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Abstract

Background: Malaria is the world’s most prevalent vector-borne disease. Accurate prediction of malaria outbreaks
may lead to public health interventions that mitigate disease morbidity and mortality.

Methods: We describe an application of a method for creating prediction models utilizing Fuzzy Association Rule
Mining to extract relationships between epidemiological, meteorological, climatic, and socio-economic data from
Korea. These relationships are in the form of rules, from which the best set of rules is automatically chosen and
forms a classifier. Two classifiers have been built and their results fused to become a malaria prediction model.
Future malaria cases are predicted as LOW, MEDIUM or HIGH, where these classes are defined as a total of 0–2,
3–16, and above 17 cases, respectively, for a region in South Korea during a two-week period. Based on user
recommendations, HIGH is considered an outbreak.

Results: Model accuracy is described by Positive Predictive Value (PPV), Sensitivity, and F-score for each class,
computed on test data not previously used to develop the model. For predictions made 7–8 weeks in advance,
model PPV and Sensitivity are 0.842 and 0.681, respectively, for the HIGH classes. The F0.5 and F3 scores (which
combine PPV and Sensitivity) are 0.804 and 0.694, respectively, for the HIGH classes. The overall FARM results
(as measured by F-scores) are significantly better than those obtained by Decision Tree, Random Forest, Support
Vector Machine, and Holt-Winters methods for the HIGH class. For the MEDIUM class, Random Forest and FARM
obtain comparable results, with FARM being better at F0.5, and Random Forest obtaining a higher F3.

Conclusions: A previously described method for creating disease prediction models has been modified and
extended to build models for predicting malaria. In addition, some new input variables were used, including
indicators of intervention measures. The South Korea malaria prediction models predict LOW, MEDIUM or HIGH
cases 7–8 weeks in the future. This paper demonstrates that our data driven approach can be used for the
prediction of different diseases.

Keywords: Malaria, Prediction, Association rule mining, Fuzzy logic, Classification, Environmental data, Socio-economic
data, Epidemiological data
Background
Malaria is a parasitic disease of humans and is trans-
mitted via the bite of infectious female Anopheles
mosquitoes. The adult female mosquito requires a
blood meal in order to obtain the proteins necessary to
complete the development of her eggs [1]. The salivary
glands of infectious mosquitoes carry parasites belonging
to the genus Plasmodium, with P. vivax and P. falciparum
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being the most common pathogens for humans.
Uninfected mosquitoes acquire the parasite when they
feed on infected hosts, thereby completing the trans-
mission cycle. The time between parasite ingestion by
the mosquito and the mosquito becoming infectious is
known as the extrinsic incubation period (typically
10–21 days but varies with species and temperature).
If the infectious mosquito doesn’t survive longer than
this, then malaria won’t be transmitted. These mosqui-
toes often breed in stagnant water commonly found in
ditches, rice fields, and impounded waters associated
rticle distributed under the terms of the Creative Commons Attribution License
which permits unrestricted use, distribution, and reproduction in any medium,
. The Creative Commons Public Domain Dedication waiver (http://
) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-015-0170-6&domain=pdf
mailto:anna.buczak@jhuapl.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Buczak et al. BMC Medical Informatics and Decision Making  (2015) 15:47 Page 2 of 17
with human populations [2, 3]. The Anopheles mos-
quito has a flight range of 10 km or more [4, 5]. In
order for malaria to spread among humans living in a
region, the mosquitoes must be present so that the
parasite can complete its life cycle (although there
have been cases of person-to-person transmission via
placenta, transfusion, organ transplantation, and shared
needles) [6]. Human infection has an intrinsic incubation
period, defined as the time between the mosquito bite
introducing the parasite into the blood stream and the
appearance of symptoms, varying from 7 to 30 days.
The incubation period for P. falciparum tends to be at
the shorter end of this time range. The symptoms of
malaria can range from minimal to severe to death.
Classically, malaria is characterized by high periodic
fevers separated by phases of relatively normal body
temperature.
Malaria has been reported to have a greater impact on

human history than other infectious diseases and was
found as far north as Canada before the American Civil
War [6]. Globally, there were an estimated 207 million
malaria cases and an estimated 627, 000 malaria deaths
in 2012 [7]. Most malaria deaths globally occur in
children under 5 years of age. Malaria caused by P.
falciparum has become more drug resistant over recent
years [8]. Also, increasing resistance of Anopheles mos-
quitoes to insecticides may impact the efficacy of malaria
control [9]. Concerns have been expressed about the po-
tential for changes in global malaria distribution due to
the effects of climate change [1, 2, 6]. As an illustration
of the continuing potential for the spread of this disease
long after it was eradicated, P. vivax was isolated from
local mosquitoes after human cases were identified in
northern Virginia in the United States in 1998 and 2002
[10]. Changes in rainfall patterns during 1990–2009 may
have contributed to the re-emergence of malaria in the
northern Anhui Province of China [11]. After indigenous
transmission disappeared in the 1970s, malaria caused
by P. vivax re-emerged in the Republic of Korea (ROK,
or South Korea) in 1993 and subsequent annual num-
bers of cases began to increase geometrically [12, 13].
Predicting malaria cases in ROK is the focus of this
paper and is the result of discussions with public health
professionals in ROK.
Studies of disease prediction differ in exactly what they

predict, which may include transmission stability indices,
vector abundance (e.g., ecological niche models), trans-
mission suitability for a region (e.g., [14]), and human
malaria incidence or prevalence. Malaria risk maps
(e.g., [15]) are also useful, as they represent the out-
comes of disease transmission models based on spatial
and temporal data [16]. Corley et al. [17] noted that the
difference between risk assessment and event prediction
is that the former provides the risk of an outbreak
occurring under specified conditions, while the latter
provides the location and time period during which a
disease outbreak will occur.
Environmental data are often used in prediction

models as a proxy for vector abundance and vector-
human interaction because these data are less labor in-
tensive and expensive to collect than those from field
studies. Historical malaria incidence rates can be used to
indicate the presence of the parasite in the local human
population. Therefore, some predictive studies used both
environmental data and historical incidence data. For ex-
ample, Abeku et al. [18] developed a linear mixed model
to predict monthly human incidence of P. falciparum
malaria for the present month (t = 0) using monthly mal-
aria incidence at month t-1, monthly rainfall at t-2 and
t-3, and average minimum monthly temperature at t-1.
This model thus required all the previous months’ (t-1,
etc.) data immediately prior to the month being pre-
dicted. Such rapid data availability (e.g., having the May
monthly incidence data available on May 31 or June 1 in
order to run the model) is rarely achieved in practice.
Also, as noted by Zinszer et al. [19], these types of
models do not naturally account for serial autocorrel-
ation and failure to do so may bias the estimation of pre-
dictor effects and underestimate standard errors. While
these types of models may show high correlation looking
retrospectively, this does not necessarily indicate future
performance with data not used in model development.
Corley et al. [17] systematically reviewed disease pre-

diction models published in articles, books, theses, pro-
ceedings, and technical reports through December 2010.
Their search was focused on models defined as “abstract
computational, algorithmic, statistical, or mathematical
representation that produces informative output related
to event detection or event risk.” The reviewed models
required a priori knowledge, and included those that
were used to detect or predict an event, assess risk, or
used to understand the drivers and dynamics of the
event. From over twelve thousand citations, they found
44 papers that met their model criteria. These were
classified as risk assessment models, event prediction
models, spatial models, dynamical models, and event de-
tection models. Corley et al. [17] found only four event
prediction models (the type described in this article) and
suggested that this was because of the difficulty in creat-
ing a model that truly predicts disease events.
Zinszer et al. [19] published a scoping review of

models that specifically forecasted malaria incidence,
prevalence, or epidemics. Their reviewed models had to
include prior malaria incidence, prevalence, or epidemics
as a predictor. The studies were further restricted to
autochthonous transmission among human populations.
They identified 29 studies that met their inclusion cri-
teria but did not assess them for quality. They noted that
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prediction accuracy could not be compared because no
common scale-independent measures were used in any
of the reviewed studies. There were studies that used all
available data in model development, without using a
separate set for assessing prediction accuracy. They con-
cluded that prediction accuracy should always be mea-
sured on reserved data (i.e., data not used in model
development) and common prediction measures should
be used to allow model comparison. In the review by
Corley et al. [17], only six out of forty-four disease pre-
diction model papers used reserved data for testing the
models. An example of a model that used reserved data
for testing is found in Briet et al. [20]. Like Zinszer et al.
[19], Corley et al. [17] emphasized the importance of
testing on reserved data to avoid bias.
The work presented here represents further develop-

ment of the techniques of Buczak et al. [21, 22] for data
mining disparate sources of data to create models for
disease prediction. The technique for creating the
malaria model was similar to that for creating the den-
gue models, but the resulting malaria model was
distinct. In addition, the predictor variables for malaria
were taken from the literature, so overall there is a
different set of predictor variables for malaria than for
dengue. The data mining approach avoids the assump-
tion that a simple correlation analysis of past data will
remain accurate for future data. Conservative estimates
of model prediction accuracy are provided by testing the
model on data not used in its development, so that po-
tentially biased accuracy measures are avoided. In order
to be more realistic operationally, the model does not
rely on data that may not be available on the date the
prediction is made. Finally, the model is able to take into
account complex temporal and spatial relationships
among the variables that would be missed by traditional
correlation analyses. While the previous studies involved
dengue fever in Peru [21] and The Philippines [22], this
study uses a similar technique to create new models
that focus on malaria in regions of the ROK near the
border with the Democratic People’s Republic of Korea
(DPRK, or North Korea), where most ROK malaria
cases occur [13].

Methods
Predictor variables
As described in Buczak et al. [21, 22], the first step in-
volves a review of the literature to find variables associ-
ated with the disease of interest, which in this case is
malaria. Variables used for input into the prediction
model include epidemiological, environmental, and so-
cioeconomic data found to be useful in previous studies.
Zinszer et al. [19] noted the importance of including
transmission-reducing interventions to improve malaria
outbreak prediction. Linthicum et al. [13] noted that
malaria outbreaks in ROK were possibly a result of in-
fected mosquitoes entering from DPRK. As mentioned
earlier, the flight range of Anopheles mosquitoes has
been estimated at 10 km or more [4, 5]. Therefore, we
have also included DPRK mosquito net data, external
funding for mosquito control sent to DPRK, and yearly
malaria data for DPRK as predictor variables. Socioeco-
nomic variables include population density in addition
to the DPRK funding data.
Originally, the variables have different spatiotemporal

scales, but all the variables need to fit the same spatio-
temporal scale for the prediction model to work. The
spatiotemporal scale was selected based on the distribu-
tion of the ROK malaria case data and is described next
in more detail. For spatial variables the Geographic
Information System (GIS) shape of each location is used
to calculate values on a grid which is bounded by that
location shape. The resolution of the grid is based on
the original source of the data set. In this work the data
sets have resolutions of 0.25, 0.05 and 1/120°. The values
from each grid element that overlaps to the location
shape are then used to obtain a single mean value for
that location. For temporal variables, data were con-
verted to weekly values, as described below. For a more
detailed discussion on how these different types of data
were processed and converted to the same spatiotempo-
ral scale, the reader is referred to Buczak et al. [21, 22].
ROK malaria case data
Malaria weekly data were obtained from the Korea
Centers for Disease Control and Prevention website
(http://is.cdc.go.kr/dstat/index.jsp) and were interpreted
in consultation with public health users in ROK. The
smallest temporal resolution available was weekly.
Therefore, all other input variables were converted to
weekly intervals. In order to have a consistent defin-
ition of a week, weeks are numbered using the US
Centers for Disease Control and Prevention (CDC)
convention [23], with weekly intervals beginning on
Sundays. ROK is divided geographically into 16 regions,
of which there are 5 types: provinces, special autono-
mous provinces, special cities, metropolitan cities, and
special autonomous cities. Most malaria cases in ROK
occur in regions near the demilitarized zone (DMZ)
that forms the border with the DPRK [13]. Therefore,
case data were obtained for the following political
divisions: Seoul (special city), Gyeonggi (province),
Gangwon (province), and Incheon (metropolitan city).
These political divisions are further subdivided, ranging
from larger to smaller, into gun (county), gu (district),
and si (city). For example, the special city of Seoul is
divided into 25 gus, while the province of Gangwon is
divided into 7 sis and 11 guns.

http://is.cdc.go.kr/dstat/index.jsp
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For the purpose of the analysis, the malaria case data
for each of the political divisions and for each of their
subdivisions (hence called regions) were extracted for
the period from 2004–2013. To illustrate the distribu-
tion of malaria in the areas of interest, Fig. 1 provides a
map of average weekly malaria incidence per 100,000
people for the entire period for each region. Figure 2
shows the combined malaria case counts for the four
northern provinces of ROK. Consultation with ROK
public health professionals determined that they were in-
terested in a model that predicted malaria cases up to
8 weeks in advance for these specific provinces of ROK.
DPRK malaria case data
DPRK has reduced malaria within its borders by 90 %
since 2001, from more than 140,000 to fewer than
15,000 annually. 70 % of DPRK cases of malaria are con-
centrated in the southern provinces bordering the DMZ
[24]. Transmission of malaria in the DPRK is unstable,
with a high potential for outbreaks during the June-
September transmission season [12]. The yearly DPRK
malaria case data come from the World Malaria Report
2013 [7], where Annex 6c lists yearly reported malaria
Fig. 1 Average weekly incidence of malaria per 100,000 population in Sout
cases for the whole DPRK. These DPRK malaria case
data were included as one of the predictor variables.

DPRK mosquito net data
One potentially valuable explanatory variable for the
load of malaria cases in a given year is the amount of
malaria control measures provided to and administered
by the DPRK. The most reliable source of malaria-
prevention measures for DPRK is the world malaria re-
port published by World Health Organization (WHO)
[7]. One of the most consistently reported measures is
the number of insecticide-treated nets that were sent to
DPRK as part of their malaria prevention campaign.
These numbers from WHO reports were tabulated for
years 2008–2013 and are used as inputs to the predic-
tion system.
Additional information was provided by the Malaria

Control Project in the DPRK, sponsored by the Korean
Sharing Movement and Provincial Government of Gyeonggi
of ROK. From 2008 to 2011, a number of prevention mea-
sures including malaria nets were delivered to several
DPRK provinces. Unfortunately the project was stopped
in DPRK in 2011. The available numbers are used as in-
puts to the prediction system.
h Korea



Fig. 2 Combined malaria case counts for four northern provinces of South Korea
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Financial data for DPRK malaria control
The WHO World Malaria Report [7] – Annex 3
“Funding for Malaria Control” describes the financial
aid that each country receives for malaria control. In
the case of DPRK, the main source of aid is the
UNICEF Global Fund project [25], in addition to some
aid from WHO and funds spent by the DPRK govern-
ment. These funding data were used in developing the
malaria case prediction.
Distance of ROK locations from the DMZ
It was mentioned earlier that Anopheles mosquitoes have
been reported to travel 10 km or more [4, 5]. Because
the mosquito vector may originate from the area north
of and adjacent to the DMZ [12, 13], a potential ex-
planatory variable representing the distance of each
ROK region to the DMZ in kilometers was studied.
Once the location shape files were entered into the data-
base, a Structured Query Language (SQL) query was run
to calculate the minimum distances from each region to
the DMZ. The query was based on GIS database func-
tions and returned the distance between the closest
points of one shape to the other. The DMZ GIS shape
encompasses the entire DMZ at the border between
ROK and DPRK.
Elevation
Elevation data with 1/120° resolution were obtained
from the NOAA National Geophysical Data Center
website [26]. Any missing data (typically for ocean loca-
tions) were assigned an elevation of zero. The shape of
the region overlapped to a 1/120° resolution grid is
used to compute a single mean value of elevation for
that region.
Rainfall
Rainfall data with 0.25° resolution were obtained from the
NASA Tropical Rainfall Measuring Mission (TRMM)
website [27], which contains satellite data measured by
the TRMM instrument. These data contained hourly
rainfall rates averaged over three-hour intervals. To
convert from rainfall rates to rainfall amounts, all data
were multiplied by three (the number of hours in the
measurement interval) and the resulting data were ag-
gregated into daily and then weekly rainfall totals. The
shape of the region is overlapped to a 0.25° resolution
grid and used to compute a single cumulative value of
rainfall for that region. The rainfall data were then con-
verted to weekly cumulative values for each ROK region
for which the predictions are made. In addition, weekly
cumulative values of the rainfall for the southern part of
DPRK were calculated.
Land surface temperature
Using the Moderate Resolution Imaging Spectrometer
(MODIS) instrument, satellite measurements are made
of daily daytime and nighttime temperatures with 0.05°
resolution. These data were obtained from the United
States Geological Survey (USGS) Land Processes Dis-
tributed Active Archive Center using their website
[28]. The shape of the region overlapped to a 0.05-
resolution grid is used to compute a single mean
value of day temperature and a single mean value of
night temperature for each region. Day and night
temperature data were each converted to weekly mean
values for each ROK region for which the predictions are
made. Weekly mean values of the daytime and nighttime
temperatures for the southern part of DPRK near the
DMZ were also calculated.
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Vegetation indices: NDVI and EVI
Satellite MODIS measurements contain leaf area indices,
including the Normalized Difference Vegetation Index
(NDVI) and the Enhanced Vegetation Index (EVI).
NDVI seasonal variations closely follow human-induced
patterns, such as landscape disturbance [29]. Zinszer
et al. [19] noted that human land use patterns are im-
portant but not often considered in malaria prediction
models. EVI is calculated similarly to NDVI, but is con-
sidered to be more responsive than NDVI to canopy
structural variations. Together, NDVI and EVI provide a
surrogate assessment of green leaf biomass, photosyn-
thetic activity, and the effects of seasonal rainfall, which
are indicators of vector habitat characteristics. We ob-
tained 16-day interval Normalized Difference Vegetation
Index (NDVI) values and Enhanced Vegetation Index
(EVI) values with 0.05° resolution from the USGS Land
Processes Distributed Active Archive Center [28]. NDVI
and EVI data were downloaded for ROK and DPRK. The
shape of each region overlapped to a 0.05° grid is used
to compute one mean value of NDVI and of EVI for
each ROK region for a given time period. Similarly,
mean values of the vegetation indexes for the southern
part of DPRK are obtained. 16-day mean values were
processed to obtain single-week averages to be coinci-
dent with weekly malaria case data, as described in
Buczak et al. [21].
Southern oscillation index
The Southern Oscillation Index (SOI) is used to indicate
the presence of an El Nino or La Nina climate anomaly
period and the relative strength of that anomaly. SOI
is based on the pressure difference between Darwin
(Australia) and Tahiti (French Polynesia), which influ-
ences the strength of the prevailing easterly winds. The
SOI data provide a measure of the El Nino Southern
Fig. 3 Predicting Infectious Disease Scalable Method (PRISM)
Oscillation (ENSO) climate effect, which can impact the
weather in ROK [13]. Monthly SOI values were obtained
from the US National Center for Atmospheric Research
Climate Analysis Section website [30]. Only single
monthly SOI values are available and are not location-
specific. These monthly values were processed to obtain
single-week values that were coincident with the weekly
malaria data, as described in Buczak et al. [21].
Sea surface temperature anomaly
As a complement to SOI values, weekly Sea Surface
Temperature Anomaly (SSTA) values were obtained
from the NASA Global Change Mastery Directory web-
site [31]. These values are calculated as the area-
averaged sea surface temperature anomalies (C) for
specified region of the equatorial Pacific Ocean. The
Nino 1 + 2 region covers the extreme eastern equatorial
Pacific between 0–10S, 90 W–80 W. The Nino-3 region
spans the eastern equatorial Pacific between 5 N–5S,
150 W–90 W. The Nino 3.4 region spans the east-
central equatorial Pacific between 5 N–5S, 170 W–
120 W. The Nino 4 region spans the date line and
covers the area 5 N–5S, 160E–150 W. SSTA values are
defined as departures from the 1981–2010 base period
monthly means. Unlike SOI, SSTA values are typically
published for a single week, beginning on Wednesday.
To align these values with weekly malaria data (begin-
ning on Sunday), we computed weighted sums as
described in Buczak et al. [21, 22]. Both SSTA and SOI
can impact regional rainfall patterns over wide areas
of the globe, including as far away as Korea [32].
Techniques
Overview
The method performs data mining from a large number
of data sources using the steps shown in Fig. 3 [21, 22]:
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1) Identification of the Predictor Variables: A literature
review is performed to identify the environmental
and socio-economic variables that are significantly
correlated with the given disease, in this case
malaria. After the identification of data sources for
predictor variables, data are downloaded. The
variables used for malaria prediction were
described in the earlier Predictor Variables Section.
These data are then divided into training, fine-tuning,
and testing sets that are used to train and evaluate the
prediction model. While the training and fine-tuning
sets overlap, the testing set is disjoint from these and
is not used at all in the training of the model.

2) Model Builder: The Model Builder is the principal
part of the method and is where all the data mining
elements reside. The data are pre-processed and
used to find fuzzy association rules. A subset of
these rules that satisfy certain criteria is then
selected to create a classifier that becomes the
Prediction Model.
a) Data pre-processing and fuzzification: The

predictor variable data are pre-processed to
convert them into the desired spatio-temporal
resolution, as described in detail in Buczak
et al. [21].

b) Rule extraction: Rule extraction from the training
data is performed using Fuzzy Association Rule
Mining (FARM) [33], where a set of data mining
methods that use a fuzzy extension of the Apriori
algorithm [34] automatically extract the so-called
fuzzy association rules from the data. For the
disease prediction application, the rules of interest
are called fuzzy class association rules (FCARs),
meaning that they have only one consequent: the
class. An example of a FCAR extracted by
FARM is:

IF (NK_Funding_Total_Y-3 is SMALL) AND
(Malaria_Case_Counts_T-1 is LARGE) AND
(Malaria_Case_Counts_T-11 is VERY
SMALL)→Malaria_Case_Counts_T + 8 is
HIGH, confidence = 0.899, support = 0.0011,
lift = 20.83
The above rule states that if total funding
obtained by DPRK for malaria eradication three
years ago was SMALL, and Malaria Case
Counts one week ago (T-1) were LARGE, and
Malaria Case Counts eleven weeks ago (T-11)
were VERY SMALL, then the Malaria Case
Counts will be HIGH 8 weeks from now (T + 8).
The terms confidence, support, and lift are
metrics used in the rule selection to be
described next.

c) Rule selection: The FARM method typically
extracts thousands of rules, but only a subset of
these is used to build a classifier that becomes the
final prediction model. An automatic method is
used to choose a small subset of rules that
minimizes the misclassification error on the fine-
tuning data set. The rule choices are based on
selection criteria using the three most important
metrics for fuzzy association rules: confidence,
lift, and support. Confidence is the conditional
probability that, if the antecedents are true, then
the consequent is true. A rule with confidence of
1 is always true. Support is a measure of how
general a given rule is and can be considered to
be the probability of occurrence of records with
given antecedents and consequent in a particular
data set. A support of 0.01 means that a given
rule describes 1 % of a particular data set. Lift
represents the extent to which the antecedents
and the consequents are not independent. The
higher the lift, the more dependent the variables
are. A thorough description of the rule metrics
and associated equations can be found in [34, 21].

3) Prediction Generator: The final classifiers using
rules selected from the previous step become the
models that generate predictions. These models are
evaluated using measures described in the section
called Performance Metrics. A final prediction
model is selected based on these metrics and the
desires of the end user. In the case of ROK, the
users requested predictions for certain case count
ranges (LOW, MEDIUM, and HIGH, to be
subsequently described) and for 7–8 weeks in
advance for certain regions near the DMZ.
Rule generation improvements
Buczak et al. [21] used a fuzzified version of the Apriori
algorithm [34] to mine the Fuzzy Class Association
Rules (FCARs) that were subsequently used to build the
classifiers. This algorithm works well in the classical
association rule mining setting where the data set is typ-
ically sparse, the support threshold is set sufficiently
high to ensure that there are only a manageable number
of frequent sets, and the goal is to mine all of the fre-
quent sets in order to discover interesting association
rules. However, when attempting to predict relatively
rare disease outbreaks, we are also very interested in rare
(infrequent) but strong (high confidence) association
rules because these are vital in building a sufficiently
sensitive classifier. This requires the support thresholds
to be set very low, which causes a combinatorial explo-
sion in the number of frequent sets even for relatively
small data sets. Also the data sets tend to be much
denser than transaction databases, which increases further
the number of frequent sets.
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One of the underlying assumptions of the Apriori
algorithm is that parsing the data set is more expensive
than parsing the rule set. This is why it builds size k fre-
quent sets by combining size k-1 frequent sets that share
k-2 items. Doing so minimizes the number of passes
through the data set because of the Apriori principle,
but requires the rule set to be parsed multiple times.
When the rule set grows significantly larger than the
data set, then this approach is no longer effective. In
order to use the Apriori algorithm in the disease predic-
tion setting, Buczak et al. [21] had to set a relatively low
upper bound on the size of the frequent sets due to
computer memory constraints. Although the use of the
low support thresholds allowed for the mining to dis-
cover some interesting rare rules and build an effective
classifier, the low upper bound was a significant limita-
tion and hindered the performance of the model.
Therefore, an improved algorithm was developed that

is better suited to mine for rare, high confidence FCARs
in dense data sets and can scale up to very large rule
sets. In this algorithm, FCARs are mined directly and
the support and confidence of a large number of FCARs
are computed on each pass through the database. The
algorithm essentially performs a breadth-first search
through the trees of all possible FCARs, pruning nodes
that either fall below the minimum support threshold or
achieve a confidence within a user-defined threshold of
1. In the former case, all children of the node must also
fall below the support threshold and in the latter case all
children of the node would later be removed in the sub-
sequent pruning step. At each step, all size k + 1 children
of a block of size k rules are evaluated on each pass
through the database and this processing is parallelized.
When certain levels of the tree are reached (either pre-
defined by the user or determined at run-time), the
current search splits and a breadth-first search is initi-
ated on each live node at that level. This feature is not
only useful in reducing the memory footprint of the
process but also makes it well suited to distributing out
to a cloud of computer nodes if needed. At the end of
each search, a confidence-based pruning is performed
on the set of rules, which drastically reduces the number
of rules that need to be passed along to the classifier
generation algorithm. Any rule whose confidence is less
than or within a user-defined threshold of the confi-
dence of a parent rule is pruned.

Classifier improvements
Buczak et al. [21] described a slightly modified version
of the method of Liu et al. [35] to build a classifier from
the FCARs. In Buczak et al. [22], some improvements to
this implementation were presented. For the present
study, additional enhancements to the classifier-building
algorithm were made.
The first enhancement was to develop a new classifier
generation algorithm tailored to the Weighted Voting Clas-
sifier described in Buczak et al. [22]. The new algorithm
takes as input the set of fuzzy association rules that have
been mined from the training data. It separates these by
class and then ranks the class lists individually. The original
algorithm would often generate classifiers with a dispropor-
tionate number of rules from one of the classes. This is not
a problem for a decision list classifier since only one rule is
used to make the classification, but it is easy to see why this
poses a potential problem for a voting classifier. For the
new generation algorithm, we wanted to ensure that there
would be a more balanced set of rules. Therefore, at each
step the algorithm adds a rule from each class that has not
met its stopping condition. The criteria for adding a rule to
the classifier is that it be the highest ranked rule remaining
in its class that improves the performance of the classifier
on the training data. In other words, if adding its votes on
the data to the current rules’ votes decreases the misclas-
sification score of the classifier, then it is added to the
classifier. The misclassification score is calculated by multi-
plying the number of times a class was misclassified by the
misclassification weight for that class and then summing
across the classes. The algorithm stops when all the data
points have been classified, there are no remaining rules
that improve the classifier, or the stopping condition for
all classes has been met. The stopping condition was
added to help limit the overfitting of the training
data [36]. It is an optional user-defined parameter
that defines for each class the proportion of data points
in the training set that should be covered. Once the de-
fined proportion is covered for a particular class, no
more rules are added to the classifier for that class.
A second enhancement was to add an additional rule

ranking method. The rules are ranked from best to
worst prior to being passed to the classifier gener-
ation algorithms. The original method ranked first by
confidence, then by support, then by lift, and lastly
by number of antecedents. This method works fairly
well; however, it always gives confidence the top pri-
ority. This is fine if the confidence value is accurate,
but since the rules are mined from data that are very
noisy, the confidence values can be unreliable, espe-
cially for rules with very low support. For example,
we would intuitively trust a rule with confidence =
0.999 and support = 0.1 much more than a rule with con-
fidence = 1 and support = 0.001; however, the current
ranking method would always rank the second rule
higher. Therefore, we thought that at least in some
cases performance could be improved by using a rank-
ing method that relied on a metric that balances confi-
dence and support. We tried a few methods and
determined that the pessimistic error rate developed by
Quinlan [37] was best suited for this task.
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Performance metrics
For a two-class problem, four metrics were used to
assess the accuracy of the prediction [21, 22]:

� Positive Predictive Value (PPV): PPV = TP/(TP + FP)
which is the proportion of positive predictions that
are outbreaks;

� Negative Predictive Value (NPV): NPV=TN/(TN+ FN)
which is the proportion of negative predictions that are
non-outbreaks;

� Sensitivity: Sensitivity = TP/(TP + FN) which is the
proportion of correctly predicted outbreaks (also
called Probability of Detection);

� Specificity: Specificity = TN/(TN + FP) which is the
proportion of correctly predicted non-outbreaks;
1- Specificity is the False Alarm Rate;

where TP, TN, FP, and FN represent, respectively, True
Positive, True Negative, False Positive, and False Negative.
These measures of accuracy may then be used to se-

lect a prediction model that best meets the needs of the
user. For example, a high PPV indicates that, when the
model predicts high incidence rate, it is likely that a high
incidence will actually occur. A high PPV may be desir-
able when disease prevention and mitigation resources
are limited. A high Sensitivity indicates that the model
predicts a high percentage of the outbreaks that actually
occur. Therefore, the F-score [38] is used as a measure
that considers both PPV and Sensitivity:

Fβ ¼ 1þ β2
� � PPV � Sensitivity

β2 � PPV þ Sensitivity
ð1Þ

By varying the value of β, the resulting F-score will
reflect the relative importance given to PPV and Sensi-
tivity. Therefore, F0.5 (PPV more important) and F3
(Sensitivity more important) values were calculated to
reflect the performance of the models.
For a multi-class classification problem (with number

of classes larger than two) the Sensitivity and PPV for
each class are widely used [39]:

Sensitivityj ¼
TPj

TPj þ FNj
ð2Þ

PPV j ¼ TPj

TPj þ FPj
ð3Þ

where TPj, FNj, FPj correspond to True Positive, False
Negative and False Positive for class j, respectively. The
per-class F-score can be computed using equation (1), in
which the class Sensitivity and PPV from equations (2)
and (3) are used.
Results and discussion
Incidence prediction vs. case count prediction
In previous work [21, 22], the disease incidence rate was
used to classify periods of time into HIGH or LOW inci-
dence. The incidence rate normalizes the data by the
using the region population and is defined as:

Incidence Rate ¼ α� new reported case countsð Þ=population
ð4Þ

where α is some constant scaling factor. The high and
low classes were determined by selecting a threshold to
divide the data into the two classes. This incidence rate
threshold was calculated using the training data for all
regions and was computed as

Τ ¼ μ þ βσ ð5Þ
where μ was the mean, σ was the standard deviation and
β was some constant. Figure 4 plots the malaria inci-
dence rates for eight Korean regions. Notice that the
dark blue peaks in the 5th through 8th years are much
higher than the others and that this characteristic in-
creased both the mean and standard deviation used for
computing the threshold. Although the resulting inci-
dence rate threshold worked for providing two-class
training data, the outlier peaks in years 5 through 8
skewed the threshold computation so that it was too
large to provide enough HIGH class samples for the val-
idation and testing years of data.
Because of this problem using incidence rate, case counts

were examined instead as a possible data source for deter-
mining the classes. Figure 5 plots the case counts for the
same eight Korean regions. Notice that for the 5th through
8th years, the dark blue case count values do not over-
whelm the other region counts. Therefore, using case
counts for computing the threshold defined above and ap-
plying the threshold to the case counts data provided
enough high values for training, validation, and testing.
Therefore, the HIGH incidence classifier was developed,
trained, and tested using eight regions and the threshold
based on case counts data.

FARM results
In the ROK malaria dataset, there is a huge variation in the
yearly case counts and most years are at one extreme or the
other (note the variations from year to year in Fig. 2). In
addition, the most recent years (which are the most natural
ones to use for testing) had the lowest counts. It was imme-
diately clear that predicting just two classes (i.e., LOW,
HIGH) as in our previous work [21, 22] would result in
the data having only lows in 2013. This resulted in a
prediction accuracy of 100 % (all were LOW), but this
obviously has limited usefulness. Because of the nature
of this dataset, better overall model performance could



Fig. 4 Malaria incidence rate for eight example regions
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be achieved when different training and testing sets
were used for training a classifier for medium weekly
case numbers than those testing sets used for training
classifiers for high weekly case numbers. Thus, two sep-
arate binary classifiers (one for HIGH and one for
MEDIUM) were trained and their output was combined
Fig. 5 Malaria case counts for eight example regions
to create the final classifier to provide three classes:
LOW, MEDIUM, and HIGH. In addition, the public
health users in ROK expressed a preference for three
classes, with HIGH corresponding to an outbreak.
As mentioned above, the number of malaria cases was

relatively low in 2012 and 2013. For example, the year 2013



Table 2 Classifier fusion

High classifier outcome Med classifier outcome Final class

HIGH MEDIUM HIGH

HIGH LOW HIGH

LOW MEDIUM MEDIUM

LOW LOW LOW
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had no periods with a high number of cases in any of the
regions. In order to effectively train and test a model for
high weekly case numbers, a year with a relatively high
number of cases was included in both the fine-tuning and
testing sets. The training data for the high classifier in-
cluded 8 regions and spanned January 2004–December
2006 and January 2008-December 2012. The fine-tuning
data included January 2006–December 2006 and January
2012–December 2012 data for the same 8 regions. The
testing data spanned January 2007–December 2007 and
January 2013–December 2013 for these 8 regions. The re-
sults reported in the second row of Table 1 are based only
on the performance of the models in predicting the 2007
and 2013 weekly case numbers data that were not used
for model development.
The training data for the medium classifier included

64 regions and spanned January 2004–December 2006
and January 2008-December 2012. The fine-tuning data
included January 2006–December 2006 and January
2012–December 2012 data for the same 64 regions. The
testing data spanned January 2007–December 2007 and
January 2013–December 2013 for these 64 regions. The
results reported in the third row of Table 1 are based
only on the performance of the models in predicting the
2007 and 2013 weekly case numbers data that were not
used for model development.
The two binary classifiers described above were then

combined into a multi-class classifier by applying the
high classifier first, followed by the medium classifier
only when the outcome of the high classifier was nega-
tive. The Table 2 shows the simple decision logic.
Table 3 provides the per-class results for the com-

bined classifier that are based only on the performance
of this multi-class model for 64 regions on the 2007
and 2013 weekly case number data that was not used in
the development of either classifier. Per-class results
are obtained by applying equations (2) and (3) to each
class. Table 4 shows F0.5 and F3 for each class obtained
using equation (1). It is relatively easy to obtain good
Table 1 Performance of two-class classifiers on test data for
predictions made 7–8 weeks ahead. Confidence intervals
computed for α = 0.05

Data set PPV NPV Sensitivity Specificity F0.5 F3

2007 & 2013 (HIGH
Classifier)

0.842 0.981 0.681 0.992 0.804 0.694

Lower Conf Bound 0.696 0.969 0.538 0.983 0.657 0.551

Upper Conf Bound 0.926 0.989 0.796 0.996 0.896 0.807

2007 & 2013
(MEDIUM Classifier)

0.791 0.962 0.374 0.994 0.647 0.395

Lower Conf Bound 0.726 0.958 0.327 0.992 0.584 0.346

Upper Conf Bound 0.844 0.967 0.423 0.996 0.704 0.446
results for the LOW class for which there are a lot of
exemplars. It is the most difficult to obtain good results
for the HIGH class and therefore this is the class on
which we are concentrating the most.
Figures 6 and 7 show 7–8 weeks ahead predictions for

the northern regions of South Korea for two different two-
week intervals. In Fig. 6 some regions are predicted as
HIGH, someMEDIUM, and some LOW. On Fig. 7 one re-
gion is predicted asMEDIUM but the others are predicted
as LOW. Current predictions can be found on the Pre-
dicting Infectious Diseases Scalable Method (PRISM)
website [40].

Other methods’ results
In order to compare the performance of the FARM-based
method with some well-known classifiers, Decision Tree,
Random Forest, and Support Vector Machine (SVM)
classifiers were trained. In addition, a Holt-Winters expo-
nential smoothing model was developed.
A Decision Tree is a tree-like structure with leaves

representing classifications and branches representing
the combinations of feature values that lead to those
classifications. A data point is classified by testing its fea-
ture (attribute) values against the nodes of the decision
tree. The best-known methods for automatically building
decision trees are the ID3 algorithm [41] and the C4.5
algorithm [42]. Both algorithms build Decision Trees
from a set of training data using the concept of informa-
tion entropy. When building a Decision Tree, at each
node of the tree, C4.5 chooses the attribute of the data
that most effectively splits its set of examples into sub-
sets. The splitting criterion is the normalized informa-
tion gain (difference in entropy). The attribute with the
Table 3 Sensitivity and PPV for the FARM method for
predictions made 7–8 weeks ahead. Confidence intervals
computed for α = 0.05

Sensitivity Sensitivity Sensitivity PPV PPV PPV

LOW MEDIUM HIGH LOW MEDIUM HIGH

Value 0.993 0.275 0.681 0.963 0.637 0.842

Lower Conf
Bound

0.992 0.230 0.538 0.958 0.556 0.696

Upper Conf
Bound

0.995 0.325 0.796 0.967 0.711 0.926



Table 4 F values for the FARM method for predictions made
7–8 weeks ahead. Confidence intervals computed for α = 0.05

F0.5 F3 F0.5 F3 F0.5 F3

LOW LOW MEDIUM MEDIUM HIGH HIGH

Value 0.969 0.991 0.504 0.292 0.804 0.694

Lower Conf Bound 0.965 0.988 0.433 0.244 0.657 0.550

Upper Conf Bound 0.972 0.992 0.575 0.344 0.897 0.807
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highest normalized information gain is chosen to make
the decision.
The next classifier used for comparison is a Random

Forest [43]. The Random Forest classifier is a machine
learning method that combines decision trees with en-
semble learning. The forest is composed of many Deci-
sion Trees that use randomly picked data attributes as
their input. The forest generation process constructs a
collection of trees with controlled error variance. The
resulting prediction can be decided by a selection
scheme, such as majority voting. For instance, the Weka
[44] implementation averages the class probability esti-
mates from each tree to make a prediction.
Fig. 6 Seven to eight weeks ahead prediction for northern regions of Sout
The third classifier used is an SVM. The SVM finds a
separating hyperplane in the feature space between two
classes in such a way that the distance between the
hyperplane and the closest data points of each class is
maximized. The approach is based on a minimized
classification risk [45] rather than an optimal classifica-
tion. SVMs are well known for their generalization abil-
ity and are particularly useful when the number of
features, m, is high and the number of data points, n, is
low (m > > n). Various types of dividing hyperplanes can
be realized by applying a kernel, such as linear, polyno-
mial, Gaussian Radial Basis Function (RBF), or hyper-
bolic tangent. In this work, the RBF kernel was used.
SVMs are binary classifiers and multi-class classification is
realized by developing an SVM for each pair of classes.
In this work, Weka [44] implementations were used

for all three classifiers. A two-dimensional grid search is
performed to optimize the most important classifier
parameters. Default values from the Weka toolbox for
the respective classifiers are used for the remaining
parameters. Each trained classifier is evaluated on the
validation data to determine the best model parameters
and the model with those best parameters is used for
h Korea for the period 7/29/2007-8/11/2007



Fig. 7 Seven to eight weeks ahead prediction for northern regions of South Korea for the period 9/14/2014-9/27/2014
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testing on the test data set. For the Decision Tree, the
minimum number of parameters per leaf and the num-
ber of folds for reduced error pruning are optimized. For
the Random Forest, the number of trees and the number
of random features per tree are optimized. For the SVM
model, the non-separable cost parameter and the Radial
Basis Function gamma parameter are optimized.
Another method used for malaria prediction is expo-

nential smoothing with seasonality introduced using the
Holt-Winters procedure [46]. The Holt-Winters seasonal
method comprises the forecast equation and three
smoothing equations, with smoothing parameters α, β,
and γ. The weekly malaria counts were transformed via
the logarithmic transformation zt = log (yt + 1) (where
yt is the count and zt is the transformed count) on
which the exponential smoothing was performed. A
separate exponential smoothing model using additive
Holt-Winters was needed for every region in the data
set (64 regions). For each region, all the consecutive
data from the preceding years present in the training
set were used for model development. Thus, for pre-
dicting 2007, data from a given region from the period
2004–2006 were used; for predicting 2013, data from
2008–2012 were used. Covariates such as rainfall and
temperature were not used because Briet et al. [20]
established that they don’t consistently improve the re-
sults of Holt-Winters prediction, and sometimes even
make the prediction worse.
The values of α, β, and γ were optimized on the training

data set together for all the regions in such a way as to
minimize the mean absolute relative error (MARE). The
outputs of exponential smoothing models are continuous
numbers, not categories as in the machine learning models
above. In order to be able to compare these results with the
three class results of FARM and other machine learning
methods, the results were binned into the categories LOW,
MEDIUM, and HIGH using the thresholds used for
FARM: 3 and 17. Because the data were log transformed,
we are actually using log (3 + 1) and log (17 + 1) as thresh-
olds for MEDIUM and HIGH, respectively. In case of
FARM, Random Forest, Decision Tree, and SVM, one
classifier is trained and used for all 64 regions. In case of
Holt-Winters exponential smoothing, a separate model was
needed for every region (otherwise the results would have
been much worse than presented here). While the other
models used multiple temporal, as well as spatial, variables,
only case counts were used in case of prediction using
Holt-Winters exponential smoothing. Because this model is
very different from the machine learning models, its
comparison with machine learning models is not exactly
straightforward. For the Holt-Winters method, the predic-
tions for each region and year are generated by separate
models (separate data for only a given region and appropri-
ate time period used) and thus the final prediction metrics
(PPV and Sensitivity) are obtained by taking the mean of
these metrics from the individual models.
Figure 8 shows per-class Sensitivity for classes LOW,

MEDIUM and HIGH. Figure 9 shows the PPV for the
same classes. The confidence intervals for α = 0.05 were
computed using the Wilson method [47] for all the pre-
diction models, except for Holt-Winters where they are
confidence intervals on the estimate of the population



Fig. 8 Sensitivity of LOW, MEDIUM and HIGH classes. Confidence intervals shown for α = 0.05
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mean using the t-distribution. Both methods remain
valid even for small sample sizes. However, as can be
seen in the case of HIGH PPV for both the Random
Forest and Holt-Winters, the confidence intervals be-
come very large for very small sample sizes.
In the entire test data set, the vast majority of exem-

plars are from the LOW class because it is easiest to
get good Sensitivity and PPV for that class due to high
prevalence of LOWs in the data. As shown in Figs. 8
and 9, all five methods get good results for the LOW
class. For the MEDIUM class, the best Sensitivity was
obtained by Random Forest, second best by FARM,
and third best by SVM (the results of those three
methods are very close and their confidence intervals
are very close as well). The best PPV was obtained by
FARM, with SVM being only slightly lower (with FARM
Fig. 9 PPV of LOW, MEDIUM, and HIGH classes. Confidence intervals shown
confidence intervals being slightly narrower than those
of SVM).
The prediction of the HIGH class is considered to be

the most important because this is how we define an out-
break and is based on public health officials indicating that
they would be most likely to take action when HIGH is
predicted. For the HIGH class, the best Sensitivity results
were obtained by FARM, and the next best by Decision
Tree. In contrast, the worst Sensitivity results were
obtained by Random Forest (0.043), which predicted only
two out of 47 HIGH cases. For the HIGH class, Random
Forest performed the best in terms of PPV, with SVM
being the second best, and FARM being the third best.
While Holt-Winters had only slightly worse results than
FARM, its confidence interval was very large due to the
fact that only 2 of the 128 Holt-Winters models predicted
for α = 0.05



Fig. 10 F measures for LOW, MEDIUM, and HIGH classes. Confidence intervals shown for α = 0.05
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any HIGHs. Therefore, the final Holt-Winters PPV was
the mean of only 2 values, necessitating the use of a large
t-value (drawn from the t-distribution with only 1° of
freedom, which has very fat tails due to the variability
associated with using such a small sample size). This large
t-value, combined with a rather large standard deviation,
resulted in a confidence interval covering the entire range
of values.
It is important to remember that looking at Sensitivity

and PPV separately can be misleading because both
values need to be high enough for the classifier to be
useful in practice. This is why F-scores are used. For ex-
ample, Random Forest for the HIGH class has a PPV of
1, but its Sensitivity is a dismal 0.043. Many of the
methods had a high PPV and low Sensitivity or vice
versa. The method that consistently gets high values of
both PPV and Sensitivity is FARM. Note in Fig. 10 that
the F-scores are consistently large for FARM, especially
for the HIGH class. As mentioned previously, the overall
best results are chosen based on F0.5 and F3 metrics
that combine PPV and Sensitivity (see Fig. 10). Because
the metrics for the LOW class are very close to 1 for all
methods as explained earlier, they are not taken into
consideration. Three metrics (F0.5 MEDIUM, F0.5
HIGH, and F3 HIGH) are the highest for FARM, with
the metrics for HIGH being better than those for
MEDIUM. F3 MEDIUM is the highest for Random
Forest. The confidence intervals on the F-scores were
computed using a combination of the confidence inter-
vals on the PPV and Sensitivity. Large confidence inter-
vals on the F-scores in the case of Random Forest and
Holt-Winters were caused by correspondingly large
confidence intervals on the PPVs or Sensitivities as de-
tailed above.
There is a significant difference between the perform-

ance of the MEDIUM classifier in Table 1 and the
performance of the fused classifier on the MEDIUM
class in Table 3. This is because the composition of the
MEDIUM class is different in these two cases. In the
training set for the binary MEDIUM classifier (Table 1),
all points above the MEDIUM threshold are in the
MEDIUM class, but for the ternary fused classifier
(Table 3), only those between the MEDIUM and HIGH
thresholds are in the MEDIUM class. The MEDIUM
classifier naturally has better performance on the points
farther from the decision boundary than on those closer
to it. This lower performance on the points close to the
boundary is what is reflected in the final performance
metrics of the fused classifier. In future work, we hope
to be able to address this discrepancy by altering the
training method of the MEDIUM classifier.

Conclusions
This paper describes the extension of the method previ-
ously developed for the creation of dengue prediction
models [21, 22] to a different disease, malaria. The
extension involved algorithmic changes to the classifier-
building algorithm that creates the new model. While
the model creation technique is similar (except for these
algorithmic changes) for all diseases, the final malaria
model is not the same as the earlier dengue models. The
set of variables identified for the malaria model were
based on published malaria literature and not dengue
literature. In addition, new variables specific to ROK
predictions were used, including DPRK malaria yearly
data, DPRK mosquito net data, and financial data for
DPRK malaria control, as well as distances from ROK
regions to DMZ. One of the challenges of this work is
that the malaria cases in ROK were significantly decreas-
ing in the last two years, resulting in not enough sam-
ples of HIGH cases. However, the development of new
classifier building methods and data fusion from two
classifiers enabled the creation of a prediction model for
malaria in the northern regions of ROK, which are the
areas of ROK that see most of the malaria cases in the
country. The model creation technique described herein
results in a new model capable of taking into account
complicated relationships among predictor variables.
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The result is a model that successfully predicts malaria
cases 7–8 weeks in advance using performance metrics
that do not involve data used in model development and
therefore provide for more conservative and less biased
estimates of model performance for the user (Tables 3
and 4).
The data mining techniques used to create prediction

models are general in the sense that they can use any
data. The method automatically selects association rules
that meet pre-defined criteria. These pre-defined criteria
are based upon user needs (e.g., low false positives) and
select the most important rules that are used in the final
disease prediction model, which is objective and repro-
ducible. The data are used according to the dates that
they are actually available to the user, so there is no need
to assume all data are immediately available, which is
often not the case operationally. Provided that sufficient
data of reasonable quality are available, using this
method to create new models to predict high/medium/
low disease incidence for other mosquito-borne diseases
is expected to provide similar performance.
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