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Abstract

Background: In response to an unexpected long cold spell in February 1996 which killed more than 100 older adults
(mostly living alone) in Hong Kong, the Hong Kong Senior Citizen Home Safety Association established a Personal
Emergency Link Service to provide emergency contact to the older adults, which uses a telephone system to render
emergency relief and total care service around the clock. To facilitate the dynamic and efficient allocation of service
resources, it is crucial to understand the factors linked with use of the services and number of hospital admissions
arising from PE link service.

Methods: We initially use the Poisson generalized linear model (GLM) with polynomial effect functions of relevant
covariates. If the time series of residuals from fitting the Poisson GLM reveals significant serial correlation, a Poisson
generalized linear autoregressive moving average (GLARMA) model is refitted to the data to account for the
auto-correlation among the time series of daily call numbers. If the data is overdispersed relative to the best fitting
Poisson GLARMA model, then the negative binomial GLARMA model is refitted to account for any overdispersion. In
all the models, dummy variables for weekdays and months are included to account for any cyclic trends due weekday
effect or month of the year effect. The secular time trend is modeled by a polynomial function of calendar time over
the study period. Finally any critical temperatures are identified by visually inspecting the graph of the effect function
of temperature.

Results: The weekday and month effects are both significant with Monday seeing more PE Link calls than Sunday
and June seeing less than January. Temperature has significant effect on the PE Link call rate with the effect highly
nonlinear. A critical temperature, below which excessive increase in PE link calls that lead to hospital admissions, is
identified to be around 15 °C.

Conclusion: Identifying a threshold temperature which generates an excessive increase in the expected number of
PE Link calls would be useful in service provision planning and support for elderly in need of hospital admission.

Keywords: Auto-regression, Count data, Generalized linear auto-regressive moving-average (GLARMA) model,
Generalized linear model (GLM), negative binomial, Nonlinear effect, Overdispersion, Poisson regression, Time series

Background
In February 1996, more than 100 elderly people living
alone in Hong Kong died during an unexpected long cold
spell, which is excessive in comparison to the same period
in the previous years. In response to this incident, in
the same year a non-government organization, the Hong
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Kong Senior Citizen Home Safety Association (SCHSA),
established a personal emergency (PE) link service to ren-
der emergency relief and total care service to all elderly
and chronic invalids. All subscribers of this service are
linked through an advanced communication system to a
24-hour call center. By pressing a button on a main unit or
the button on a portable necklace type or wristwatch type
remote trigger, the service user can establish communica-
tion to the call center through themain unit at home. As of
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November 2007 the accumulated number of users of this
service has reached 100,000.
There is substantial variation in the daily numbers of

calls received in the Center. To facilitate appropriate and
efficient resource allocation it is desirable to be able
to predict the intensity of service use based on factors
that can be predicted with reasonable accuracy, such as
weather conditions. To this end it is important to study
the relation of the service use intensity and the weather
conditions (for example, temperature and humidity) based
on historical data. A recent work [1] about the associ-
ation between the frequency of such PE Link calls and
meteorological factors found that the effect of tempera-
ture on the call frequency was statistically significant and
the effect function was roughly U-shaped. When the tem-
perature reached about 30–32 °C, the health related PE
Link call frequency started to increase. The major con-
cern of the study was the negative impact of hot weather
on health, and only used data in warm seasons in Hong
Kong. A more recent study [2] on the association between

hospital admissions and weather and other environmen-
tal variables in Hong Kong found increased admissions
were linked to increases of temperature above a threshold
during warm seasons and decreases of temperature below
a threshold during cold seasons. Another study [3] also
found strong associations between cold weather and mor-
tality rate in Hong Kong and Taiwan during cold seasons.
The main purpose of the current work is to examine the
association between the frequency of PE Link calls that
lead to hospital admissions and meteorological factors,
especially cold weather, using year-around data regardless
of the season.

Data andmethods of analysis
Data
The data supplied by SCHSA consist of the daily num-
bers of PE link calls that lead to hospital admission and
effective service subscribers from 1 January 2000 to 31
December 2005. The daily weather information such as
minimum temperature (in degrees Celsius) and relative
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Fig. 1 Time s eries plots of the data from 1 Jan 2000— 31st Dec 2005. Top panel: daily number of PE Link calls that lead to hospital admission;
Second panel: daily number of active subscribers (in 10,000) of the PE Link service; Third panel: daily minimum temperature (in degrees Celsius);
Fourth panel: daily relative humidity (in percentages); Fifth and last panel: daily range of temperature, calculated as the difference between the daily
maximum and minimum temperature values
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humidity (in percentages) during this period, were down-
loaded from the Hong Kong Observatory’s historical
weather database. See Fig. 1 for time series plots of the
data.

Methods
Since the daily numbers of calls are integer valued, it
is natural to model them using Poisson distributions
with parameters depending on explanatory variables. This
motivated us to consider the Poisson GLM (Generalized
Linear Model) regression as a first attempt. The response
variable is the daily number of PE Link calls received
by the call center that lead to hospital admissions. The
explanatory variables included the daily temperature, the
humidity and the range of temperature fluctuations. As
our main concern is the impact of cold weather on service
use, the temperature variable we use is the daily minimum
temperature. The daily temperature range was calculated
as the difference between the maximum and minimum
recorded temperatures. Since previous studies suggest the

effect of weather on health status tends to be nonlinear
[1–6], the impact of each of these meteorological variables
was modeled as a polynomial function over the respec-
tive range of the variable. The degrees of the polynomials
were selected using a popularmodel selectionmethod, the
Akaike Information Criterion (AIC) [7].
To account for any potential seasonality effects associ-

ated with day of the week and month of the year, dummy
variables for each of Monday, Tuesday, ..., Saturday, and
February, March, ..., December were included in the
explanatory variables, while Sunday and January were held
as references. As the data plot shows non-cyclic variations
in the daily call numbers, a polynomial function of calen-
dar time over the study period was included to account for
such secular trend. The degree of the polynomial for the
time trend was selected together with the degrees of the
polynomial effect functions for the meteorological vari-
ables in the model selection process using the AIC. As
previous studies suggests that the severe acute respiratory
syndrome (SARS) epidemic in 2003might have influenced

Fig. 2 Smoothed PE Link call rate against temperature at different lags. Smoothed call rate at a specific temperature (or another variable) value was
calculated by averaging all call rates associated with the specific temperature (or another variable) value
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the call rate as well [8], the indicator for the duration of the
SARS epidemic in Hong Kong, 4 Feb–21 May 2003, was
also included in the model.
The terms in the best model at the end of the model

selection process were each examined for statistical sig-
nificance. Terms whose removal from the model would
further reduce the AIC value were dropped to simplify
the model. Due to the time series nature of the daily
call counts, there might be auto-correlation among the
call numbers, which, if left unaccounted for, could dis-
tort the inference on the covariate effects. Therefore, the
residuals from fitting the simplified model was examined
for significant auto-correlations by visually inspecting the
ACF (auto-correlation function) plot. If significant auto-
correlation was detected, then Poisson GLARMA (Gen-
eralized Linear Auto-Regressive Moving-Average) model
[9, 10] would be fitted to the data to account for any
auto-correlation among the count time series.
The residual deviance statistic after fitting the Poisson

GLARMAmodel was checked against the residual degree

of freedom of the model for evidence of overdispersion of
the data relative the Poisson distribution. If overdispersion
was detected, then a negative binomial GLARMA model
would be fitted to the data to account for overdisper-
sion and reduce the chance of falsely declaring significant
covariate effects. Various diagnostic plots of the resid-
uals from fitting the final Poisson or negative binomial
GLARMA model were inspected to see if the model fits
the data well. If the temperature variable was significant
in the final model, then the estimated effect function for
temperature would be graphed and visually inspected to
determine any critical temperature.

Results
The daily number of PE Link calls that lead to hospital
admission ranges from 1–100, with mean 31.4, median
26, and SD (standard deviation) 18.3. The daily call rate
per 10,000 subscribers ranges from 0.99–25.16, withmean
11.53, median 11.52, and SD 3.59. The daily minimum
temperature ranges from 6–29 °C, with mean 21.8 °C,

Fig. 3 Smoothed call rate against humidity at different lags
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Fig. 4 Smoothed call rate against temperature range at different lags

median 23, and SD 5.0. The daily humidity ranges from
32–97 %, with mean 78.2 %, median 79 and SD 9.7. The
daily temperature range falls in the range 1–12, and has
mean 3.93, median 4, and SD 1.4.
In Fig. 2, we graph the average call rate for each distinct

temperature value as a function of temperature at differ-
ent lags ranging from 0–34. The graphs shows somewhat
similar relationships between call rate and temperature
at different lags up to 34 days. This is not surprising
as the time series of temperature shows strong auto-
correlation that persists across different lags. In fact, the
auto-correlation at lags 1–34 range from 0.952 to 0.643.
Similar auto-correlation among the humidity and temper-
ature range variables was also observed; see Figs. 3 and 4
for the graphs of the average call rate against humidity and
temperature range respectively at different lags. In light of
this issue of multicollinearity, we use the respective 7-day
averages of the variable values on the same day and the
previous 6 days as the corresponding meteorological vari-
ables in the subsequent regression analysis. We also tried
to use averages of the variables up to 3 weeks, and the

results were similar to those using the one-week averages
to be reported below.
The degrees of the polynomial effect functions for tem-

perature, humidity, temperature range, and the secular
time trend are searched for in the range {1, . . . , 20} ×
{1, . . . , 10} × {1, . . . , 5} × {1, . . . , 20} by minimizing the
AIC value. The degrees selected were 5 for temperature,
1 for humidity, 1 for temperature range, and 19 for time
trend. Upon inspection of the model fit with these as the
degrees of the respective polynomial effect functions, the
term associated with humidity was found insignificant,
and therefore was dropped from the model for further
reduced AIC value and simplified model. In the simplified
model the indicator variable for the SARS pandemic was
also insignificant and therefore dropped. The significant
terms remaining in the thus simplified best fitting Pois-
son GLM are the 5th degree polynomial of temperature,
the 1st degree polynomial (linear) function of temperature
range, the terms for weekday effects, the terms for month
effects, and the 19th degree polynomial for the secular
time trend.
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Fig. 5 Diagnostic plots of the negative binomial GLARMA model. Top left: Observed daily call counts versus the fitted values by the GLARMA model;
Top right: plot of the Pearson residuals against time; Middle left: histogram of the PIT residuals; Middle right: histogram of the normalized
(randomized) PIT residuals; Bottom left: QQ plot of the randomized residuals; Bottom right: ACF plot of the randomized residuals
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Table 1 Estimated regression coefficients in the final negative binomial GLARMA model

Term Parameter Est. S.E. z-value P-value

Intercept 2.442531 0.039518 61.807 < 2e–16 ***

poly(avgtem,deg = 5) 6.60e–05 ***

1 –2.107423 0.854826 –2.465 0.013689 *

2 0.533695 0.342106 1.560 0.118753

3 –0.002327 0.282575 –0.008 0.993430

4 0.544087 0.245085 2.220 0.026419 *

5 0.316611 0.223906 1.414 0.157352

poly(avgrng,deg = 1) 1 0.703833 0.252429 2.788 0.005299 **

poly(day,degree = 19) 3.32e–124 ***

1 8.421452 0.342929 24.557 < 2e–16 ***

2 –1.025939 0.299326 –3.427 0.000609 ***

3 1.081812 0.400462 2.701 0.006905 **

4 –3.635584 0.296644 –12.256 < 2e–16 ***

5 –1.653215 0.408414 –4.048 5.17e–05 ***

6 1.262107 0.377475 3.344 0.000827 ***

7 1.333170 0.330431 4.035 5.47e–05 ***

8 –1.197338 0.470180 –2.547 0.010879 *

9 –0.076322 0.389505 –0.196 0.844651

10 –0.862383 0.325797 –2.647 0.008121 **

11 1.342996 0.580335 2.314 0.020658 *

12 1.117173 0.472052 2.367 0.017951 *

13 –1.103724 0.291459 –3.787 0.000153 ***

14 0.647134 0.404929 1.598 0.110012

15 –1.066383 0.731316 –1.458 0.144794

16 –0.825548 0.738731 –1.118 0.263771

17 0.337155 0.771639 0.437 0.662160

18 1.236506 0.561054 2.204 0.027531 *

19 0.923495 0.471105 1.960 0.049964 *

weekday 2.37e–11 ***

Monday 0.089304 0.016387 5.450 5.05e–08 ***

Tuesday 0.021804 0.014619 1.491 0.135840

Wednesday 0.007786 0.016910 0.460 0.645188

Thursday 0.031717 0.016603 1.910 0.056097 .

Friday 0.010251 0.015368 0.667 0.504731

Saturday –0.007043 0.016094 –0.438 0.661673

month 0.077200 .

February 0.042941 0.032453 1.323 0.185784

March 0.014045 0.045926 0.306 0.759750

April –0.053393 0.059269 –0.901 0.367666

May –0.065915 0.066509 –0.991 0.321651

June –0.117673 0.068948 –1.707 0.087881 .

July –0.072637 0.067278 –1.080 0.280290

August –0.050010 0.065466 –0.764 0.444926

September –0.040152 0.063196 –0.635 0.525196
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Table 1 Estimated regression coefficients in the final negative binomial GLARMA model (Continued)

October –0.053443 0.057428 –0.931 0.352061

November –0.029786 0.049083 –0.607 0.543961

December –0.013625 0.033611 –0.405 0.685201

Inspection of the time series of the Pearson residu-
als from fitting the simplified model revealed signifi-
cant auto-correlation at lags 1, 5, 13, 19, 23, and 33.
Refitting a Poisson GLARMA model with these as the
auto-regressive lags to the data left no significant auto-
correlation among the residual time series. The residual
deviance after fitting the Poisson GLARMA model was
2741.1 on 2109 degrees of freedom, indicating moder-
ate overdispersion of data relative to the Poisson model.
Therefore, a negative binomial GLARMAmodel was refit-
ted to the data. The diagnostic plots for this model are
shown in Fig. 5. It reveals fitted values for the response
closely tracing the observed counts, white-noise looking
residual time series that have no trend or serial correla-
tion, and uniformly distributed PIT (Probability Integral
Transform) residuals [11, 12]. These observations sug-
gest that the final negative binomial GLARMA model
produces adequate fit to the data.
In the final negative binomial GLARMA model, the

terms associated with temperature, temperature range,
day of the week, and secular time trend remain signifi-
cant, while the month of year effect was only marginally
significant; see Table 1. The estimated effect of tem-
perature range on the logarithm of the call rate turns
out to be linear, with a 1 °C increase in temperature
range associated with an increase in the call rate by
2.24 % (95 % CI: [ 0.66 %, 3.85 %]); see also Fig. 6.
The estimated weekday effects suggest that Monday on

average sees 9.34 % (95 % CI: [5.89 %,12.91 %]) more
calls per 10,000 subscribers than Sunday. This might
be because on Sundays it is more likely for senior cit-
izens living alone to be visited by family members or
social workers and these visits might have delayed part
of the senior citizens’ need for emergency service to the
beginning of the week. At level 0.05, the month effects
was non-significant (P-value = 0.077), which seems to
suggest that any marginal month effects could be due
to the difference in the weather conditions in different
months.
The effect function for temperature is shown in Fig. 7,

from which it is noted that the effect is highly non-linear
with a U-shape roughly. Due to the nonlinearity of the
effect function, the effect of one unit change in the tem-
perature is not a constant. Here we report the average
effect in different temperature intervals. When the tem-
perature is in the range 15–24 °C, on average there is no
significant change in call rate associated with the change
in temperature (95 % CI [-0.25 %,2.15 %]). When the tem-
perature is below 15 °C, a unit decrease in temperature is
associated with an increase in the call rate by 3.03 % (95 %
CI: [0.75 %,5.36 %]) on average. There was about 11.3 %
of the days in which the temperature was 15 °C or below.
When the temperature is around 28 °C or higher, increases
(rather than decreases) in temperature seem to be linked
with increases in the call rate, although the effect is only
marginally significant.

Fig. 6 Plot of the estimated effect function of temperature range. Dashed lines indicate the 95 % confidence intervals
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Fig. 7 Plot of the estimated effect function of temperature. Dashed lines indicate the 95 % confidence intervals

Discussion and conclusions
We have made an attempt to model the time series of the
daily numbers of PE Link calls that lead to hospital admis-
sions in Hong Kong. A negative binomial generalized
linear auto-regressive moving-average model was found
to afford adequate fit to the data. Our analysis reveals
that temperature is a significant predictor for call num-
bers. We found the effect of the average temperature to be
highly nonlinear and roughly U-shaped. The finding aligns
wells with previous researches about the effect of weather
on various measures of health status. By inspecting the
effect function of temperature, we were able to identify a
cold temperature threshold of about 15 °C, which triggers
excessive PE Link calls. Our findings are potentially useful
in assisting the SCHSAwith service planning and resource
allocation.
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