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Abstract

models.

generalized linear models.

Background: Multi-category response models are very important complements to binary logistic models in medical
decision-making. Decomposing model construction by aggregating computation developed at different sites is necessary
when data cannot be moved outside institutions due to privacy or other concerns. Such decomposition makes it possible
to conduct grid computing to protect the privacy of individual observations.

Methods: This paper proposes two grid multi-category response models for ordinal and multinomial logistic regressions.
Grid computation to test model assumptions is also developed for these two types of models. In addition, we present
grid methods for goodness-of-fit assessment and for classification performance evaluation.

Results: Simulation results show that the grid models produce the same results as those obtained from corresponding
centralized models, demonstrating that it is possible to build models using multi-center data without losing accuracy or
transmitting observation-level data. Two real data sets are used to evaluate the performance of our proposed grid

Conclusions: The grid fitting method offers a practical solution for resolving privacy and other issues caused by pooling
all data in a central site. The proposed method is applicable for various likelihood estimation problems, including other

Keywords: Grid MLE, Ordinal logistic model, Multinomial logistic model

Background

In biomedical research, data sharing plays an important
role in accelerating scientific discoveries. For example,
networks based on information from electronic health
record (EHR) [1,2] have been established for this pur-
pose. However, due to privacy concerns, patient-level
data cannot always be exchanged across different institu-
tions. In these circumstances grid computing, which
avoids sharing patient level data among multiple institu-
tions, can be used to build a global model.

For example, logistic regression models have been used
in a variety of clinical applications, such as scoring candi-
dates for liver transplant using the Model for End-stage
Liver Disease [3], producing estimates related to myocar-
dial infarction diagnosis [4], and detecting suspicious ac-
cesses to electronic health records [5]. These scenarios, in
their classical setups, have difficulties in handling multi-
center data, as the training phase requires accessing the
entire dataset.
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Our previous work [6] and [7] proposed privacy-
preserving models through the aggregation of non-
sensitive intermediary results (ie., gradient and Hessian
matrix for the log-likelihood function), but the model
only deals with binary models. Response variables with
more than two categorical values occur very often in
medical models. For example, cancer progress is often
categorized into 4 or 5 phases. One simple method to
deal with multiple responses is to fit binary logistic fit-
ting for each pair of these multiple categories. However,
this approach is very inconvenient and the performance
of each binary logistic model might be degraded when
sample size is insufficient. Some researchers extended
the binary logistic model to handle multi-category re-
sponse problems. Among existing approaches, ordinal
logistic [8] and multinomial logistic [9] are the two most
popular multi-category response logistic models for or-
dinal and nominal responses, respectively. Both methods
are widely used to fit data with multi-category response.
However, methods for binary model fitting assessment may
not be applicable to multi-category problems. Hosmer and
Lemeshow [9] introduced novel methods to evaluate the
goodness-of-fit of multi-category logistic models. The Area
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Under the ROC Curve (AUC) [10] is an important measure
in checking classification performance of binary outcome
models. Hand and Till [11] generalized the original AUC
measure to deal with classification methods for multi-
category outcome cases. The AUC for binary logistic re-
gression is given by

ninp

where n,, n, are the number of observations with Y=1
and with Y=0, R is the rank sum based on the predicted
probability of Y=1 for observations with Y=1 among
all observations. Van Calster et. al. [12] described several
AUC score estimation methods for the ordinal logistic
model, one of which is to use the mean of AUC scores
from K - 1 binary logistic regression estimations to serve
as the AUC score for ordinal logistic model. Hand and
Till [11] defined A(k,|k;) in the same way for observa-
tions with Ye {kj, k;} and proposed a generalized AUC
for multinomial logistic model as fks
[A (ki|ka) + A(ki|k2)]/2  for 1<ki,ky<K. Yang and
Carlin [13] generalized the ROC curve to a surface
and used the volume under the ROC surface (VUC) to
measure the accuracy of a diagnostic test based on
multi-category response models. Dreiseitl et. al. [14]
proposed to use a three-way ROC curve analysis for
the same goal. Van Calster et. al. [12] suggested an ordinal
c-index measurement (ORC) and discussed the relation-
ship between the new measurement with VUC and other
measurements based on assessing pairs of cases.

In this article, we introduce grid ordinal and multi-
nomial logistic models to handle multi-center modeling
of multi-category response, including model assumption
checking. We also propose to use the grid AUC score to
evaluate the added value of the grid model fitting when
compared to models fitted by separate sub-datasets. The
remainder of this article is organized as follows. The sec-
ond Section briefly reviews ordinal logistic [8] and
multinomial logistic [9] models and their model as-
sumptions, and also discusses model coefficient esti-
mation methods for both models and the statistical
test for checking the ordinal logistic assumption. The
third Section discusses grid maximum likelihood esti-
mation and grid computing for the ordinal logistic
model assumption test statistics. The fourth Section
provides technical details for grid model fitting assess-
ment. The fifth Section elaborates on grid AUC score
computing. The sixth Section describes simulation
studies to evaluate the theoretical results. The seventh
Section carries out additional experiments on two real
datasets to demonstrate our proposed methods. The
eighth Section discusses the generalization of the pro-
posed grid models and the limitations of this work.
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Methods

Ordinal and multinomial logistic models

Before we introduce our method we first introduce both
ordinal and multinomial logistic models in a few more
detail. In terms of how to split response categories,
many ordinal logistic models have been studied. How-
ever, in this article, we only focus on the proportional
odds logistic model to deal with multi-category prob-
lems. The proposed method will be extended to other
multi-category logistic regression models in the future.
Suppose response Y could take values 1, -+, K (for K cat-
egories) with K> 3. There are m features in the model
and #n observations. The predictor matrix can be
expressed as X” = (xq, -+, x,,) with xlT = (xl;yl, -~~,xi7m) for
1<i<n. Lets define p(w,i)2Pr(Y<w|x;) and assume
1<i<mand 1<w<K-1. The ordinal logistic regression
[8] can be defined as

etw +ﬁTxi

p(w,i) ; (1)

Tt emtFu

With parameters B =(by, -+, b,). The conditional

likelihood function is given by
n A7y 1) TTK-1 . NI
L= T {1, ) o TS o, ) —p w1, ) o

[L-p(K-1,0)) 04T,
@

where LIy—w is the indicator function, with value of 1 if
y;=w and 0 otherwise. Let 8 = (ay, ay, -, Ax_1, ﬁT)T,
the log-likelihood function for the proportional odds lo-
gistic model be denoted as /p(6). The maximum likelihood
estimation (MLE) o for lo(0) is usually computed using the
Newton method for efficiency. The variance-covariance
matrix for 6 is estimated by -[9%/0(6)/ (96067)|6] ™.

Equation (1) assumes that the non-intercept model co-
efficients 8 remain the same for 1 <w < K- 1. Usually, a
justification for the model assumption is needed when
fitting ordinal logistic model. This assumption is called
proportional odds assumption [15]. The score test is a
common way to test the proportional odds assumption.
To perform the score test, we first introduce the gener-
alized ordered logit model [16], which is a generalization
of the ordinal logistic model as it allows non-intercept
model coefficients to be different. The generalized or-
dered logit model is given by

erxw+ﬁ$xi

p(w,i) = (3)

1t e i’

with AL = (bw, -,

bw,m) for 1<i<n andTlswsK— 1.
Let us denote y = (al,ﬁlTp'gocz,/ﬁIal)

. The log-
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likelihood function for this generalized model, /5(y), is
obtained by combining (3) and (2). From its definition,
we see that the generalized ordered logistic model re-
quires more parameters than the proportional odds
model. Hence, model fitting for small sample size data is
a big concern for the generalized ordered logistic model.
To check the proportional odds assumption, we need to
test whether f; =---=Sg_1. As mentioned previously,
suppose 0= ai, ~~,5¢1(,1,/3’ is the MLE for [5(0). Let
= &1,/3’, ~~,cr1<,1,/3’ . The'score test statistic is

7. _ [Pew) W] T[ »la(y) W] » l%(w) |v7] |

ay e dy
(4)

Under the null hypothesis ; = -+ = B _1, T, asymptot-
ically follows X7« 5

The multinomial logistic model is mainly dealing with
a nominal response with unordered categories. It does
not require the proportional odds assumption. Using the
multinomial model on ordered data disregards the inher-
ent information in the ordering of the response categor-
ies and is not, in general, recommended. Suppose the
response variable and predictors are the same as de-
scribed in the proportional odds model except that the
proportional odds assumption does not hold. Let’s de-
note p(w,i)2Pr(Y = wlx;). In multinomial logistic model
forl<i<mandlsw<K-1

eaw ‘Hg;{/lxi

= K-1 T
ax+P xi
1+ e

p(w,i) (5)

The likelihood function is then given by

I PV (5 k-1 _ . e
L=T, {P(J’ial) bi<id {1— oy DK, l)} et } (6)

As previously mentioned y = (0{1, /)’lT, ce K-,
B ). The log-likelihood function for multinomial lo-
gistic regression is denoted as (). The MLE ¢ for
multinomial logistic regression can be also obtained by
the Newton method and the variance-covariance matrix
for ¢ is estimated by -[0%(y)/(@yayT)|¢]™". It is
worth noting that the multinomial logistic model re-
quires the same number of parameters as does the gen-
eralized ordered logistic model.

Grid ordinal and multinomial logistic models

This section first proposes the grid Newton method for
the MLE, which can be used for both the grid propor-
tional odds and the multinomial logistic regression
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models. Then, we develop the grid proportional odds ra-
tio test for proportional odds logistic regression.

Suppose that we want to find the MLE 0 for the log-
likelihood function /(6) with 6 being a column vector.
We can apply the Newton method as

2%1(6 al(8
6(]-0—1) — 6(1)_ # |90>] -1 [% |6(1)] R (7)
for J=0,1,2, ---. 6V approaches 6 as J increases. Because

the Newton method is very efficient, it is usually enough
for / < 15 to achieve a tolerance 10°® for 8%,

Suppose data are split into U parts in terms of obser-
vations and each part contains the same variables. Let /
(0) be the log-likelihood function for data combined
from U parts, which can be decomposed by observa-
tions. Hence

1(0)=>"" 1.6). (8)

where /,(0) is the log-likelihood function for data of part
u with u =1, ---,U. For the gradient and Hessian matrix
of 1(6), we have

() ~—u al,(0)
90 ’Zuﬂ 90 )
and
221(6) u 0%,(0)
_ 10
260007 Zuzl 90007 (10)

respectively. We get the following grid Newton method
from (9), (10) and (7)

-1
u azlu(e) u alu(e)
U+l — gU)_ |:Zu1 39067 |g</J:| |:Zu1 a0 g | -

(11)

Equation (11) tells us that each Newton update can be
finished by combining gradients and Hessian matrices of
the partial log-likelihood functions based on correspond-
ing sub-datasets. This equation suggests the following
model fitting process in which separate datasets do not
need to be pooled in the fitting process.

1. Compute gradients and Hessian matrices based on
the current coefficient estimation using partial
datasets separately.

2. Find overall gradients and Hessian matrices by
combining the partial results obtained from Stepl,
then updating the coefficient estimation.

Starting from an initial value for the model coeffi-
cients, the MLE can be obtained by repeating Step 1 and
Step 2 until convergence.
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The above grid Newton method is used for both
ordinal and multinomial logistic model coefficient esti-

mations. The variance-covariance matrix of MLE 6
based on the log-likelihood function /(6) is given by -
[021(6)/(0696" ) |6]™". Using (9) and (10), we get the grid
variance-covariance matrix estimates of 0. This is a typ-
ical grid method for a variance-covariance matrix and it
is suitable for both proportional odds and multinomial
logistic regression. The gradients and Hessian matrices
for both regression models are presented in Additional
file 1.

For the grid computing for the proportional odds as-
sumption test statistic 7, in (4), we first compute the
grid MLE 6 based on the log-likelihood /o, of ordinal lo-
gistic regression, then 7, is produced by using (9) and
(10) to evaluate the gradient and Hessian matrix of /g at
¥, where i/ comes from the rearrangement of @ entries
as introduced in the previous Section.

Grid model fit assessment

Assessment of goodness-of-fit for the ordinal logistic
model can be done using methods for binary logistic re-
gression on each of K-1 regressions. Additionally,
Fagerland and Hosmer [17] proposed a Homer-
Lemeshow type goodness-of-fit test for the proportional
odds. To handle the multinomial logistic model, Hosmer
and Lemeshow [9] modified several existing measures,
including Pearson’s residual and R-square. Alternatively,
Fagerland et al. [18] modified the Hosmer-Lemeshow
(HL) test for the same goal. Some of these methods can
be used for grid models.

We use the HL test as an example to explain grid
model fit assessment. For binary logistic regression, the
HL test statistic is calculated as follows. First, sorted
values of the predicted probability of Y'=1 for all obser-
vations are split into g groups. E.; equals the sum of
predicted probability of Y=k (k=0, 1) in category ¢, O_x
equals the number of observations with Y =k in category
¢. Then the test statistic is given by

g 1

HL, = ZZ(Oc,k_Ec,k)z/Ec,b

c=1 k=0

which asymptotically follows )(;_2. In the modified statis-
tic, the g groups are split based on sorted values of the
predicted probability of Y<K for all observations. The
extended HL K(EHL) test statistic is defined as
HL,, = Zf:le:I (Ocx~Ecx)’ /Ecx, where O, and E, are
defined in the same way as above. The new statistic
asymptotically follows X(ngz)(lon' O.x and E.j only re-
quires response value and predicted probability of Y=k
for all observations. Grid HL,, computing can be
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finished by first pooling Y values and corresponding pre-
dicted probability values from separate sub-datasets after
grid model fitting.

Grid Area under the ROC Curve

The rationale of grid model fitting is based on the as-
sumption that the grid model outperforms models fitted
by separate sub-datasets. However, this is not always
true and actually depends on data structures. The Area
Under ROC Curve (AUC) is a very popular measure-
ment to assess model classification performance, so we
propose to use the AUC to check the value of a grid
model.

For ordinal logistic regression, we adopt the idea pro-
posed by Van Calster et al. [12] to use the mean of K- 1
AUC scores for assessing the model. For the multinomial
logistic regression we adopt the Hand and Till [11] AUC
estimation method. For both grid models, their AUC
scores can be obtained by pooling response values and
predicted probabilities for necessary observations from
separate sub-datasets after model fitting. To check the
added value, we need to compare the grid AUC score with
the AUC score for each sub-dataset.

Results

Simulation

The derivation of the grid method clearly implies that
the grid method gives identical results as does the cen-
tralized method (i.e., the methods in which sub-datasets
are pooled). Additionally, only the total sample size from
all sites is important for the fitting results, and the sam-
ple size in an individual site will not affect the fitting
results for a fixed total sample size. We conducted
simulation studies to evaluate the accuracy of the pro-
posed grid model estimation and to compare it with the
classical centralized fitting method. Four simulation
studies in different settings were performed to compare
the various grid multi-category models against two cor-
responding centralized models. For all studies, simu-
lated data are split into two pieces, one for model
fitting, and another for AUC score evaluation and HL
test. The first two studies are designed for the ordinal
logistic model and the other two studies are designed
for the multinomial logistic model. In Studies 1 and 2,
data were simulated from an ordinal logistic model
with total sample sizes 1800 and 900, respectively. In
Studies 3 and 4, data were simulated from a multi-
nomial logistic model with total sample sizes 1800 and
900, respectively. The HL tests for all binary logistic re-
gression estimations were performed in Studies 1 and
2; the extended HL test was performed in Studies 3 and
4. In addition, an average AUC score or extended AUC
score [11] was evaluated for each study.
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In all studies, we simulated data so that there are 4
outcome categories (Y€ {1,2,3,4}). For Studies 1 and 3
we used a total sample size of 1800 for centralized
models and split them into 3 separate parts in three dif-
ferent ways: (600, 600, 600), (100, 200, 1500) and (50, 50,
1700) for the grid models. For Studies 2 and 4 we used a
total sample size of 900 for centralized models and split
them into 3 separate parts in three different ways:
(300, 300, 300), (50, 100, 750) and (24, 26, 850) for the
grid models. For all studies, each split subset was further
split in half, one for model fitting and another for AUC
evaluation and HL or extended HL tests. We chose two
continuous covariates x; and x, and two binary covari-
ates x5 and x, (i.e., 5 coefficients for 4 covariates and
intercept) in these studies. Simulation data were gener-
ated in two steps. First, we generated x; and x, from a
standard normal distribution independently and gener-
ated x3 and «x, from a Bernoulli distribution with p =0.5
independently. For Studies 1 and 2 we generated the re-
sponse y from an ordinal distribution assuming that

log TTYED_
o ————— = — X X X X.
$Pr(Y > 1) LR T
1oy PrYS2) e
O ——F————— =X X X X
gpr(Y > 2) 1 2 3 4
and
log Y=y bt
O ————- = X X X X4
EPr(Y > 3) LR T

For Studies 3 and 4 we generated the response y from
a multinomial distribution assuming that

Pr(Y =1)
log———~-=2+0.5 0.5 0.5 0.5
ngr(Y — 4) + X1 + Xy + X3 + X4,
Pr(Yy =2)
Y 342k +2
lOgPr(Y:éL) 3+ x1+ x2+2x3+2x4,
and
Pr(Yy =3
lOglﬁ: 1+JC1 +x2+x3 +JC4.

We conducted the simulations with 1000 runs in all

studies. In Studies 1 and 2, the estimation for log odds log

zf:(()l:ii)) equals &y + /;’lxl +B2x2 + /3’3963 +ﬁ4x4 , for k=

1, 2, 3. In Studies 3 and 4, the estimation for log odds

r(Y =k S 5 5 P
log ﬁrﬁizaj equals aj + By w1 + By 2 + B3 X3 + Bap¥a

for k=1,2,3. Table 1 presents the results for Studies 1
and 2 and Table 2 presents the results for Studies 3 and
4. We show the average biases (Bias) and standard errors
(Se) for the estimates in both tables. Table 3 provides the
passing rate of the proportional odds assumption (POA)
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Table 1 Common ordinal logistic regression estimates for
three grid models with various local site sample sizes and
the corresponding centralized model in Study 1 and Study 2

Study 1 Study 2
True Bias Se Bias Se
a -1 —475e-3 127e-1 —1.466-2 1.82e-1
a, 0 —1.17e-3 123e-1 —347e-3 1.75e-1
as 1 193e-3 1.30e-1 1.02e-2 1.84e-1
B, 1 7.22¢-3 8.02e-2 553e-3 1.14e-1
B, 1 6.60e-3 8.02e-2 3.79%-3 1.14e-1
Bs 1 1.04e-2 142e-1 164e-3 20%e-1
Ba 1 734e-3 142e-1 136e-2 2.02e-1

test, the HL test and both (POA&HL) tests for Studies 1
and 2. Table 3 depicts the results of the EHL test in Studies
3 and 4 among 1000 runs. Figure 1 shows the box plots of
AUC scores for the four studies.

Note that, as expected, all four studies show that the
three grid methods and the corresponding centralized
method produce identical results. Hence, each table or
figure presents the common results for the three grid
models and the corresponding centralized model.

Two examples

In addition to simulation studies, we used two split public
datasets to test our core model-fitting algorithm. The pur-
pose was to illustrate how our core grid-fitting algorithm

Table 2 Common multinomial logistic regression estimates
for three grid models and the corresponding centralized
model in Study 3 and Study 4

Study 3 Study 4
True Bias Se Bias Se
& 2 1.0Te-1 4.12e-1 1.29¢-1 601e-1
B, | 05 343e-2 2.5%e-1 3.76e-2 3.69-1
B 05 2.58e-2 257e-1 335e-2 36%-1
B3, 05 1.39%-2 475e-1 1.13e-1 7.01e-1
B 05 5.55e-2 478e-1 8.62e-2 7.08¢-1
a; 3 1.17e-1 4.09-1 14761 5.95¢-1
B> 2 543e-2 2.70e-1 8.40e-2 3.96¢-1
B, 2 460e-2 2.70e-1 835¢-2 395¢-1
B, 2 2.55e-2 4.866-1 1.56e-1 7.26e-1
Bas 2 7.86e-2 4.89-1 1.30e-1 7.22e-1
as 1 6.06e-2 464e-1 5.53e-2 6.80e-1
Bis 1 323e2 3.02e-1 555e-2 443e-1
Bas 1 261e-2 3.02e-1 465¢-2 442e-1
Bss 1 178e-2 5.55¢-1 1.18e-1 8.30e-1
Bis 1 6.04e-2 5.58e-1 9.0%-2 8.25¢-1
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Table 3 Common passing rate of the model assumption
test and the model fit test in each study for three grid
models and the corresponding centralized model

POA* HL POA&HL
Study 1 0.967 0579 0.559
Study 2 0.964 0.532 0511
EHL
Study 3 0.554
Study 4 0511

*POA: proportional odds assumption; EHL: extended HL test.

works. Note that these are not real multi-center studies
but used for illustration purposes.

The first example is about the low birth weight data-
set, which was obtained from Hosmer and Lemeshow
[9] and contains 189 observations with 9 non-redundant
variables. We picked 8 variables including AGE, RACE,
SMOKE, PTL, HT, UI, FTV, BWT from the dataset, and
reasonably modified several variables to create a new
dataset as follows. RACE is a three-category variable, re-
placed by two binary variables: OTHERvsWHITE and
BLACKvsWHITE, respectively. PTL is the number of
premature labors with values of 0, I, etc., and was di-
chotomized into 0 and greater than 0. FT'V is the num-
ber of physician visits, which is also dichotomized into 0
and greater than 0 as well. BWT is the birth weight in
grams and it was categorized into 4 values (1, 2, 3 ,4)
using cutoffs 3500, 3000 and 2500. AGE, SMOKE, HT,
Ul were kept as original, where AGE is continuous,
SMOKE is binary, HT is binary variable for “History of
hypertension", and U is binary variable for “Presence of
uterine irritability". We denote the new dataset as LBW.

o
o H
e} ' '
@ — ' !
<] ! 1
o : ;
- ! .
=] E o
] -
g 8 3
o 8 :
S -
~4
S 1 '
- '
8 1
o §
T T T T
Study1 Study2 Study3 Study4

Figure 1 Common box plots of AUC scores for four studies based
on 1000 runs for three grid models and the corresponding
centralized model.
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To test the grid model fitting, we randomly picked 95
observations from LBW to create dataset LBW1 and the
rest 94 observations to create LBW2. BWT is chosen as
the 4-category response variable and the rest are covari-
ates. Since the response is ordinal, we fitted a grid or-
dinal logistic model without pooling LBW1 and LBW?2.

Suppose the fitted value for log%ﬁ% (k=1,2,3) is

&x + BLAGE + B,0THERvsWHITE
+ B3BLACKvsWHITE + f3,SMOKE + ,PTL
+ BHT + B,UI + BETV.

Table 4 shows the model coefficient estimates (Est)
and their standard errors (Se), with z-values (Zval) equal
to the ratios of Est values over according Se values and
p-values (Pval) to test whether Zval is significantly differ-
ent than 0.

The grid proportional odds assumption test was also
performed and resulted in a p-value of 0.366. Hence,
there is no evidence to show that the assumption for the
ordinal logistic model was invalid. To justify the grid
model fitting, the ordinal logistic model was also fitted
for LBW1 and for LBW?2, separately. Grid AUC score
(GAUC), AUC score for the model fitted by LBW1
(AUC1), and AUC score for the model fitted by LBW2
(AUC2) were all evaluated by 10-fold cross validation:

GAUC = 0.665,AUC1 = 0.645, AUC2 = 0.568.

Note that in this example the data are randomly split
so every subset has the same underlying population.
Hence, small AUC values only result from smaller sam-
ple sizes (in subgroups). In addition, a grid HL test for
grid model and HL tests for two separate models were
performed using 10-fold cross validation with the same
data partitions. Unfortunately, none of these models passed
the HL test. This may be related to nonlinear effects of the

Table 4 Grid ordinal logistic model fitting by separate
low birth weight datasets

Est Se Zval Pval
a —0415 0719 -0578 0562
a0 0828 0722 1.147 0251
as 1.807 0730 2473 0013
B, 0016 0027 0594 0552
B, —0980 0339 —2891 0.003
Bs ~1.245 0424 -2933 0.003
B -1.028 0318 -3233 0001
Bs ~0915 0419 -2178 0029
Bs ~0.991 0618 ~1.605 0.108
B, 0972 0402 2416 0015
Be —0031 0289 -0.107 0914
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continuous variable age, or to omitted interaction terms.
However, as shown in simulation studies, failing to pass
the HL test does not necessary mean the goodness-of-fit of
these models are very poor.

The second example is about Mammograph experi-
ence data, which was also obtained from Hosmer and
Lemeshow [9] and contains 412 observations with 6 var-
iables. We kept the original dataset and only replaced
multi-category variables by multiple binary variables.
The generated new dataset was denoted as MAM and
contained 9 variables: ME, SYMPT1, SYMPT2, SYMPT3,
PB, HIST, BSE, DETC1 and DETC2. ME denotes mam-
mograph experience with “3 = never", “2 = within a year"
and “I=over a year ago". Original SYMPT was a 4-
category variable and denoted the 4 responses to “you
do not need a mammograph unless you develop symp-
toms" from “strongly agree" to “strongly disagree". It was
replaced by binary variables SYMPT1, SYMPT2 and
SYMPT3. PB is a continuous variable for the degree of
“perceived benefit of mammography". HIST is a binary
variable for the response to whether “mother or sister
has breast cancer history". BSE is the binary response to
“Has anyone taught you how to examine your own
breasts?". Original DECT was a 3-category variable and
the response to “How likely is it that a mammogram
could find a new case of breast cancer?". It was replaced
by binary variables DECT1 and DECT2.

We first randomly picked 206 observations from
MAM to create dataset MAMI, and used the remaining
206 to create MAM2. We used ME as the response. The
multinomial logistic model was used to fit the dataset.
We fitted a grid multinomial model without pooling
MAMI and MAM?2. For k =1, 2, suppose the fitted value

for log ﬁ:g%ﬁig is

G + By (SYMPT1 + B, SYMPT2 + 5  SYMPT3
+ ByiPB + s (HIST + B¢ BSE + B, DETC1
+ By DECT?2

Table 5 shows the model coefficient estimates (Est)
and their standard errors (Se), with z-values (Zval) and
p-values (Pval).

To justify the grid model fitting, a multinomial logistic
model was also fitted for MAM1I and for MAM2, separ-
ately. However, both separate models produced invalid
estimates (with very large standard errors). The invalid
estimates are probably due to the small number of sub-
jects with ME =2 after splitting the dataset, and the
large number of parameters. This obviously shows the
need for grid model fitting based on datasets MAMI
and MAM?2 when they are not allowed to be pooled.
Ten-fold cross validation was used to evaluate extended
AUC score and we performed the extended HL test for
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Table 5 Grid multinomial logistic model fitting by
separate mammography datasets

Est Se Zval Pval
a —0986 1111 -0886 0375
B 1.132 0547 2067 0038
B, 0817 0539 1514 0.129
B3, ~0290 0644 ~0450 0652
B -0.148 0076 ~1.940 0052
Bs, 1.065 0459 2319 0020
Be. 1052 0514 2043 0.041
B, ~0690 0687 ~1.004 0314
Bs. —0924 0713 ~1.295 0.195
a; 2998 1539 ~1.948 0051
B, 2456 0775 3.168 0001
B, 1924 0777 2475 0013
B, 0.110 0922 0.119 0905
B> -0219 0075 —2.905 0.003
Bs, 1366 0437 3122 0.001
Bes 1.291 0529 2437 0014
B, 0904 1.126 0.802 0422
Bs, 0017 1161 0014 0988

the grid fitted model. The grid AUC score was 0.626 and
the grid fitted model passed the extended HL test.

Discussion

While our focus was on multi-category logit models, the
grid MLE method is applicable for grid computing for
various likelihood type estimation problems including
other generalized linear models and generalized estimat-
ing equation models. However, when the likelihood is
not separable for observations, then grid MLE may not
work. For example, the Cox proportional hazards regres-
sion adopts a profile likelihood that cannot be split by
observations. Hence, more effort is necessary to design a
grid model for Cox proportional odds regression, which
was discussed in our recent publication [19].

For the proposed grid HL test and grid AUC, Y values
are pooled directly and not protected. To protect Y, the
patient outcome values, we could adopt the methods
proposed by Wu et al. [6] for the Grid HL test and the
AUC score calculation, which avoid exchanging Y values.
These methods are accomplished through using trans-
mitted locally predicted probabilities and their orders.
Details are given in Algorithms 1 and 2 in Wu et al. [6].

In practice, the grid model fitting using multi-site data is
more complicated than what is described in this manu-
script (we focused on the model fitting step). Very often, it
is necessary to conduct data pre-processing before the
model fitting. For example, gender may use a coding
method in different sites. Hence, data harmonization is
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necessary before the grid model can be fitted. Another
issue is missing data. One way to mitigate the problem is
to deal with missing data during the pre-processing step
using the same grid protocol across all sites. Another ap-
proach is to handle missing data in the grid model-fitting
step, which would be cumbersome. Additionally, some-
times there are too many variables to fit the model; vari-
able selection may thus be needed. Variable selection
usually requires the construction of models and it can be
incorporated into the model-fitting step. Different sites
may have different variables, so choosing and harmonizing
the values of common variables needs to be done before
the model-fitting step. For the proposed grid models, we
assumed that the data were uniformly distributed across
local clinical sites, and treated the data from each local site
as a random sample from the whole dataset. However, this
assumption may not hold and we will consider cluster ef-
fects from different sites in our future work. We described
(on page 4) that steps 1 and 2 for the grid model-fitting
step need to be repeated until convergence. Each site
needs to send the first derivative and Hessian matrices
multiple times, which means that a reliable data transmis-
sion function is necessary for successfully fitting a grid
model. Recently we produced a reliable webservice called
WebGLORE for binary logistic grid fitting [20]. In our set-
ting the data transmission was adequate but there may be
settings in which this may not be the case.

Conclusion

In the proposed grid methods, individual-level observa-
tion data were never shared during the model fitting
process. This offers a practical solution for mitigating
privacy issues caused by pooling all data into a central
site. Grid ordinal and multinomial logistic models were
introduced in detail. In terms of increasing sample sizes,
grid computing is more valuable for multi-category re-
sponse logistic model than it is for binary logistic regres-
sion, since the larger number of coefficient estimates in
multi-category models obviously require more observa-
tions. A small sample size might result in estimations
with very large bias or standard error. The ordinal logis-
tic model was proposed to only address the ordinal re-
sponse data. The multinomial logistic model is used to
deal with nominal response data, which requires even
more coefficients and hence more observations for
proper estimation when compared to the ordinal logistic
model. The theory guarantees that the proposed grid
Newton method achieves accurate estimation, which is
the same as the one of the classical centralized Newton
method. This is consistent with simulation study results.
As shown in the simulation studies, the HL test and its
extension might be too strong for assessing model fit
and might produce false significant test results. These
are limitations for the HL test, which are discussed by
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Vittinghoff et al. [21]. Hence, other model fit assess-
ment methods introduced by Hosmer and Lemeshow
[9] could be used in addition to the extended HL test for
the multinomial logistic model, and other methods for
binary logistic model fit assessment could be used in
addition to the HL test for the ordinal logistic model.
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provide the gradients and the Hessian matrices for all log-likelihood
functions used in this manuscript.
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