databases to execute both the data-retrieving and the patient-searching tests.

Conclusions: The ARM approach is capable of generating relational databases using archetypes and templates for
archetype-based EHR systems, thus successfully adapting to changes in data requirements. ARM performance is similar
to that of conventionally-designed EHR systems, and can be applied in a practical clinical environment. System
components such as ARM can greatly facilitate the adoption of openEHR architecture within EHR systems.
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Background

Currently, an electronic health record (EHR) system is
essential to support clinical practice with information
technology in healthcare environments. EHR is a repository
of information regarding the health status of a subject of
care in computer processable form [1]. However, healthcare
data is generally too complicated, flexible, and changeable
to capture a universal, comprehensive and stable schema of
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information, which is the foundation of the entire EHR
architecture. Highly-specialized and complex EHR systems
cannot acclimate to the evolution of healthcare data
requirements, which require EHR systems to embrace a
dynamic, state-of-the-art, rapidly evolving information
infrastructure [2]. In order to protect EHR systems from
changes in the healthcare domain, openEHR [3] has pub-
lished a series of specifications to guide the development of
future-proof EHR systems. Solutions span from informa-
tion modelling to system architecture, to meet the continu-
ally evolving needs of EHR systems.
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The concept of openEHR focuses on systems and tools
necessary to the computation of complex and constantly
evolving health information at a semantic level, according
to the following three paradigms: separation of information
models, domain content models, and terminologies; separ-
ation of responsibilities; and separation of viewpoints [4].
Among these three paradigms, the separation of informa-
tion models, domain content models and terminologies
promotes a significant shift from the single-level modelling
approach of information system development to a two-
level modelling approach. In the single-level modelling
approach, domain concepts that are processed by the EHR
system are hard-coded directly into the application and
database models. In two-level modelling, the semantics of
information and knowledge are separated into a small,
comprehensible, non-volatile reference model (RM), which
is used to build information systems and knowledge
models; archetypes are used as formalisms and structures
to express numerous and volatile domain concepts [5].

The RM represents the general features of health record
components, their method of organization, and necessary
contextual information to satisfy both the ethical and legal
requirements of the health record. The RM encompasses
the stable features of the health record by defining the set
of classes that composes the blocks which in turn consti-
tute the record. Archetypes define entire, coherent infor-
mational concepts from the clinical domain [6]. An
archetype is a hierarchical combination of components
from the RM with available restrictions placed on names,
possible data types, default values, cardinality, etc. These
structures, although sufficiently stable, may be modified
or replaced by others as clinical practice progresses and
evolves [7]. Archetypes are deployed at runtime via tem-
plates that specify particular groups of archetypes to be
used for a particular purpose, often corresponding to a
screen form. A template is a specification that creates a
tree structure of one or more archetypes, and each con-
straining instance of various RM types such as compos-
ition, section, entry subtypes, etc. Templates typically
closely correspond to screen forms, printed reports, and
generally complete information to be captured or sent at
the application level; they may therefore be used to define
message content [4].

By utilizing a two-level modelling approach, EHR sys-
tems can be built on a stable RM as a general framework,
and thus use archetypes as the domain information model
to achieve greater flexibility and stability, particularly in
situations in which the domain concepts are vast in num-
ber, have complex relationships, and evolve continuously.
The responsibilities of specialists from the information
technology domain and the healthcare domain are disen-
gaged: developers focus only on the technical components
of EHR systems, while specialists develop the structural
model based on domain concepts and archetypes. This
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enables domain specialists to participate directly in the
production of the artefacts that are interpreted by EHR
systems, to organize and present healthcare information,
and to control the EHR system without intervention from
the system supplier or re-programming.

Syntactic and semantic interoperability between differ-
ent EHR systems is facilitated by the use of archetypes.
However, agreement between data content and the infor-
mation models is necessary for real integration and seman-
tic interoperability [8]. In the single-level modelling
approach, the domain concepts are implicitly contained
within the EHR systems. No consensus healthcare domain
models exist in healthcare domain models to which EHR
systems may conform; each system may model different
aspects and granularity levels of domain concepts, result-
ing in heterogeneity. In the two-level modelling approach,
the RM ensures that EHR systems can always send infor-
mation to other systems and receive readable information
in return, thus ensuring data interoperability. Archetypes
can be used as the common knowledge repository to share
evolving clinical information that can be processed by the
receiving systems, thus enabling semantic interoperability
[9]. The openEHR system maintains Clinical Knowledge
Manager (CKM) as an official archetype repository to sup-
port the governance of international domain knowledge.

Specifications of openEHR can be used to create and
sustain a flexible EHR ecosystem that consists of may in-
tegrated services, which is too complex to be accurately
processed by single applications [10]. The general architec-
tural approach can be considered as five layers: persistence
(data storage and retrieval), back-end services (including
EHR, demographics, terminology, archetypes, security, rec-
ord location, etc.), virtual EHR (a coherent set of APIs to
the various back-end services and an archetype-and-
template-enabled kernel responsible for creating and pro-
cessing archetype-enabled data), application logic (user
applications or another service, such as a query engine),
and presentation (the graphical interface of the application)
[4]. The archetypes share the openEHR innovation of
adaptability because they are external to the software, while
key components of the software are derived from the arche-
types [11]. Much current research has been devoted to the
use of archetypes to drive the persistence, accessibility, and
presentation of healthcare information systems [12—16].

Most EHR systems in the healthcare field are built
according to the single-level modelling approach, despite
the many advantages of two-level modelling. One of the
primary reasons is that the persistence layer is inad-
equate to meet the requirements of clinical practice. As
the foundation of EHR systems, the persistence layer de-
termines the EHR system architecture, and thus also
function as a performance bottleneck. The openEHR
system promotes a Node + Path persistence solution that
serializes sub-trees of fine-grained data into blobs or
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strings based on the object or relational systems [17].
The data can be serialized according to different granu-
larity levels, from top-level information objects to the
lowest leaf nodes. In essence, the Node + Path solution is
an entity-attribute-value (EAV) approach, which takes
advantage of the semantic paths in openEHR data to im-
prove the serialized-blob design. The greatest advantages
of the Node + Path approach are flexibility and simplicity;
all data nodes are serialized, and their paths are recorded
adjacently in a two-column table of < node path, serialized
node value>. However, the simplicity of the data storage
structure induces complex data retrieval logic, which
strains the performance of data insertion and query, which
requires flexibility [18]. Some researchers have reported
similar performances in the processing of entity-centered
queries by conventional and EAV models, but that EAV
models were approximately 3—5 times less efficient in the
processing of attribute-centered queries [19]. Evaluations
of persistence solutions using an XML database also indi-
cates that XML databases were considerably slower and
required much more space than the relational database
[20]. There has also been similar research into the data
persistence of alternative approaches based on two-level
modelling, such as EN13606 [21] or HL7 Version 3 [22].
In a proof-of-concept work of EN13606 [7], the data stor-
age was developed by applying Object Relational Mapping
(ORM) [23] to the RM of EN13606; this approach was
investigated by the authors in earlier work [24]. The deep
inheritance and complicated relationships of the EN13606
RM induces excessive JOIN operation during data query.
Additionally, classes near the top hierarchy become heavily
overloaded with data. For example, DATA_VALUE is the
basic class of all data types, and contains the common
attributes of all instances of all data classes, but it is unable
to operate in real time [7]. IBM Clinical Genomics medical
research developed a hybrid data model based on the HL7
Version 3 Reference Information Model (RIM) [25]. The
hybrid data model combines elements of both the ORM
and EAV approaches, which is well-suited to the sparse
and flexible data of a medical research data warehouse.
However, it demonstrates similar problems to other ORM
and EAV approaches in that it does not improve the per-
formance enough to support effective clinical transactions.

The relational database is still of primary importance
to the data persistence of EHR systems, and its excellent
performance has already been well proved in many suc-
cessful EHR projects and widely-accepted EHR produc-
tions. The primary challenge to the application of a
two-level modelling approach to a relational database is
that the domain information model is hard-wired into the
database model; when the domain information model
changes, the relational database must be redesigned in
order to facilitate the new domain information model.
There are two approaches to support the adaptation of the
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persistence layer to changes in archetypes. One ap-
proach is to use a general data storage structure that is
independent of archetypes, such as Node + Path, which
has been well-investigated. The other approach is to
generate a database model to design a persistence layer
driven by archetypes.

This work presents an archetype relational mapping
(ARM) persistence solution based on a relational data-
base that can achieve similar performance to the con-
ventional database in practical clinical environments.
This work extends the basic ARM method introduced
in a previous proof-of-concept work [24] by providing a
more sophisticated mapping approach based on tem-
plates and archetypes in order to map archetypes to re-
lational tables. Performance optimization rules and
details are then provided. First, the ARM approach is
introduced in detail, including archetype modelling,
template definition, and mapping rules. Then, the ARM
is applied to the EHR data requirements of a tertiary
hospital in China. A comparison of the generated ARM
database, the conventional database deployed in the
hospital, and the openEHR official Node + Path data-
base is conducted. After analysis, the challenges en-
countered during ARM development are discussed, and
conclusions are provided.

Methods

An underpinning principle of openEHR is the use of arche-
types and templates, which represent formal models of
domain content that are used to control data structure and
content during creation, modification, and querying [26].
The ARM approach employs archetypes and templates to
generate a persistence model and provide data access
based on a relational database. The ARM is intended to
fulfill several functionalities:

1) Effective adaptation to changes in archetypes.
Archetypes reflect the changing realities of EHR,
and existing archetypes are updated over time.
Archetype changes result in several challenges to
ARM, such as the application of new archetypes to
the relational database, and the possibility of
incompatible versions among archetypes, among
other potential challenges.

2) Generation of customized persistence models for
various EHR requirements. Archetypes define widely
reusable components of information, and templates
encapsulate the local usage of archetypes and
relevant preferences. In order to apply to the local
EHR context, ARM employs templates in order to
customize the data persistence model. There are
three steps to employ ARM in the implementation
of the persistence layer: archetype modelling,
template definition, and database mapping.
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Archetype modelling

Archetype modelling selects and expands existing arche-
types from the public archetype repository, or defines
new ones in order to meet all data requirements. Arche-
type modelling has been well-developed, and widely
applied in previous studies [27-29]. First, all data items
must be determined by collecting and analysing the data
requirements in detail, such as dataset specifications or
database schemas. The data items must then be merged
into coherent and meaningful clinical concepts. Then,
existing archetypes must be reused as much as possible.
Keywords are used to search the CKM for matching
archetypes, including concept name and core data items.
Concepts are identified as fully covered by archetypes,
partially covered by archetypes, and/or not covered by
archetypes. The archetype will be directly reused if it
fully covers a concept, extended if it partially covers a
concept, and new archetypes are designed for concepts
with no existing archetypes.

Template definition

Archetypes describing the general healthcare concepts
are adapted to local EHR data requirements by template
definition design templates. One corresponding template
is designed for each archetype in order to add con-
straints, such as local optionality, archetype chaining,
tightened constraints, default values [26], and ARM con-
strains. ARM constrains attempt to achieve better per-
formance by aligning the concept-focused archetype
model and the data-focused relational model. The ARM
constraints are designed as follows:

1) Assign identification data item. An identification
data item is used to uniquely identify instances of
each archetype; it can represent any basic data type
(Table 1) and has an occurrence of 0..1 or 1..1. Only
one identification data item can exist for each
archetype.

2) Assign query data item. Some data items may always
be used as query conditions, particularly those with
identical characteristics to the identification data
item. These types of data items can be categorized
as query data items, and an archetype may have
multiple query data items to facilitate the data query.
Collection data structures such as CLUSTER,
ITEM_TREE, ITEM_LIST, and archetype slots cannot
be used as identification data items or query data
items. As basic units of internal structures of
archetypes, collection data structures group related
data items, and can thus be viewed as embedded
archetypes with their own identification data items
and query data items.

3) Define mappings between generalized archetypes
and specialized archetypes to facilitate data query. If
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Table 1 Archetype basic data types and mapping rules

Data type Field Field data type SQL type
CodePhrase codeString String NVARCHAR
DvBoolean value Boolean INTEGER
DvCodedText definingCode CodePhrase #
DvCount magnitude Integer INTEGER
DvDateTime value String NVARCHAR
DvEHRURI value URI NVARCHAR
Dvldentifier id String NVARCHAR
DvMultimedia uri DVURI #
DvProportion precision Integer INTEGER
DvQuantity magnitude Double FLOAT
units String NVARCHAR
DvText value String NVARCHAR
DvURI value URI NVARCHAR
GenericlD value String NVARCHAR
name String NVARCHAR
Link target DVvEHRURI #

a domain contains many concepts and data items
with similar structures, a general concept with a
data item can be used to store the name and all
fields related to these concepts. It is impossible to
simultaneously define the vast number of concepts
included in EHR systems. Additionally, the
definitions are difficult to maintain due to the
continuous development of new concepts.
Archetypes can clearly represent the general concept
and specific concepts by specialization. The name
and fields of data items in specialized archetypes are
mapped to a subset of fields of the corresponding
data item in the generalized archetype. Then, the
data stored as a generalized archetype instance can
be queried with specialized archetypes, and vice
versa, using the mappings.

Database mapping

Database mapping generates a relational database schema
in order to automatically persist the data represented by
archetype instances into relational databases using arche-
types, templates, and ARM constraints. A set of mapping
rules is designed as follows:

1) Map each archetype to a table. According to the
archetype semantic relationship specified in openEHR
specifications (Table 2) [30], new and old version of
the same archetype can be organized into a single
data table.

2) Map the basic data items represented by the archetype
basic data type. If the upper bound of the data item
occurrence is 1, this indicates a single occurrence data
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Table 2 Semantical relationships of archetypes

Relationship

Modification

Compeatibility

Revision

Modify description part

Expand attributes, range
of value sets, terminology

Ensure backward
compatibility

Data created by
pre-revised archetype

Specialization  Strengthen the constraints

New version  Change mandatory item

is compatible with the
revised version

Ensure the new specialized
archetype must create
data that conforms to the
The range of value sets and parent

semantics of nodes conform

to the previous archetype

Redefine and add nodes

Modifications are
incompatible with the
previous archetype

to optional

Adjust value range or coded
term set

item which can be mapped as a common column. If
the upper bound of the data item occurrence is *, this
indicates a multiple occurrence data item which is
mapped into a standalone table with two columns: one
is a foreign key column referring to the identification
data item of the current archetype, and the other is a
common column mapped from the data item. Table 1
lists the archetype basic data types utilized in ARM
and their corresponding mapping rules. For fields with
non-preliminary types in each archetype basic data
type, the corresponding SQL type is noted as “#” and
the mappings must be referenced in Table 1.

3) Constrain the identification data item as the key

column. Unique and clustered index constraints are
mapped from the identification data item, and added
to the column. If there is no identification data item
in an archetype, a data item named “id” is generated
and used as the identification data item to identify
records in the database table; the generated “id” is
invisible and cannot be accessed using the archetype.

4) Constrain the query data item as an indexed

column. The non-clustered index constraints
mapped from query data items are added to columns
in order to accelerate data query.

5) Map archetype slots. If the upper bound of the

archetype slot occurrence is *, this indicates that the
current archetype and the target archetype exhibit a
one-to-many relationship, which is mapped as a foreign
key column in the target archetype table, referring to
the identification data item of the current archetype. If
the upper bound of the archetype slot occurrence is 1,
this indicates that the current archetype and the target
archetype exhibit a one-to-one relationship, so the data
items of the target archetype are embedded into the
table of the current archetype, thus embedding the
target archetype into the current archetype.
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6) Map collection data items according to collection

data structure. If the upper bound of the collection
data item occurrence is 1, this indicates a single
occurrence collection data item, so the data items
contained in this collection data item can be mapped
into the table of the current archetype, and can be
viewed as flattened. If the upper bound of the
collection data item occurrence is *, this indicates a
multiple occurrence collection data item that is
mapped into a standalone table with one foreign key
column, referring to the identification data item of the
current archetype.

7) Propagate query data items. An efficient method to

reduce the recursive level deep in the archetype
hierarchy tree when querying the leaf archetype is to
store the most frequently queried data items of the
ancestors in the descendants. For multiple-occurrence
archetype slots and collection data items, the query
data items in the current archetype can be mapped
identically to the identification data item, into the
target archetype data table of the archetype slot or the
standalone data table of the collection data items as
foreign key columns.

8) Naming. Naming rules vary slightly, because each

relational database product, such as Microsoft SQL
Server or Oracle, has unique restrictions for naming
tables and columns. The general principles are as
follows. The archetype name is used as the table
name for tables mapped from archetypes. The
archetype name concatenated with the data item
name is used as the table name for tables mapped
from collection data items and multiple occurrence
data items; the version portion of the archetype
name should be removed, since all versions of an
archetype are mapped into the same database table.
The path of the data item concatenated with the
field name is used as the column name for a column
mapped from a data item field; the path of the data
item and the column name are unique, but the
human readability of the path is poor. One
alternative to achieve better readability is to use the
textual name provided within the archetype
ontology section of the data item rather than the
path. However, the uniqueness of the textual name
provided within the archetype ontology section of
the data item is guaranteed; if the generated names
for the table and column are so long as to violate
the naming restrictions of the relational database
products, they should be shortened in a consistent
manner in order to remain unique.

Database comparison
A performance comparison of the ARM approach and an
EHR system used in real clinical practice in conducted.
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The compared EHR system has been deployed in a tertiary
class A Chinese for three years. Several legacy systems
have been integrated into the EHR system, including
HMIS (hospital management information system), LIS
(laboratory information system), RIS (radiology infor-
mation system), PACS (picture archiving and communi-
cation system), PMS (pharmacy management system),
and OMS (operation management system). Two informa-
tion systems, CPOE (Computerized Physician Order Entry)
and IV (Integrated Viewer), support the order-centered
clinical workflow for all clinicians from all departments
within the hospital. The IV information system allows
clinicians to view the demographic, imaging examination,
and laboratory test data of a patient scattered in heteroge-
neous silo systems in one application, rather than being
forced to access different patient data in each correspond-
ing system. The system represents a typical centralized
data-reporting application in a hospital that presents
patient information from all examination departments and
encompasses most EHR data, thus serving as an ideal
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candidate against which to apply the ARM approach and
conduct the comparison.

Ethics

This study was approved by Review Board of Shanxi
Dayi Hospital under project 2012AA02A601. A database
specialist from the hospital’s information technology
department exported and de-identified the necessary
data of IV database.

Results

ARM mapping

The schema of the IV database has been analysed in detail
and extracted into concepts. Fig. 1 depicts the overview of
the IV concepts and their relationships.

The primary purpose of this investigation is to explore
the performance of the ARM approach. Existing matching
archetypes in CKM are selected without modification to
facilitate clear interpretation of comparisons. A total of 17
archetypes are selected to encompass the IV concepts. Fig. 2

Lab Test Filler
Lab Test Identifier (PK)

Lab Test Data
Lab Test Data Identifier (PK)

Patient Identifier (
FK: Patient::Patient Identifier)
Lab Test Request Identifier (
FK: Lab Test Requester::Lab Test Request Identifier)

Lab Test Requester

Patient Identifier (
FK: Patient::Patient Identifier)
Lab Test Identifier (
FK: Lab Test Filler::Lab Test Identifier)

Imaging Exam Requester

Lab Test Request Identifier (PK)

Patient

Exam Request Identifier (PK)

Patient Identifier (

Patient Identifier (PK)

Patient Identifier (

FK: Patient::Patient Identifier)

/

FK: Patient::Patient Identifier)

Imaging Exam Filler

Imaging Exam Item

Exam Identifier (PK)
Patient Identifier (

Exam Item No. (PK)
Exam Request Identifier (

FK: Patient::Patient |dentifier)
Exam Request Identifier (
FK: Imaging Exam Requester::Exam Request Identifier)

FK: Imaging Exam Requester::Exam Request Identifier)
Exam Identifier (
FK: Imaging Exam Filler::Exam Identifier)

Imaging Exam Image

Image No. (PK)
Exam Identifier (
FK: Imaging Exam Filler::Exam Identifier)

Fig. 1 IV concepts overview. In all figures, PK stands for primary key. FK stands for foreign key, and indicates the data item which current data
item relates to. SLOT indicates target archetype which conform to current data item. Solid line indicates foreign key relationship between
archetypes. Dash line indicates composition relationship through slot between archetypes. IDI stands for identification data item. QDI stands for
query data item. Cl stands for clustered indexed. NCI stands for non-clustered indexed. Data items in italic type are not covered by archetypes

Imaging Exam Report

Report No. (PK)
Exam ldentifier (
FK: Imaging Exam Filler::Exam Identifier)
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INSTRUCTION. INSTRUCTION.
request-lab_test.vl request-imaging_exam.vl

Receiver identifier (PK) — CLUSTER.person_name.vl _| Receiver identifier (PK)

Requestor (SLOT: person_name) Requestor (SLOT: person_name)
Receiver (SLOT: organisation) -4 ~~ | Receiver (SLOT: organisation)
subject ( CLUSTER.organisation.vl subject (

FK: person::identifier) FK: person::identifier)

\

OBSERVATION.imaging_exam.vl

DEMOGRAPHIC- subject (

PERSON.person-patient.vl || FK:person::identifier)
Receiver order identifier (

FK: request-imaging_exam::Receiver identifier)

details (SLOT: person_details)
identities (SLOT: person_name)

Patient identifier (SLOT: person_identifier) [~ —— DEMOGRAPHIC-
N T~ ITEM_TREE.person_details.v1
. DEMOGRAPHIC-
OBSERVATION. “\_ | PARTY_IDENTITY.person_name.v1
lab_test-general.vl N
Per-result annotation (SLOT: lab_result_annotation) DEMOGRAPHIC-

subject ( CLUSTER.person_identifier.vl
FK: person::identifier) . -
fier (PK
Receiver order Identifier ( identifier (PK)
FK: request-lab_test::Receiver identifier)

! OBSERVATION.

CLUSTER. lab_test-thyroid.vl
lab_result_annotation.vl subject (
FK: person::identifier)
Receiver order Identifier (
OBSERVATION. FK: request-lab_test::Receiver identifier)

lab_test-blood_gases.vl

OBSERVATION.

subject (
FK: person::identifier)
Receiver order Identifier (
FK: request-lab_test::Receiver identifier)

lab_test-liver_function.vl

OBSERVATION.
lab_test-full_blood_count.vl

subject (
FK: person::identifier)
Receiver order Identifier (
FK: request-lab_test::Receiver identifier)

subject (
FK: person::identifier)
Receiver order Identifier (
FK: request-lab_test::Receiver identifier)

OBSERVATION.
lab_test-urea_and_electrolytes.vl

Fig. 2 Archetypes overview. In all figures, PK stands for primary key. FK stands for foreign key, and indicates the data item which current data
item relates to. SLOT indicates target archetype which conform to current data item. Solid line indicates foreign key relationship between
archetypes. Dash line indicates composition relationship through slot between archetypes. IDI stands for identification data item. QDI stands for
query data item. Cl stands for clustered indexed. NCI stands for non-clustered indexed. Data items in italic type are not covered by archetypes

subject (
FK: person::identifier)
Receiver order Identifier (
FK: request-lab_test::Receiver identifier)
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depicts an overview of the selected archetypes and their
relationships.
A total of 16 are existing archetypes:

e openEHR-DEMOGRAPHIC-PERSON.person-
patient.vl

o 0penEHR-DEMOGRAPHIC-ITEM_TREE.person
details.vl

e openEHR-DEMOGRAPHIC-CLUSTER.person_
identifier.v1

e openEHR-DEMOGRAPHIC-PARTY_IDENTITY.
person_name.vl

e openEHR-EHR-INSTRUCTION.request-imaging_
exam.vl

e openEHR-EHR-OBSERVATION.imaging exam.v1

e openEHR-EHR-INSTRUCTION.request-lab_test.v1

e openEHR-EHR-OBSERVATION.lab_test.v1

e openEHR-EHR-OBSERVATION.lab_test-
blood_gases.vl

e openEHR-EHR-OBSERVATION.lab_test-full_blood_
count.vl

e openEHR-EHR-OBSERVATION.lab_test-liver_
function.vl

e openEHR-EHR-OBSERVATION.lab_test-thyroid.v1

e openEHR-EHR-OBSERVATION .lab_test-urea_and_
electrolytes.vl

e openEHR-EHR-CLUSTER.lab_result_annotation.vl
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o openEHR-EHR-CLUSTER.organisation.vl
e openEHR-EHR-CLUSTER person_name.vl

One archetype is newly designed:
e openEHR-EHR-OBSERVATIONL.lab_test-general.vl

Due to the different granularity and reusability between
archetypes and IV concepts, data items belonging to one
IV concept are commonly scattered into several arche-
types, and vice versa. For example, the Patient concept is
mapped to four archetypes, represented by slots in Fig. 3.
The archetype openEHR-EHR-INSTRUCTION.request-
imaging exam.vl is mapped to three IV concepts, as
shown in Fig. 4, and the archetype openEHR-EHR-
OBSERVATION.imaging exam.vl is mapped to two IV
concepts, as shown in Fig. 5.

Another common situation is a distinction between
metadata-level modelling versus data-level modelling
[29]. For example, there are many specific lab test result
archetypes, such as blood gases, full blood count, liver
function, etc., while the number of lab test results in IV
is greater than 200; additionally, more results will be
generated with new technologies and instruments. Since
the lab test result items all exhibit a similar data structure,
it is convenient to define a generalized archetype openEHR-
EHR-OBSERVATION!.lab_test-general.vl specialized from

DEMOGRAPHIC-
PERSON.person-patient.vl
details (SLOT: person_details)
DEMOGRAPHIC-
Patient ITEM_TREE.person_details.v1 DPersonPatient

(| Birth Date — Birth date ); (| details_birthDate_value
([Gender } ( sex details_sex_definingCode_codeString
(| Death Date ), { death date details_sex_value
([ marital Status — Marital Status ) details_deathDate_value )
([ Ethnic Group )—( Ethnic group ) details_maritalStatus_definingCode_codeString
( Name ) ) - details_maritalStatus_value
(] Phonetic Name ) identities (SLOT: person_name) details_ethnicBackground_definingCode_codeString
( Patient Identifier (NCI) (PK) j DEMOGRAPHIC- details_ethnicBackground_value

Birth Place ([ name_fullName_value )

Nationality PARTY_IDENTITY.person_name.vl __—"([name_phoneticName_value 9

Occupation ( full name ) ( patientldentifier_identifier_id (Cl) (PK) )

Education ( Alternative representation )

Person Identifier ) ]

Health Insurance Identifier relationships {

Email Patient identifier (SLOT: person_identifier)

;#df‘ijs DEMOGRAPHIC-

ipcode . .

Mobile Phone CLUSTER.person_identifier.vl

Home Phone ( Identifier (IDI) )

Work Phone

}

Fig. 3 Mapping of openEHR-DEMOGRAPHIC-PERSON.person-patientv1. In all figures, PK stands for primary key. FK stands for foreign key, and indicates
the data item which current data item relates to. SLOT indicates target archetype which conform to current data item. Solid line indicates foreign key
relationship between archetypes. Dash line indicates composition relationship through slot between archetypes. IDI stands for identification data item.
QDI stands for query data item. CI stands for clustered indexed. NCI stands for non-clustered indexed. Data items in italic type are not covered
by archetypes
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Imaging Exam Requester INSTRUCTION. IRequestimagingExam
[ Patient Identifier (NCI) ( request-imaging_exam.v1 patient_value (NCI) (
FK Patient::Patient Identifier) subject (QDI) (_ » FK: DPersonPatient::patientldentifier_identifier_id)
[ Priority FK: person::identifier) patient_name
(] Purpose — activities {_ urgency_definingCode_codeString
(| Exam Request Identifier (Cl) (PK) description { urgency value
(| request Doctor Name items { ([ reasonForRequest_value )
Diagnosis Urgency ) (| dateOrTimeServiceRequired_value )
Request Doctor Code Reason for request ) [ descriptionOfExamination value )
Request Datetime Date time required ] [ examinationRequested value )
Request Department Name Description of examination ) [ requestoridentifier valae (NCI) )
Request Department Code Examination requested ) (Trequestor UnstructuredName value )
5}’”’1"’”" } (Treceiverldentifier_value (NCI) )
5'9[”5 b } [ receiver_nameOfOrganisation_name )
Relevant L"_ TeSt‘ 1 I[Treceiver_identifier_value )
Relevant Diagnosis protacol { requestStatus_value )
Memo items { id (C) (PK) -
Requestor Identifier (QDI) )
Imaging Exam Filler Requestor (SLOT: person_name)
Patient Identifier (NCI) ( CLUSTER.person_name.vl
FK: Patient::Patient Identifier)
L Scheduled Datetime Unstructured name
[ Exam Requ‘est Identifier ( ) Receiver identifier (QDI) )
FK: Imag\lnAg Exam Requester::Exam Request Identifier) Receiver (SLOT: organisation)
L Exam Identifier (PK)
(] Execute Department Name CLUSTER.organisation.vl
( Execute Department Code —
Name of Organisation
(] Exam Status identifi )
Exam Datetime Entiter
Request status )
Imaging Exam Item ]
(| Exam Item Name 4
(] Exam Item Code
Exam Request Identifier (NCI) (
FK: Imaging Exam Requester::Exam Request Identifier)
Exam Identifier (NCI) (
FK: Imaging Exam Filler::Exam Identifier)
Exam Item No. (Cl) (PK)
Exam Class
Fig. 4 Mapping of openEHR-EHR-INSTRUCTION.request-imaging_exam.v1. In all figures, PK stands for primary key. FK stands for foreign key, and
indicates the data item which current data item relates to. SLOT indicates target archetype which conform to current data item. Solid line indicates foreign
key relationship between archetypes. Dash line indicates composition relationship through slot between archetypes. IDI stands for identification data item.
QDI stands for query data item. Cl stands for clustered indexed. NCI stands for non-clustered indexed. Data items in italic type are not
covered by archetypes

archetype openEHR-EHR-OBSERVATION.lab_test.vl with
three additional multiple occurrence data items (Test Item,
Result, and Result Unit) according to the Lab Test Data
concept in IV (Fig. 6), along with the specialized archetypes
to represent these flexible lab test results.

The subject data item in every archetype is used to
represent the patient himself.

Table 3 lists the templates and ARM constraints
defined according to IV data requirements.

Mappings between the generalized archetype lab_test-
general.vl and specialized archetypes lab_test-blood_
gases.vl, lab_test-full_blood_count.vl, lab_test-liver_function.
vl, lab_test-thyroid.vl, and lab_test-urea_and_electrolytes.vl
are also defined. For example, as shown in Table 4,
name, value, and unit of data item White Cell Count in
openEHR-EHR-OBSERVATION.lab_test-full_blood_count.
vl are mapped to three data items (Test Item, Result, and
Result Unit) in openE HR-EHR-OBSERVATION.lab_test-
general.v1.

Finally, the ARM mapping rules are applied to the
archetypes, templates, and ARM constraints to generate
the final relational database schema, as shown in Fig. 7.

Database preparation

To determine whether the performance can meet the
requirements of clinical practice, a performance compari-
son is conducted between the generated ARM database,
conventional IV database, and the official Node + Path
database.

The schema of the test IV database is shown in Fig. 8.
Data items not encompassed by archetypes are removed
to maintain comparability of the test IV database. The
Node + Path database schema is shown in Fig. 9. Although
only one table is required to store all data, one table is
assigned to each concept to promote practicality and
greatly improve performance.

A dataset is extracted directly from the online IV data-
base, with dates ranging from 2014-01-01 to 2014-12-31,
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Imaging Exam Report OBSERVATION.imaging_exam.vl OlmagingExam
bject (QDI
([ Report URL ) [ SUF:(e'cpe[rcimj“(identiﬁer) patient_value (NCI)
([Exam Overread ) . = FK: DPersonPatient::patientldentifier_identifier_id)
(| Exam Diagnosis ) data {t ( patient_name
events
( Exam Memo ) data { ( examinationResultRepresentation_uri_value )
([Report Datetime ) C ftems T ) ([ findings_value )
R t No. (Cl) (PK i
E E::;rldeitig‘ie)r([hlgl)( ) [ Examination result representation E Zj::?;;z%}vséﬁmem value %
R N " Findings =
FK: Imaging Exam Filler::Exam Identifier] ( |
Exam Des?rr’,frion ) [ CDHCI.U Sio.n E ?ea:yglr-:zz::i;lzl:ls‘\sdu(ec(il_rs:(t)je g
Reporter Name ( Examination comment receiverOrder[d;ntifier id (NCI) (
DateTi Itissued -
Reporter Code } atelime result issue FK: IRequestimagingExam::receiveridentifier_value) J
. }
I E | . "
Maging txam 'mage 1 OlmagingExamimageDetails
Exam Identifier (CI) ( } - -
FK: Imaging Exam Filler::Exam Identifier) protocol { OImagngxam_patlent_v?lue (NCIJ. (. - e
o . FK: DPersonPatient::patientidentifier_identifier_id)
(] DICOM Series No. ) items { -
([image URL ) Examination request details { OlmagingExam (NCI) ( e }
image No. (PK] Report identifier (ID]) FK: q\maglngExam...reportldenhf\‘e‘ud‘]
Key Image Flag Receiver order identifier (QD1) ( OImaglngExam_re5§|ver0rder|dept|f\er_|d.lfl.\IC\) ( | ]
FK: request-imaging_exam::Receiver identifier) FK: IRequestimagingExam:receiveridentifier_value)
image details { (] dICOMSeriesidentifier_id )
C DICOM series identifier ) C fmageﬁunivalue )
C image ) id (CI) (PK)

}
}
}
}

covered by archetypes

Fig. 5 Mapping of openEHR-EHR-OBSERVATION.imaging_exam.v1. In all figures, PK stands for primary key. FK stands for foreign key, and indicates
the data item which current data item relates to. SLOT indicates target archetype which conform to current data item. Solid line indicates foreign
key relationship between archetypes. Dash line indicates composition relationship through slot between archetypes. IDI stands for identification

data item. QDI stands for query data item. Cl stands for clustered indexed. NCI stands for non-clustered indexed. Data items in italic type are not

and containing 103320 imaging tests, 8573157 images,
654213 laboratory tests, and 4846688 laboratory test result
items for 29743 patients. All data has been de-identified
by removing all patient names, patient phonetic names,
patient birth dates, patient death dates, and doctor names.
The dataset is imported into three clean instances of the
test IV database, the ARM database, and the Node + Path
database. The IV database requires 1.60 gigabytes on the
hard disk, the ARM database requires 2.90 gigabytes, and
the Node + Path database requires 43.87 gigabytes, which
is far greater than the space required by the other two
databases. Although the Node + Path is much more effi-
cient in storing sparse data, it also includes too many
redundancies to store the path of each archetype data
item.

Query benchmark

Tests are conducted on a Dell M4700 running WINDOWS
8.1 Enterprise 64 bit operating system and Microsoft SQL
Server 2014 Enterprise Edition with an Intel Core i5-
3340 M processor, 16 gigabytes of memory, and a 5400-
RPM hard disk.

Clinicians use the IV each day to monitor patient
imaging exams and laboratory tests in order to make
further decisions. The IV presents a patient list for each
clinician; when a patient is selected, all correlated
imaging exams and laboratory tests are displayed in two
pages, enabling the clinician to click on each imaging

exam or laboratory test to verify all the results, images,
and reports in detail. The IV updates all information in
real time to support clinician responses to patient situa-
tions with minimal time delays.

Five data-retrieving tests are designed from this workflow
scenario:

Test 1: Find all patients belonging to a single clinician
to generate a daily work list. A clinician sees at least 1
patient per day (Query 1.1), an average of 7 patients
per day (Query 1.2), and a maximum of 50 patients per
day (Query 1.3).

Test 2: Find all imaging exams for a single patient. A
patient has at least 1 imaging exam (Query 2.1), an
average of 3 imaging exams (Query 2.2), and a
maximum of 26 imaging exams (Query 2.3).

Test 3: Find all images related to a single imaging
exam. An imaging exam contains at least 1 image
(Query 3.1), an average of 363 images (Query 3.2), and
a maximum of 10664 images (Query 3.3).

Test 4: Find all laboratory tests for a single patient. A
patient has at least 1 laboratory test (Query 4.1), an
average of 23 laboratory tests (Query 4.2), and a
maximum of 425 laboratory tests (Query 4.3).

Test 5: Find all results in a single laboratory test. A
laboratory test contains at least 1 result (Query 5.1), an
average of 168 results (Query 5.2), and a maximum of
4477 results (Query 5.3).
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p
INSTRUCTION.
request-lab_test.vl
[ subject (QDI) ( ]
FK: person::identifier)
activities
dEscr\pi\'on{ \ IRequestLabTest
Lab Test Requester items { patient_value (NCI) {
Patient Identifier (NCI) ( ( Reason description )] { FK: DPersonPatient::patientldentifier_identifier_id) ]
[ FK: Patient::Patient Identifier) ] ( Urgency ) patient_name
(] Purpose ) ( Service requested ) ([ reasonDescription_value )
([Priority )] Description of service ) [ urgency_definingCode_codeString J
(] Lab Test Request Identifier (CI) (PK) ) } urgency_value
( Request Doctor Name ) } ( serviceRequested_value )
Reguest Doctor Code } ( descriptionOfService_value )
Request Datetime protocol { ( requestorldentifier_value (NCI) )
Request Department Name items { ([ requestor_unstructuredName_value )
Request Department Code Requestor Identifier (QDI) D) ([ receiveridentifier_value (CI) (PK) )
Relevant Diagnosis Requestor (SLOT: person_name) (receiver_nameOfOrganisation_value )
receiver_identifier_value
CLUSTER.person_name.v1 E requesttatus_value %
[ Unstructured name ]
( Receiver identifier (IDI) )
- Receiver (SLOT: organisation)
Lab Test Filler
{ Patient Identifier (NCI) ( CLUSTER.organisation.vl
FK: Patient::Patient Identifier) ( Name of Organisation )
(] Lab Test Subject Code { Identifier )
( Lab Test Subject Name )4'
[ Lab Test Request Identifier (NCI) ( C Request status )
FK: Lab Test Request::Lab Test Request Identifier }
( Lab Test Identifier (CI) (PK) }
[ Execute Department Name )
C Execute Department Code )
(] Lab Test Status ) OBSERVATION.lab_test-general.vl
(] Normal Status. )
(| Lab Test Datetime )i subject (QDI) (
Lab Test No. FK: person::identifier) OlabTestGeneral
data { patient_value (NCI) {
events { FK: DPersonPatient::patientidentifier_identifier_id)
data { overallinterpretation_value )
items { . . datetimeResultissued value ]
Overall interpretation receiverOrderldentifier_value (NCI) (
Structure result { FK: IRequestLabTest:receiverldentifier_value) ]
Testitem id (NCI) (PK)
Result
Result unit
Per-result annotation (SLOT: lab_result_annotation) OLabTestGeneralStructureResult
Lab Test Data CLUSTER.lab_result_annotation.v1 OlabTestGeneral_patient_value (NCI) (
Patient Identifier (NCIJ { ( Result comment i FK: DPersonPatient::patientldentifier_identifier_id) J
[ FK: Patient::Patient Identifier) ( Reference range guidance testitem_value )
result_value )
( ]Lab Test item Name H resultUnit_value D]
( Result } \tTAnnmat\on resultComment_value )
{Tonit ) per_resu N 1
( Abnormal ndicator ) } per_resultAnnotation_referenceRangeGuidance_value [)
} OLabTestGeneral_receiverOrderldentifier_value (NCI)
C Normal Refere‘n-ce ) } FK: IRequestLabTest::receiverldentifier_value) J
Lab Test Identifier (NCI) ( tocol { OlabTestGeneral (NCI) {
FK: Lab Test Filler::Lab Test Identifier) pro X
Tab Test Data identifier () (PK) items { FK: OLabTestGeneral::id)
\( Datetime result issued id (NCI) (PK)
Lab Test item Code Receiver order Identifier (QDI) (
Lab Test item No. [ FK: request-lab_test::Receiver identifier)
}
}
Fig. 6 Mapping of openEHR-EHR-INSTRUCTION.request-lab_testv1 and openEHR-EHR-OBSERVATION.lab_test-general.v1. In all figures, PK stands
for primary key. FK stands for foreign key, and indicates the data item which current data item relates to. SLOT indicates target archetype which
conform to current data item. Solid line indicates foreign key relationship between archetypes. Dash line indicates composition relationship
through slot between archetypes. IDI stands for identification data item. QDI stands for query data item. CI stands for clustered indexed. NCl
stands for non-clustered indexed. Data items in italic type are not covered by archetypes

In addition to these five data-retrieving tests, two
patient-searching tests are designed to test performance in

finding patients who satisfy certain criteria. Finding similar

patients is integral to evidence-based care delivery, and
helps clinicians make further decisions. However, because
IV defines many concepts in the data level, it is not effi-
cient to implement this with the conventionally-designed
IV database. However, with the archetype approach,

concepts are explicitly expressed as archetypes and can be
mapped to standalone tables.

Test 6: Find all patients with PaO2 > = 129 mmHg in
blood gas tests (Query 6.1). Find all patients with
Pa0O2 > = 129 mmHg, PaCO2 > = 27 mmHg, and
Arterial pH > = 7.3 in blood gas tests (Query 6.2). Find
all patients having abnormal PaO2 > = 129 mmHg,
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Template

|dentification data item

Query data item

PERSON.person-patient.v1.oet

INSTRUCTION.request-imaging_exam.v1.oet id

INSTRUCTION.request-lab_test.v1.oet

OBSERVATION.imaging_exam.v1.oet id

OBSERVATION .lab_test-general.v1.0et id

patientldentifier_identifier_id

receiverldentifier_value

(NONE)
requestorldentifier_value
patient_value
receiverldentifier_value
requestorldentifier_value
patient_value
receiverOrderldentifier_id
patient_value
receiverOrderldentifier_value

patient_value

PaCO2 > = 27 mmHg, Arterial pH > = 7.3, Sa02 > = 99 %,
and CaO2 > = 17 % value in blood gas tests (Query 6.3).
Test 7: Find all patients with PaO2 > = 229 mmHg in
blood gas tests, red cell count > = 2 1012/L in full
blood count tests, and alkaline phosphatase > = 50 IU/L
in liver function tests (Query 7.1). Find all patients with
Pa02 > = 229 mmHg in blood gas tests, red cell

count > = 2 1012/L in full blood count tests, alkaline
phosphatase > = 50 IU/L in liver function tests, thyroid
stimulating hormone > = 0.3 plU/mL in thyroid tests,
and sodium > = 140 mmol/L in urea-electrolyte tests
(Query 7.2).

Table 5 lists the benchmark results of test queries for
each database. All queries are composed of multiple,
simple SQL clauses to avoid joining tables or clause
nesting, resulting in better performance according to
clinical practice. Each query was executed ten times, and

Table 4 Template file of openEHR-EHR-OBSERVATION.lab_test-
full_blood_count.v1

<eav name = "openEHR-EHR-OBSERVATION.lab_test-general.v1” > </eav>

<eavAttributeName name = “[White cell count]” set="en">
[Test item]/value/value

</eavAttributeName>

<eavAttributeField name = “[White cell count]/value/magnitude”>
[Result]/value/value

</eavAttributeField>

<eavAttributeField name = “[White cell count]/value/units”>
[Result unit]/value/value

</eavAttributeField>

The < eav > node indicates the target generalized archetype to which current
specialized archetype is mapped. In the < eavAttributeName > node, the
attribute “name” specified the full path of the source data item, the attribute
“set” indicates which textual name provided within the archetype ontology
section is used since there are multi languages, and the value is the full path
of the target data item. In the < eavAttributeField > node, the attribute “name”
specified the full path of one data field in the source data item and the value
is the full path of the target data item

the average time was calculated. The database cache is
turned off to avoid the caching effects of the selected
database product.

The performances of the ARM database and IV data-
base were very similar in the execution of data-retrieving
tests. ARM performed better in tests 1, 2 and 4, while IV
performed better in tests 3 and 5. The detailed reasoning
for differences in absolute execution time is highly com-
plex due to the nature of the complicated systems that are
affected by many external factors, such as background
tasks on the Windows operating system, hard disk cache,
etc. There are also some database factors that contribute
to the differences in execution time between the ARM
database and the IV database.

In test 1, both the ARM and IV database were queried
with one SQL clause, using patient id as a condition.
The patientldentifier_identifier_id column of the DPer-
sonPatient table in the ARM database was clustered
indexed, while the Patient Identifier column of the Patient
table in the IV database was non-clustered indexed, which
requires additional key lookup operations and thus
requires more time.

In test 2, table IRequestimagingExam in the ARM data-
base was queried using one SQL clause; however, in the
IV database, three corresponding tables (Imaging Exam
Requester, Imaging Exam Filler, and Imaging Exam Item)
must be queried with three SQL clauses.

In test 3, two tables (OImagingExam and OImagingExa-
mlImageDetails) were queried in the ARM database, and
three tables (Imaging Exam Filler, Imaging Exam Report,
and Imaging Exam Image) were queried in the IV data-
base. However, the OlmagingExamImageDetails table
containing 8573157 image records in the ARM database is
non-clustered indexed, resulting in extra key lookup oper-
ations that are slower than the corresponding Imaging
Exam Image table in the IV database, which is clustered
indexed.

In test 4, one table (IRequestLabTest) in the ARM
database was queried while two tables (Lab Test
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DPersonPatient

IRequestLabTest

IRequestimagingExam

details_birthDate_value
details_sex_definingCode_codeString
details_sex_value

details_deathDate_value
details_maritalStatus_definingCode_codeString
details_maritalStatus_value
details_ethnicBackground_definingCode_codeString
details_ethnicBackground_value
name_fullName_value
name_phoneticName_value
patientldentifier_identifier_id (Cl) (PK)

OlabTestLiverFunction

patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
patient_name
reasonDescription_value
urgency_definingCode_codeString
urgency_value
serviceRequested_value
descriptionOfService_value
requestorldentifier_value (NCI)
requestor_unstructuredName_value
receiverldentifier_value (Cl) (PK)
receiver_nameOfOrganisation_value
receiver_identifier_value
requestStatus_value

id (NCI) (PK)
overallinterpretation_value
receiverOrderldentifier_value (NCI) (

FK: IRequestLabTest::receiverldentifier_value)
datetimeResultlssued_value
patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
alkalinePhosphataseALP_magnitude
totalBilirubin_magnitude
directBilirubin_magnitude
indirectBilirubin_magnitude
alanineAminotransferaseALT_magnitude
aspartateAminotransferaseAST_magnitude
gammGlutamylTransferaseGGT_magnitude
lactateDehydrogenaselLD_magnitude
albumin_magnitude
globulins_magnitude
totalProtein_magnitude

OLabTestGeneral

patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
patient_name
urgency_definingCode_codeString
urgency_value
reasonForRequest_value
dateOrTimeServiceRequired_value
descriptionOfExamination_value
examinationRequested_value
requestorldentifier_value (NCI)
requestor_unstructuredName_value
receiverldentifier_value (NCI)
receiver_nameOfOrganisation_name
receiver_identifier_value
requestStatus_value
id (CI) (PK)

patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
overallinterpretation_value
datetimeResultlssued_value
receiverOrderldentifier_value (NCI) (

FK: IRequestLabTest::receiverldentifier_value)

id (NCI) (PK)

OlmagingExam

OlLabTestGeneralStructureResult

OlabTestUreaAndElectrolytes

id (NCI) (PK)
overallinterpretation_value
fillerOrderldentifier_value (NCI) (

FK: IRequestLabTest::receiverldentifier_value)
datetimeResultlssued_value
patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
sodum_magnitude
potassium_magnitude
chloride_magnitude
bicarbonate_magnitude
urea_magnitude
creatinine_magnitude
sodiumPotassiumRatio_precision

OlabTestGeneral_patient_value (NCI) (
FK: DPersonPatient::patientldentifier_identifier_id)
testitem_value
result_value
resultUnit_value
per_resultAnnotation_resultComment_value
per_resultAnnotation_referenceRangeGuidance_value
OlLabTestGeneral_receiverOrderidentifier_value (NCI) (
FK: IRequestLabTest::receiverldentifier_value)
OlabTestGeneral (NCI) (
FK: OLabTestGeneral::id)

patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
patient_name
examinationResultRepresentation_uri_value
findings_value
conclusion_value
examinationComment_value
dateTimeResultlssued_value
reportldentifier_id (Cl) (PK)
receiverOrderldentifier_id (NCI) (

FK: IRequestimagingExam::receiverldentifier_value)

OlmagingExamIimageDetails

OlmagingExam_patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
OlmagingExam (NCI) (

FK: OlmagingExam::reportidentifier_id)
OlmagingExam_receiverOrderldentifier_id (NCI) (

FK: IRequestimagingExam::receiverldentifier_value)

OLabTestThyroid

id (NCI) (PK)
overallinterpretation_value
fillerOrderldentifier_value (NCI) (

FK: IRequestLabTest::receiverldentifier_value)
datetimeResultlssued_value
patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
thyroidStimulatingHormoneTSH_magnitude
freeTriiodothyronineFreeT3_magnitude
totalTriiodothyronineTotalT3_magnitude
freeThyroxineFreeT4_magnitude
totalThyroxineTotalT4_magnitude
t4LoadedUptake_magnitude
freeTriiodothyroninelndexFreeT3Index_precision
freeThyroxinelndexFTI_precision

id (NCI) (PK) dICOMSeriesldentifier_id
image_uri_value
OlabTestBloodGases id (CI) (PK)
id (NCI) (PK) ) OLabTestFullBloodCount
overallinterpretation_value
receiverOrderldentifier_value (NCI) ( id (NC1) (PK)

FK: IRequestLabTest::receiverldentifier_value)
datetimeResultlssued_value
patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
pa02_magnitude
pa02_units
paC02_magnitude
paCO2_units
arterialPH_magnitude
arterialPH_units
baseExcess_magnitude
baseExcess_units
alveolarArterialPO2Difference_magnitude
alveolarArterialPO2Difference_units
sa02_precision
ca02_magnitude
ca02_units
pv02_magnitude
pvO2_units
pvCO2_magnitude
pvCO2_units
venousPH_magnitude
venousPH_units
capillaryPH_magnitude
capillaryPH_units

overalllnterpretation_value
fillerOrderldentifier_value (NCI) (

FK: IRequestLabTest::receiverldentifier_value)
datetimeResultlssued_value
patient_value (NCI) (

FK: DPersonPatient::patientldentifier_identifier_id)
haemoglobin_magnitude
redCellCount_magnitude
packedCellVolume_precision
meanCellHaemaglobinConcentration_magnitude
meanCellVolume_magnitude
meanCellHaemaglobin_magnitude
redCellDistributionWidth_precision
erythrocyteSedimentationRate_magnitude
meanPlateletVolume_magnitude
plateletDistributionWidth_precision
plateletCount_magnitude
plateletcrit_precision
whiteCellCount_magnitude
neutrophils_magnitude
lymphocytes_magnitude
basophils_magnitude
monocytes_magnitude
eosinophils_magnitude
microscopicFeatures_value

Fig. 7 ARM database schema. In all figures, PK stands for primary key. FK stands for foreign key, and indicates the data item which current data
item relates to. SLOT indicates target archetype which conform to current data item. Solid line indicates foreign key relationship between
archetypes. Dash line indicates composition relationship through slot between archetypes. IDI stands for identification data item. QDI stands for
query data item. Cl stands for clustered indexed. NCI stands for non-clustered indexed. Data items in italic type are not covered by archetypes
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Imaging Exam Requester

Patient
Patient Identifier (NCI) (PK)
Name
Phonetic Name
Gender
Birth Date

Ethnic Group
Marital Status
Death Date

Exam Request Identifier (Cl) (PK)
Patient Identifier (NCI) (

FK: Patient::Patient Identifier)
Priority
Request Doctor Name
Purpose

Imaging Exam Filler

Lab Test Requester

Lab Test Request Identifier (Cl) (PK)
Patient Identifier (NCI) (

FK: Patient::Patient Identifier)
Request Doctor Name
Purpose
Priority

Exam Identifier (PK)
Patient Identifier (NCI) (
FK: Patient::Patient Identifier)
Exam Request Identifier (
FK: Imaging Exam Requester::Exam Request Identifier)
Execute Department Name
Execute Department Code
Scheduled Datetime
Exam Status

Lab Test Filler

Imaging Exam ltem

Lab Test Identifier (Cl) (PK)
Patient Identifier (NCI) (
FK: Patient::Patient Identifier)
Lab Test Request Identifier (NCI) (
FK: Lab Test Request::Lab Test Request Identifier)
Lab Test Subject Name
Lab Test Subject Code
Execute Department Name
Execute Department Code
Lab Test Status
Lab Test Datetime
Normal Status

Exam Item No. (CI) (PK)
Exam Request Identifier (NCI) (
FK: Imaging Exam Requester::Exam Request ldentifier)
Exam Identifier (NCI) (
FK: Imaging Exam Filler::Exam ldentifier)
Exam Item Name
Exam Item Code

Imaging Exam Report

Lab Test Data

Lab Test Data Identifier (Cl) (PK)
Patient Identifier (NCI) (
FK: Patient::Patient Identifier)
Lab Test Identifier (NCI) (
FK: Lab Test Filler::Lab Test Identifier)
Lab Test Item Name
Result
Unit
Abnormal Indicator
Normal Reference

Report No. (Cl) (PK)
Exam Identifier (NCI) (
FK: Imaging Exam Filler::Exam Identifier)
Report URL
Exam Overread
Exam Diagnosis
Exam Memo
Report Datetime

Imaging Exam Image

Image No. (PK)
Exam Identifier (CI) (
FK: Imaging Exam Filler::Exam Identifier)
DICOM Series No.
Image URL

Fig. 8 Test IV database schema. In all figures, PK stands for primary key. FK stands for foreign key, and indicates the data item which current data
item relates to. SLOT indicates target archetype which conform to current data item. Solid line indicates foreign key relationship between
archetypes. Dash line indicates composition relationship through slot between archetypes. IDI stands for identification data item. QDI stands for
query data item. Cl stands for clustered indexed. NCI stands for non-clustered indexed. Data items in italic type are not covered by archetypes
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DPersonPatient IRequestimagingExam
id (CI) (PK) id (CI) (PK)
archetypeld (NCI) archetypeld (NCI)
path (NCI) path (NCI)
value value

IRequestLabTest OlmagingExamlmageDetails
id (CI) (PK) id (CI) (PK)
archetypeld (NCI) archetypeld (NCI)
path (NCI) path (NCI)
value value

OlmagingExam OlLabTestGeneralStructureResult

id (CI) (PK) id (CI) (PK)
archetypeld (NCI) archetypeld (NCI)
path (NCI) path (NCI)
value value

OLabTestGeneral
id (ClI) (PK)
archetypeld (NCI)
path (NCI)
value

Fig. 9 Node + Path database schema. In all figures, PK stands for primary key. FK stands for foreign key, and indicates the data item which current
data item relates to. SLOT indicates target archetype which conform to current data item. Solid line indicates foreign key relationship between
archetypes. Dash line indicates composition relationship through slot between archetypes. IDI stands for identification data item. QDI stands for
query data item. Cl stands for clustered indexed. NCI stands for non-clustered indexed. Data items in italic type are not covered by archetypes

Requester and Lab Test Filler) must be queried in the IV
database.

In test 5, both the ARM and IV databases were queried
on one table with one SQL clause, using patient id as a
condition. The OLabTestGeneral_patient_value column of
the OLabTestGeneralStructureResult table in the ARM
database is non-clustered indexed, while the Patient Iden-
tifier column of the Lab Test Data table in IV database is
clustered indexed.

The Node + Path database requires more time for all
tests, even when querying for few results, due to the inev-
itable full table scan; thus, it is not practical in a clinical
workflow. All of the ARM, IV, and Node + Path databases
have similar trends: as the query returns more data, the
test requires more time to execute.

In patient-searching tests, the series of lab test result
archetypes were directly mapped into standalone tables
in the ARM database and the Node + Path database.
Each table stores only data related to the corresponding
archetype, in which the number of records dramatically
decreases. However, in the IV database, all lab test result
data are stored in an EAV-style table.

In test 6, only one table is queried with different con-
ditions, namely: table OLabTestBloodGases in the ARM

database, table Lab Test Data in the IV database, and
table OLabTestBloodGases in the Node + Path database,
so the increase of query time is trivial among all three
databases. The ARM database was the fastest, and the
IV database was slower than the Node + Path database,
since it contains many more records.

In test 7, the query time increased greatly for the ARM
database and the Node + Path database, in which more
than one table was queried, namely tables OLabTestBlood-
Gases, OLabTestFullBloodCount, OLabTestLiverFunction,
OLabTestThyroid, and OLabTestUreaAndElectrolytes in
both databases. However, only one table (Lab Test Data)
was queried in the IV database. The performance of the
Node + Path database was even slower than that of the IV
database, since the lab test results table in the IV database
is not purely EAV and thus performs much better.

Discussion

This paper presents an ARM persistence solution for
archetype-based EHR systems. While the ARM approach
is designed to generate a relational database from arche-
types and templates and can achieve performance similar
to a conventionally-designed database, there were several
encountered challenges and issues.
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Table 5 Query benchmark

Query IV (ms) ARM (ms) Node + Path (ms)
Query 1.1 80 (+74 %) 46 5017
Query 1.2 91 (+54 %) 59 5121
Query 1.3 196 (+15 %) 170 5358
Query 2.1 221 (+16 %) 191 24866
Query 2.2 219 (+17 %) 187 25094
Query 2.3 474 (+129 %) 207 26158
Query 3.1 242 270 (+12 %) 294774
Query 3.2 224 299 (+33 %) 297388
Query 33 254 411 (+62 %) 362950
Query 4.1 198 (+13 %) 176 127547
Query 4.2 254 (+32 %) 193 128508
Query 4.3 1249 (+57 %) 797 129901
Query 5.1 113 186 (+65 %) 328181
Query 5.2 125 205 (+64 %) 329097
Query 5.3 139 239 (+72 %) 388727
Query 6.1 14596 (+5150 %) 278 5746
Query 6.2 16340 (+5293 %) 303 6029
Query 6.3 16453 (+5140 %) 314 6984
Query 7.1 14582 (+1028 %) 1293 41217
Query 7.2 14649 (+669 %) 1904 53352

The percentage values in IV and ARM columns are more time spent on each
query in the slower database than the faster database. The Node + Path
database is not included in the calculation

ARM deployment

ARM employs a model-driven approach to allow data
persistence to adapt to changes in data requirements ac-
cording to archetypes that represent general domain
concepts and templates tailored to ARM constraints.
The mapping rules are implemented in a persistent ser-
vice to automatically generate the database, and avoid
necessary manual uploading of the database. Currently,
the changes described in archetype semantic relation-
ships are easy to implement on the relational database,
but one change is not explicitly included in the new ver-
sions of the archetypes. In ideal archetypes, the data type
of data items should be as stable as the data items, and
remain unchanged. However, this cannot be avoided
during archetype development, particularly for archetypes
that are initially developed from local data requirements
and later extended to a global scope, which often results
in incompatible versions of archetypes.

Changing the column data type can induce chaos into
the relational database; thus, two mapping rules are de-
signed to automatically adapt to change. One rule maps
each version of an archetype to a table; old versions of
an archetype will gradually become outdated and obsolete,
and can then be safely moved to a backup database. Prior
to removal, multiple versions of an archetype that are
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simultaneously in service result in a large number of
tables. The second rule maps all versions of an archetype
to a new table, then imports all data from the old table
into the new one according to the conversion algorithm
provided with the archetype [30]; the old table is then
removed. However, the data conversion process is costly
in terms of time and computation if the table contains a
great number of records. Although it is safe to redeploy
changed archetypes and templates to update a deployed
database, the principles of archetype design recommend
that archetypes and templates be maintained by a commit-
tee of domain experts, and deployed when they are stable.
Archetypes should be reused as much as possible to repre-
sent the domain concepts. Templates are used to align the
data persistence to different data requirements, and to
avoid shifting the heterogeneity of data requirements to
archetypes.

De-normalization

In archetype modelling, the most important archetype
resource is the CKM, in which archetypes are main-
tained by healthcare experts and published in a central
repository. Archetypes in CKM are highly abstract and
normalized in order that each archetype represents a
complete domain concept. They are revised by various
experts according to various kinds of data requirements.
In conventionally-designed databases, a combination of
well-organized tables, tolerable redundancies for de-
normalization, and fine-tuned indices allow all queries
to be implemented with as few SQL clauses as possible.
Several de-normalizations are introduced in ARM to
achieve better performance.

First, the de-normalization of the granularity of arche-
types is achieved by embedding archetypes by archetype
slot mapping. Since the granularities of archetypes and
data requirements are not always identical, archetypes
composed by archetype slots with a single occurrence
represent one concept, and can be embedded together
in data requirements. In this manner, query steps can be
reduced and the joining of tables can be avoided. How-
ever, the embedded archetypes are then deemed to be in
a “division” state, indicating that one archetype can be
slotted and embedded into many different archetypes or
simultaneously used alone. The division caused by
archetype de-normalization introduces further complex-
ity to data query using the embedded archetypes. Arche-
types used only as components of other concepts, such
as openEHR-EHR-CLUSTER.person_name.vl, are sel-
dom used to query data alone. For archetypes, both
those mapped standalone and embedded into other
archetypes, one must decide, whether to query only the
standalone mapped data tables or to query all data tables
containing the archetypes according to the semantics of
the archetypes.
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Second, de-normalization of the index redundancy of
query data items propagation is achieved. Proper indices
can greatly improve the data query performance of rela-
tional databases. However, it is inconvenient to add indi-
ces in archetypes, due to their high normalization. For
example, to retrieve the images of a specific exam request,
first has the particular exam request must be queried with
the request order id, then the exam items contained in
this exam request must be queried, and finally the images
of each exam item must be queried. By introducing index
propagation, indices can propagate through archetype
slots in order to reduce the number of query steps. How-
ever, not all propagated indices are necessary to the target
archetypes, and will consume space and computation time
in order to be updated. These must therefore be manually
configured in order to disregard unnecessary propagated
indices in ARM constraints, according to the data
requirements.

Meta-data level and data-level mapping

Archetypes maintained by domain experts as common
knowledge in the centralized approach will gradually
accumulate value. Archetypes representing domain con-
cepts at the meta-data level will greatly facilitate the use
of clinical data, and improve the performance of data
retrieval as compared to concepts defined at the data-
level. As more archetypes are committed to encompass
more domain concepts, it will become easier for clinicians
to manipulate clinical data. For example, clinicians can use
red cell count in openEHR-EHR-OBSERVATION.lab_test-
full_blood_count.vl as conditions to query the patient dir-
ectly; data-retrieving performance will improve because
the result data of each laboratory test are stored separately.
The ARM approach reduces the manual updating process
for data persistence according to changes in domain
concepts, and encourages the use of meta-level data
instead of data-level model methods. However, the meta-
data level model lacks the universal flexibility of the data-
level model. In order to adapt to evolving requirements,
the meta-data level model must first define archetypes, and
then generate data persistence while the generic structure
of the data-level model does not change. In ARM, the
meta-data level model and the data-level model are com-
bined to utilize the advantageous of both approaches. The
archetype openEHR-EHR-OBSERVATION.lab_test-general
vl is defined to improve flexibility, and specific archetypes
are introduced to facilitate the data query.

Limitations of ARM

Although the ARM approach can provide similar per-
formance to the conventional database, it may not meet
the requirements of situations in which the databases
must be highly-tuned. For example, there are no one-
size-fits-all rules of indices; they must be adjusted
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according to queries or even internal data distribution in
the databases. The ARM strikes a balance between auto-
mation and performance to generate data persistence
with archetypes.

If the local data requirements can be properly satisfied,
the published archetypes are of great value to ARM.
When the hierarchy and structure of archetypes are
similar to the data requirements, few reorganizations are
necessary before application of the ARM approach. If
the archetypes and data requirements exhibit structural
differences, many reconfigurations are necessary to align
the archetypes to the data requirements, possibly includ-
ing extensions and modifications to the archetypes.
However, published archetypes are limited in scope
compared to the enormous amount of clinical concepts.
New archetypes must be developed if local data require-
ments are not satisfied. The process of archetype develop-
ment is very restrictive and requires extensive professional
knowledge in order to develop and model high-quality
archetypes. This will require much more effort than the
conventional database design approach.

Affections to archetypes and templates

In general, the ARM approach conforms to the design
principles of archetypes and templates. For example,
each archetype should represent a single concept. This
represents best practice in database normalization, and
the composition of archetypes into large templates is
introduced via the concept of slot embedment. Further-
more, the ARM places more emphasis on subtle details
in order to achieve better design of archetypes and tem-
plates. For instance, ARM requires related data items
within archetypes to be organized as clusters in order to
explicitly express their relationships. If two data items
both have multiple occurrences and a one-to-one rela-
tionship, they must be altered to a single occurrence and
put into a multiple occurrence cluster; this cluster can
then be moved into a standalone cluster archetype and
reused elsewhere. In template design, ARM requires the
identification data item and query data items to add
indices. Although it can be difficult to assign the correct
roles to the correct data items, they can help the
designer achieve better understanding of the function of
each data item when the templates are used as data
entry documents, graphical user interface models, or
data-retrieving queries. ARM refines the design principles
of archetypes and templates by considering their practical
use and application in clinical practice.

Conclusions

This paper presents an ARM persistence solution for
archetype-based EHR systems. ARM uses archetypes to
generate relational databases and achieve similar perform-
ance as compared to conventional databases in data-
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retrieving queries. ARM takes great advantage of the CKM
public archetype repository to facilitate data manipulation
with well-defined archetypes for clinicians and to achieve
better performance in patient-searching queries. System
components like ARM can facilitate the adoption of open-
EHR architecture in EHR systems. The authors will con-
tinue to complete the mapping rules according to the
semantics of archetypes, improve ARM constraints and
the performance of the generated databases, design and
implement data access services, and perform thorough
tests of the ARM approach in real clinical environments.
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