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Abstract

Background: Percutaneous coronary intervention (PCI) is the most commonly performed treatment for coronary
atherosclerosis. It is associated with a higher incidence of repeat revascularization procedures compared to coronary
artery bypass grafting surgery. Recent results indicate that PCI is only cost-effective for a subset of patients. Estimating
risks of treatment options would be an effort toward personalized treatment strategy for coronary atherosclerosis.

Methods: In this paper, we propose to model clinical knowledge about the treatment of coronary atherosclerosis to
identify patient-subgroup-specific classifiers to predict the risk of adverse events of different treatment options.
We constructed one model for each patient subgroup to account for subgroup-specific interpretation and availability
of features and hierarchically aggregated these models to cover the entire data. In addition, we deviated from the
current clinical workflow only for patients with high probability of benefiting from an alternative treatment, as
suggested by this model. Consequently, we devised a two-stage test with optimized negative and positive predictive
values as the main indicators of performance. Our analysis was based on 2,377 patients that underwent PCI.
Performance was compared with a conventional classification model and the existing clinical practice by estimating
effectiveness, safety, and costs for different endpoints (6 month angiographic restenosis, 12 and 36 month
hazardous events).

Results: Compared to the current clinical practice, the proposed method achieved an estimated reduction in
adverse effects by 25.0% (95% CI, 17.8 to 30.2) for hazardous events at 36 months and 31.2% (95% CI, 25.4 to 39.0) for
hazardous events at 12 months. Estimated total savings per patient amounted to $693 and $794 at 12 and
36 months, respectively. The proposed subgroup-specific method outperformed conventional population wide
regression: The median area under the receiver operating characteristic curve increased from 0.57 to 0.61 for
prediction of angiographic restenosis and from 0.76 to 0.85 for prediction of hazardous events.

Conclusions: The results of this study demonstrated the efficacy of deployment of bare-metal stents and coronary
artery bypass grafting surgery for subsets of patients. This is one effort towards development of personalized treatment
strategies for patients with coronary atherosclerosis that could significantly impact associated treatment costs.
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Background
Treatment of coronary atherosclerosis due to accumula-
tion of plaques throughout arteries often encompasses
mainly two options: minimally invasive percutaneous
coronary intervention (PCI) or open-chest coronary ar-
tery bypass grafting (CABG). The latter distinguishes it-
self from PCI by being a more elaborate procedure and
by better long-term prognosis [1]. During PCI, the nor-
mal blood flow is established within the narrowed region
(stenosis) by deploying either stents (small mesh tubes)
or balloons that push away the atherosclerotic plaques
toward the vessel wall. The two most commonly used
types of stents are: bare-metal stents (BMS) and drug-
eluting stents (DES).
Treatment of coronary occlusions with BMS implant-

ation has shown to be associated with a high rate (20-30%)
of restenosis (re-narrowing of the treated artery) [2-4],
which is significantly lower (4-8%) with DES treatment
[5,6]. However, at the same time a higher rate of late
thrombosis (>1 year after initial treatment) is found to be
associated with DES (5 events per 1000 patients compared
to no events) [7,8]. Therefore, in contrast to bare-metal
stents, drug-eluting stents have a lower risk of early re-
stenosis, but require a prolonged dual antiplatelet ther-
apy, which may lead to thrombosis in case of early
discontinuation [9,10].
Overall, the results of multiple studies comparing out-

comes by treatment type have shown that 1) the rate of
myocardial infarction, death, stroke, and stent throm-
bosis is similar for BMS and DES, but that BMS has a
higher rate of restenosis, and thus revascularization
[11-14], and that 2) CABG is superior to DES with re-
spect to major adverse cardiac or cerebrovascular events
[1,14]. In addition to individual pros and cons, each
treatment option is accompanied by different costs; ini-
tial treatment costs for CABG are higher than for PCI
and initial DES treatment is more expensive than BMS.
Several studies showed that DES is superior to their

BMS counterpart only for a subset of patients [15-18].
Amin et al. [19] quantified the benefits of both options.
They showed that reducing the usage of DES by 50% for
patients at low risk of target-vessel revascularization
(TVR) could save up to $205 million per year in U.S.
health care costs, while the overall rate of TVR was pro-
jected to increase by 0.5%. In response, Cavender and
Ellis [20] pointed out several flaws in the analysis by
Amin et al. [19]: 1) they used unbalanced data (the vast
majority had been treated with DES), 2) they used TVR
as a proxy for restenosis, and 3) that their model dis-
criminated only modestly.
From a treatment cost perspective, multiple studies

compared the cost-effectiveness of CABG and PCI for
patients with multivessel coronary artery disease [21-25].
Varani et al. [22] concluded that the total treatment

costs during the first year were lower with PCI employ-
ing DES, whereas the remaining studies determined that
CABG was more cost-effective than PCI.
The SYNTAXa score II is a tool to aid decision making

between CABG and PCI. It augments the anatomical
SYNTAX score with seven clinical variables, which are
strongly associated with mortality in either the PCI or
CABG setting in patients with complex coronary artery
disease [26]. The authors concluded that they could ac-
curately predict 4-year mortality of patients. However,
their model is only applicable to patients with complex
coronary artery disease. Similarly, the authors of [27] de-
veloped a decision support tool for CABG and PCI with
BMS or DES to predict long-term mortality (5 and
10 years) under each treatment option. Although, their
models are based on a general patient population, they did
not provide quantitative results with respect to the pre-
dictive power of their models or the economic impact.
Our aim was to develop a model that captures the

current clinical knowledge about risks and benefits of
treatment options for atherosclerosis to recommend a
more personalized treatment regime for patients. If risks
can be predicted reliably, it would be possible to deviate
from the existing clinical practice and replace predomin-
ant DES treatment with either BMS, for patients with
low risk of future restenosis, or CABG for patients at
high risk of death, myocardial infarction, or thrombosis.
To achieve this, we formed two hierarchical models: the
first is to assess the risks of BMS treatment and the sec-
ond is to evaluate the risks of DES treatment. The
subgroup-specific models allowed us to overcome the
lack of available features for all patients. Furthermore, by
including in vitro diagnostic biomarkers, we demon-
strated a potential improvement on both the patient out-
come and the estimated overall treatment costs.

Clinical motivation
Our approach was motivated by two recent shifts in the
clinical practice. First, although stenting predominately
employs DES with particular focus on reducing resten-
osis rates, recent studies showed that about one third of
patients in fact do not draw much benefit from DES
[15]. Moreover, this specific patient subgroup might un-
necessarily be exposed to a higher risk of thrombosis
leading to major adverse events. Subsequently, for these
patients the better treatment choice both clinically and
financially could be BMS.
Second, it has been shown that patients, who were

traditionally in a grey area for eligibility of both DES and
CABG (see Figure 1), could benefit from DES treatment.
These include diabetic patients with mild to less severe
coronary artery disease affecting multiple vessels [1]. For
these patients, who are not particularly at high risk of
thrombosis and hence major adverse events with DES
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therapy, the better choice both clinically and financially
could be DES.

Methods
Study population
This is a retrospective observational study incorporating
data from two studies at the Deutsches Herzzentrum
(Munich, Germany) [28,29]. Data were originally col-
lected between 1999 and 2006 to evaluate the prognostic
value of in vitro diagnostic (IVD) biomarkers. Both stud-
ies conformed to principles of the Declaration of
Helsinki and were approved by the institutional ethics
committee at Deutsches Herzzentrum (Munich, Germany).
All patients gave informed consent for angiographic exam-
ination and collection of in vitro diagnostic biomarkers.
Based on these data sets, we performed secondary analysis

to estimate treatment proportions and associated adverse
effects. All subjects underwent coronary angiography due
to chest pain or other symptoms suggestive of coronary ar-
tery disease (CAD). Our analyses was based on 2,733 inter-
ventions with known treatment. This data set comprised
2,377 patients of which 913 were lost to follow-up, i.e.,
withdrew consent or were unreachable. For the remaining
1,820 interventions, DES were used for 34.2%, and the re-
mainder were treated with BMS (see Figure 2).

Follow-up and endpoints
We investigated two main endpoints, restenosis and haz-
ardous events. For restenosis, we considered angio-
graphic restenosis or clinical restenosis. Angiographic
restenosis was defined when the treated vessel developed
a blockage with more than 50% diameter compared to
the reference diameter proximal to the occlusion. Angio-
graphic restenosis was evaluated at six months after the
initial treatment as identified by a quantitative coronary
angiography (QCA) exam. Restenosis most likely occurs
in the first six months after BMS treatment [2-4]; thus,
we selected this time point in our risk assessment of
BMS. Clinical restenosis is based on whether the patient
required an additional intervention, termed target lesion
revascularization, and is typically evaluated one and
three years after intervention. We included clinical re-
stenosis to enable comparison with studies that used this
specific endpoint as a proxy for angiographic restenosis.

Figure 1 Baseline treatment workflow. Patients with no 3-vessel
disease are treated with drug-eluting stents (DES). For the remaining
patients we assumed that a fraction of them (λ) would be eligible
for both DES and coronary artery bypass grafting (CABG); hence, we
assumed that half of these patients are treated with DES and the
other half with CABG.

Figure 2 Baseline characteristics of treatment and endpoints. Leaves indicate endpoints for the respective patient subgroup. Endpoints refer
to the respective patient subgroup, denoted by their parent node, and are not mutually exclusive. For patients treated with BMS, clinical restenosis
occurred mostly during the first 12 months after intervention, whereas it occurred mostly after 12 months for patients treated with DES.
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Hazardous events were defined as a composite of three
major adverse endpoints: death of any cause, myocardial
infarction, and thrombosis. Particularly, hazardous
events do not comprise target lesion revascularization,
unlike the common clinical endpoint Major Adverse
Cardiac Events (MACE). For DES we wanted to predict
the risk of hazardous event, which has been shown to
increase late (>1 year) after intervention [7,8]. We exam-
ined hazardous events at one and three years after inter-
vention. All end points are summarized in Figure 2.

Predictive variables
Our predictive models were based on a variety of fea-
tures. We recorded age, sex and diabetes indication for
each record, along with 30 clinical variables (including
angiographic measurements) and 11 in vitro diagnostic
variables, which comprised lipid panel and cardiac
markers. Since data were collected over a period of
seven years, not all variables could be recorded for all
patients in the entire time span. Therefore, we con-
structed three sets of features from the complete family
of clinical variables and biomarkers, respectively. Clinical
variables were divided into three sets of 28, 25 and 22
features, respectively (see Table 1). IVD variables were
split into one set of eight and two sets of five measure-
ments (see Table 2). All continuous features were nor-
malized to have zero mean and unit variance.

Notations
Here, we consider families of features that represent dif-
ferent aspects of the patient’s health and/or modalities.
For instance, a patient’s blood pressure, weight and dis-
ease history belongs to the family of clinical features,
whereas measurements of in vitro diagnostic biomarkers
comprise their own family. Each group of features derived
from one family of features, is referred to as feature set. A
classifier that considers two feature sets i and j from two

different families is denoted by T i;j
k , where k ∈ {R, H}

corresponds to prediction of P(Restenosis|BMS) and P
(Hazard|DES), respectively. For simplicity, we drop the
indices i and j if the feature sets have been fixed in pre-
vious steps. The predicted probability of restenosis by
TR is denoted as PR and the predicted probability of
hazardous events by TH as PH. Thresholds on the pre-
dicted probabilities are denoted as θR and θH, respect-
ively, and allow the calculation of specificity (Spec),
sensitivity (Sens), positive predictive value (PPV), and nega-
tive predictive value (NPV). When applying a threshold, a
classifier’s prediction can be positive (Pk ≥ θk) or nega-

tive (Pk < θk), which we denote by T i;j
k ¼ 0 and T i;j

k ¼ 1,
respectively. Probability estimates of treatments and
complications are denoted as P̂ :ð Þ or eP :ð Þ, depending
on whether estimates are based on classifiers’

performances or on amounts retrieved directly from
the data set itself or from literature. For instance, the
quantity ~P Restenosis sDESj Þð denotes the probability of
restenosis for patients that have been assigned DES
treatment by the proposed method. It is estimated by
counting the actual number of restenosis events in this
patient subgroup, as determined by clinical follow-up.
In contrast, P̂ Hazard sDESj Þð is the estimated probabil-
ity of hazardous events for the same patient subgroup
and is estimated by a classifier’s ability to predict haz-
ardous events accurately. Finally, Prev(Restenosis|BMS)
denotes the prevalence of restenosis among BMS re-
ceivers in the overall population (“Treated with BMS”

Table 1 Predictive clinical variables

C1 C2 C3

AHA/AAC lesion class + + +

Angina + + +

Canadian cardiovascular society (CCS) grading of angina pectoris + + +

Angulation + - +

Body mass index + + +

Hypercholesterolemia + + +

Dissection + - +

Ejection fraction + + +

Presence of eccentric lesion + + +

Family history + + +

History of bypass + + +

History of Intervention + + +

History of myocardial infarction + + +

Hypertension + + +

Lesion length + + +

Left ventricular function + + -

Minimum lumen diameter (pre) + + +

Smoker + + +

Number of stents + + -

New York heart association class + + +

Patient height + + +

Patient weight + + +

Plaques + + -

Reference diameter (pre) + + +

ST elevation - + -

Stenosis type + + -

Thrombus + - -

Thrombolysis in myocardial infraction (TIMI) rating + + +

Tortuosity + - -

Vessels affected + + +

List of clinical variables that were included in the different feature sets (C1, C2, C3).
Plus signs indicate that a feature has been included, minus signs that it was not
included in the respective feature set.
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node in Figure 2), and Prev(Hazard|DES) represents
the prevalence of hazardous events among all DES re-
ceivers in the overall population (“Treated with DES”
node in Figure 2).

Predictive modeling
We propose a two-stage patient stratification scheme
that is based on the current clinical understanding of the
risks of BMS, DES and CABG treatment (outlined
above). We first estimated the risk of restenosis when
treated with BMS, followed by estimating the risk of
hazardous events when treated with DES (see Figure 3).
If the rate of hazardous events is similar for BMS and

DES [11-14], it is sufficient to estimate the risk of re-
stenosis, when treated with BMS, and to suggest BMS
only for low-restenosis-risk patients (see TR in Figure 3).
Furthermore, if DES and CABG treatment mostly differ
in the rate of hazardous events [1,14], only the risk of
these events needs to be estimated when treated with
DES, to suggest one or the other (see TH in Figure 3).
We assumed that the risk of restenosis under BMS and
the risk of hazardous events under DES are independent
(PR and PH in Figure 3). This assumption stemmed from
the fact that pathophysiologies of in-stent restenosis
and in-stent thrombosis are different [30,31]. In other
words, these two are competing risks and considered
mutually exclusive.
Therefore, we trained two classifiers: one to predict

the probability of restenosis when treated with BMS and
one to predict the probability of hazardous events when
treated with DES. Each of these classifiers was actually a
composite of multiple patient subgroup-specific classi-
fiers in the form of a decision tree by recursively parti-
tioning the data set and training a logistic regression
model in the leaf nodes [32]. This addresses two aspects:
1) different effects or interpretations of variables on the

predicted outcome in-between these patient subgroups,
and 2) a highly heterogeneous data set, which may only
have a subset of features available for all patients.

Recursive partitioning
The driving hypothesis was that by stratifying the entire
population into subgroups based on some clinically mo-
tivated features, we could build a better overall classifier.
First, the clinical interpretation of various biomarkers
could drastically differ among age groups and genders
[33,34], and second, diabetes is already known to be one
of the main indicators in deciding PCI treatment option
[35]. Therefore, we considered these variables as the
main features to recursively partition the data set into
patient subgroups as shown in Figure 4. We first per-
formed a binary split according to one feature and then
performed additional splits on the resulting patient sub-
groups with respect to other features. The result was a
decision tree whose structure depends on the order and
number of binary splits. The maximum depth of a deci-
sion tree was limited to four levels, because we only split
by age, gender and diabetes indication (see Table 3). We
compensated for the limit in tree depth, by training reg-
ularized logistic regression models in the leave nodes.
We constructed all possible trees (47 in total), with re-
spect to the features age, sex, and diabetes indication,
and selected the optimal one as explained below. This is
in contrast to greedy algorithms for constructing deci-
sion trees, such as CART [32], which do not guarantee
an optimal decision tree for a given set of splits.
Each partitioning of the data set resulted in a decision

tree with the respective patient subgroups as leaves (see
Figure 4, left). At each leaf node, we consider two pa-
tient subgroups with respect to treatment options of
BMS and DES, corresponding to TR and TH in Figure 3.
Here, we split according to three features and therefore
obtained 27 different patient subgroups at the leaf level
across all decision trees (including trees where one or
more splits have not been performed).

Leaf node logistic regression model
For each patient subgroup, i.e., leaf node in Figure 4, we
trained multiple models to predict P(Restenosis|BMS)
and P(Hazard|DES), respectively. As stated in section
“Predictive Variables”, training of multiple models was
necessary to account for varying feature availability as
well as different effects of features on the treatment op-
tions. Thus, the models trained in each subgroup dif-
fered by the sets of clinical and biomarker features they
considered. Furthermore, for some combination of pa-
tient subgroup and feature sets, it might not be possible
to construct a classifier due to missing data.
Let us consider N different sets of clinical features, M

different sets of in vitro diagnostic biomarkers, as well as

Table 2 Predictive in vitro diagnostic biomarker variables

B1 B2 B3

Cholesterol + - -

Creatine kinase (all isoforms) + + -

Creatine kinase MB isoenzyme + + -

Creatinine - + +

C-reactive protein + + +

High density lipoprotein + - -

Low density lipoprotein + - -

N-terminal pro-brain natriuretic peptide - - +

Triglycerides + - -

Troponin T + + +

high-sensitivity troponin T - - +

List of in vitro diagnostic biomarkers that were included in the biomarker
feature sets (B1, B2, B3). Plus signs indicate that a feature has been included,
minus signs that it was not included in the respective feature set.
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the option of not using any clinical and/or biomarkers
information. Therefore, for each of 27 patient subgroups
at the leaf level, we need to consider at most NM different
combinations of clinical and biomarker feature sets – de-
pending on data availability. For instance, with N =M = 4,
the maximum number of classifiers that have to be trained
is 432.
We used logistic regression with ℓ2 regularization to

effectively deal with multicollinearity [36,37]. The classifiers

T i;j
R were trained on patients treated with BMS, and classi-

fiers T i;j
H on patients treated with DES, where i ∈ {0, …, N}

and j ∈ {0, …, M} indicate the set of clinical and biomarkers
features used by the classifier or that no features from that
group were used (zero value). For building the logistic re-
gression models with ℓ2 regularization, we used Weka

version 3.6.9, which uses a quasi-Newton algorithm to
search for the optimal coefficients [38].

Feature selection and operating point selection

In the previous step, the classifiers for restenosis (T i;j
R Þ

and hazardous events ðT i;j
H Þ were trained on the training

set portion based on maximizing the log-likelihood of
the logistic regression model [36,37] for all possible pa-
tient subgroups and feature sets independently. The next
step was to select the best clinical and biomarker feature
sets as well as to find the best thresholds θR and θH on the
predicted probabilities of restenosis and hazardous events,
respectively. We obtained classifiers TR and TH for each of
the 27 patient subgroups (leaves in Figure 4), from which
we formed the cascade depicted in Figure 3 (right).

Figure 3 Flowchart showing the proposed workflow. First, we split the data set into separate training and test sets. Training starts by
performing binary splits according to age, sex and diabetes indication (left). The resulting 27 patient subgroups formed the leaf nodes of multiple
decision trees. Each decision tree corresponds to one way of partitioning the date set (Figure 4, left). For each patient subgroup, we were seeking
two classifiers: one to assess the risk of restenosis when treated with bare-metal stents (BMS; TR) and one to assess the risk of hazardous events
when treated with drug-eluting stents (DES; TH). To account for varying feature availability and feature importance among subgroups and
outcomes, we considered three sets of clinical features (Table 1), three sets of in vitro diagnostic biomarkers (Table 2), as well as not using any
clinical and/or biomarker features. The best set of features for each patient subgroup was determined in the feature selection step. At the
same time, we chose appropriate thresholds θR and θH on the predicted probabilities of restenosis (PR) and hazardous events (PH), respectively
(Figure 4, right). Training was concluded by selecting the best overall classification tree by aggregating the performances of its patient
subgroup-specific models. After completing training, we applied the learned classification trees TR and TH on an independent test set (right).
First, we used the classification tree TR to predict P(Restenosis|BMS). If its results is negative (PR < θR), treatment with BMS is suggested, otherwise the
second classification tree TH is used to predict P(Hazard|DES). It suggests either DES treatment, if the predicted risk of hazardous events is low (PH < θH),
or coronary artery bypass grafting (CABG) otherwise. Finally, we evaluated the models by estimating treatment risks and costs.
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The clinical objective was to have the least disruptions
to the current trend, which is primarily toward DES
utilization for all patients. TR captures the risk of resten-
osis for BMS patients. By maximizing the NPV of TR, we
minimized the number of patients falsely suggested to
get BMS as a treatment option. The second paired test
TH captures the risk of hazardous events for patients re-
ceiving DES treatment. Maximizing the PPV of TH, in
fact minimizes the number of patients falsely prescribed
to be treated with DES, while they are at high risk of ad-
verse events (under such treatment). Consequently, our
clinically motivated objective function for selecting the
thresholds and features for classifiers TR and TH is

max
i;j;θR;p;q;θH

NPV T i;j
R ; θR

� �
þ PPV T p;q

H ; θHð Þ ð1Þ

Feature selection and operating point selection were car-
ried out concurrently by doing an exhaustive search over
all possible combinations of feature sets (i, j, p and q) and
thresholds (θR and θH). For the thresholds, all possible
values that correspond to a classifier’s specificity in the
range from 5% to 95% in 5% increments were considered;
excluding the trivial classifiers with 0% and 100% specifi-

city. Also, the pair of classifiers T i;j
R and T p;q

H always con-
sidered the same patient subgroup (i.e., age group, gender
and diabetes indication).
Referring to the above example with clinical and bio-

markers composed of four feature sets each, at least all
combinations of thresholds of both classifiers need to be
evaluated per patient subgroup (2 · 19 = 38 comparisons).
At the other end of the spectrum, if all feature sets are
available, all possible combinations of feature sets must
additionally be compared (2 · 19 · 16 = 608 combinations).
During training, the exact number of comparisons may
vary from subgroup to subgroup and depends on the
data availability with respect to particular patient

Figure 4 Example of recursive partitioning and evaluation of classification trees. First, we recursively divided the data set into patient
subgroups and, for each subgroup, learned two logistic regression models for prediction of P(Restenosis | DES) and P(Hazard | DES), respectively.
A pair of patient-subgroup-specific classifiers is denoted as solid rectangle on the left. Next, we constructed different classification trees, corresponding
to different partitionings of the data set, by combining different patient-subgroup-specific classifiers to be applicable to the entire data set (dashed
boxes on the left). In total, we created and evaluated n = 47 different trees. Finally, we selected the single best performing classification tree.
The performance of each classification tree was the aggregated performances of its components (dashed box on the right). We used positive
predictive value for the restenosis classifiers (red) and negative predictive value for hazardous events classifiers (blue). The mean of both values
denotes the overall performance (bold). In the confusion matrices on the right, the first row (red) contains true positives and false positives with respect
to P(Restenosis | DES), and the second row (blue) false negatives and true negatives with respect to P(Hazard | DES). Numbers do not represent actual
results but only serve to illustrate our approach.

Table 3 Different combinations of features used for
creating patient subgroups

Patient subgroups

Age All ≤60 >60

Sex All Female Male

Diabetes All No diabetes With diabetes

In total, the complete data set was partitioned into 27 different patient subgroups.
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subgroups. Note that feature selection, operating point
selection and pairing were only performed on the train-
ing set of each cross-validation iteration and were fixed
during evaluation and predictions.

Classification tree selection
Returning to the partitioning of the data set into patient
subgroups described above, the last step of the training
procedure consisted of aggregating the patient-
subgroup-specific classifiers TR and TH to form a classi-
fication tree that is applicable to the entire patient
population and choosing the best performing classifica-
tion tree (Figure 4, right). Hence, the result is a classifi-
cation tree that is composed of a set of regularized
logistic regression models applicable to different popula-
tion subsets, respectively.
To determine the best partitioning into patient sub-

groups, we devised a greedy algorithm that maximizes
the objective criterion of equation (1) and selects the
best performing decomposition of the training data set
into subgroup-specific classifiers (Figure 4, right). First,
the predictions of all subgroup-specific classifiers on the
training set were collected; next, the resulting confusion
matrix was used to calculate the performance of the
classification tree according to the objective function in
equation (1).
Since multiple classification trees, which correspond

to alternative ways of partitioning the data set, are con-
sidered, each of them is competing for the best predict-
ive performance. For instance, a decision tree with
leaves “Male”, “Female with Age ≥ 60” and “Female with
Age < 60” is competing with a decision tree that only has
the split according to sex (or any other combination of
splits). From all competing decompositions into different
patient subgroups, we picked the decomposition that
maximized the objective in equation (1), which was ex-
tracted from the root nodes of the classification trees.
As a result, decision trees for TR and TH and their re-
spective performances were obtained.

Evaluation
Effectiveness analysis
Based on the aggregated performance results of the clas-
sification tree for restenosis and hazardous events pre-
diction, the probability of adverse effects of the two test
setup in Figure 3 was estimated. We considered the
composite of restenosis and hazardous events as adverse
effects, thus P(Adverse Effect) was defined as

P AdverseEffectð Þ ¼ P Restenosisð Þ þ P Hazardð Þ ð2Þ

Let sBMS, sDES, sCABG denote that BMS, DES, and
CABG was suggested by the two test workflow as
shown on the right of Figure 3, respectively. The

probabilities on the right hand side of eq. (2) can be
decomposed according to the three possible treat-
ments T ¼ sBMS; sDES; sCABGf g considered here

P Restenosisð Þ ¼
X
t∈T

P tð ÞP Restenosis tÞjð

P Hazardð Þ ¼
X
t∈T

P tð ÞP Hazard tÞjð

In both equations, we estimated the probabilities of in-
dividual treatments by taking the predictive performance
of classification trees TR and TH into account. The first
test predicts the probability PR of restenosis when
treated with BMS, and is negative if PR is lower than
threshold θR, in which case BMS would be suggested.
Thus, the estimate P̂ sBMSð Þ can be calculated by

P̂ sBMSð Þ ¼ P PR < θRð Þ ¼ P TR ¼ 0ð Þ
¼ PrevðRestenosis BMSj Þ

�
1 − Sens TRð Þ

�
þð1−PrevðRestenosis BMSj ÞÞSpec TRð Þ:

The second test TH predicts the probability of hazard-
ous events, if treated with DES. Assuming independence
between the first and second test, we obtain P̂ sDESð Þ as

P̂ sDESð Þ ¼ P PR≥θR;PH < θHð Þ ¼ P TR ¼ 1ð ÞP TH ¼ 0ð Þ
¼ ð1−P̂ sBMSð ÞÞPrevðHazard DESj Þð1−Sens THð ÞÞ
þ 1−P̂ sBMSð Þ
� �ð1−PrevðHazard DESj ÞÞSpec THð Þ:

Finally, the probability of the remaining treatment
CABG was simply calculated based on the previous two
probabilities.

P̂ sCABGð Þ ¼ P PR≥θR; PH≥θHð Þ
¼ 1−P TR ¼ 0ð Þ−P TR ¼ 1ð ÞP TH ¼ 0ð Þ
¼ 1−P̂ sBMSð Þ−P̂ sDESð Þ

Next, we estimated the conditional probabilities P(Re-
stenosis|sBMS) and P(Hazard|sDES). These probabilities
depend on the performances of TR and TH, respectively,
and were estimated by

P̂ðRestenosis sBMSj Þ ¼ PðRestenosis TR ¼ 0j Þ
¼ 1−NPV TRð Þ

P̂ðHazard sDESj Þ ¼ PðHazard TR ¼ 1;TH ¼ 0j Þ
¼ 1−NPV THð Þ;

where we assumed independence between the two tests
in the second equation.
P(Hazard|sBMS) and P(Restenosis|sDES) depend on

stratification by the first and second test, respectively.
We estimated these probabilities by retrieving the cor-
responding label from samples classified as negative
by TR, which yields ~P Hazard sBMSj Þð , and by TH, to
obtain ~P Restenosis sDESj Þð .
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Because our data set did not contain any informa-
tion about CABG treatments, we collected estimates
for P(Hazard|sCABG) and P(Restenosis|sCABG) from
literature [39-50], and used 8.56% and 1.9%, respect-
ively (see Additional file 1 for details).

Cost analysis
To evaluate the economic impact of our method, we
performed a cost analysis of the proposed two test setup.
The average treatment costs of the proposed setup de-
pends on the predicted outcome of both tests and was
defined as

P̂ sBMSð Þ CsBMS þ CDAPTð Þ þ P̂ sDESð Þ
ðCsDES þ CDAPTÞ þ P̂ sCABGð ÞCsCABG;

ð3Þ

where Ct denotes the costs for suggested treatment t∈T
and CDAPT the costs for one year dual anti-platelet ther-
apy. Finally, we considered average costs per patient for
any corrective procedure in the case of restenosis or
hazardous events.

P̂ Hazardð Þ 1
2
CMI þ CStrokeð Þ þ CCorrective

� �
þ P̂ Restenosisð ÞCCorrective; ð4Þ

where CMI and CStroke are the treatment costs for myocar-
dial infarction and stroke, respectively, and CCorrective the
costs for any corrective procedure.

Baseline effectiveness and costs
We compared our proposed method with the baseline
workflow, where most patients are treated with DES, by
estimating adverse effects and costs similar to outlined
above. In the baseline workflow, all patients are treated
with DES except patients with 3-vessel disease, for whom
the SYNTAX trial concluded that CABG would be an ap-
propriate alternative to PCI [1]. We analyzed a PCI popu-
lation, hence we did not consider CABG exclusively;
instead we considered CABG and DES by equal amounts.
The overall relative amount of patients suitable for

both CABG and DES treatments was calculated as ω =
λP(3 ‐ vessel disease), where λ ∈ [0, 1] denotes the per-
centage of patients with 3-vessel disease that fall into this
group (see Figure 1). The estimate ~P 3‐vessel diseaseð Þ was
retrieved from data, based on selected subgroups. Accord-
ingly, the baseline initial treatment costs were calculated
as follows:

1−ωð Þ CsDES þ CDAPTð Þ

þ 1
2
ω CCABG þ CsDES þ CDAPTð Þ:

For corrective procedure costs, the probability of restenosis
was estimated as the weighted sum of P(Restenosis|DES)
and P(Restenosis|CABG) as

1−ωð Þ~PðRestenosis DESj Þ þ 1
2
ωð~PðRestenosis DESj Þ

þ ~PðRestenosis CABGj ÞÞ:
A similar formula can be obtained for the costs of haz-

ardous events.
Finally, we estimated treatment portions and associ-

ated adverse effects by retrieving estimates for P(Adverse
Effect) and its components directly from data, i.e., it did
not depend on the performance of a classifier. We used
λ = 0.21, which is the percentage of low complexity le-
sions (SYNTAX scores ≤ 22) determined by the 3-year
results of the SYNTAX trial [51]. For these patients, no
significant difference between CABG and PCI treatment
was observed.

Results
Cross-validation scheme
For our analyses, we used different outcomes for the re-
stenosis label and the hazardous events label, respect-
ively: angiographic restenosis at 6 months after
intervention, early (1-year) clinical restenosis, and late
(3-year) clinical restenosis for restenosis prediction, as
well as early (1-year) and late (3-year) hazardous events
prediction. We used these outcomes in four different
analyses: 1) we analyzed angiographic restenosis and
early hazardous events, 2) we considered late hazardous
events instead of the 1-year outcome, 3) we considered
target lesion revascularization (clinical restenosis) as a
proxy for restenosis combined with early hazardous
events, and 4) we combined clinical restenosis with late
hazardous events.
We required that each patient subgroup using the

aforementioned sets of features to have no missing
values and at least 100 samples, as well as ten samples
where the class variable is positive (restenosis or hazard-
ous events). Subgroups that did not satisfy these con-
straints were disregarded. Consequently, we constructed
between 133 and 185 classifiers, depending on the
choice of the endpoint (see Additional file 1: Table S3).
To get an estimate for the expected prediction error of

our proposed method, 10-fold cross-validation was ap-
plied on our data set. Furthermore, this process was re-
peated three hundred times with different randomly
selected cross-validation splits [52]. Referring to the
number of classifiers trained on each training set from
above, we trained in total between 133·10·300 and
185·10·300 different classifiers during evaluation of indi-
vidual endpoints. In each iteration, performance evalu-
ation was solely carried out on the test set, which was
not used during training. In addition, this allowed us to
assess the variance of the expected prediction error by
means of confidence intervals, which have been derived
from the percentiles of the empirical distribution of the
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prediction error. Instead of selecting the ℓ2 penalty of in-
dividual logistic regression models based on nested
cross-validation, which would have been prohibitively
expensive, we fixed the ℓ2 penalty of all models at the
beginning to 0.01.

Classification trees
Figure 5 compares the performance of subgroup-
specific classifiers (gray bars) with conventional popu-
lation wide regression (white bars). It demonstrates
that prediction of hazardous events was highly dis-
criminative with a median area under the receiver op-
erating characteristic curve (AUC) of approximately
0.85 for the 1-year outcome and 0.75 for the 3-years
outcome. Models used to predict restenosis performed
modestly with a median AUC of 0.61 and 0.60. No sig-
nificant differences in performance with respect to
angiographic and clinical restenosis were observed.
We compared the performance of complementary
subgroup-specific classifiers with a single global classi-
fier that was constructed using feature selection and
operating point selection as described above, but with-
out partitioning the data set. When predicting hazard-
ous events, the global classifier achieved a median

AUC of 0.76 and 0.71 for the 1-year and 3-years out-
come. When targeting angiographic restenosis at
6 months, it resulted in an AUC of 0.57.

Effectiveness
Table 4 summarizes the probability of adverse effects
with respect to angiographic restenosis and 1-year
and 3-year hazardous events, respectively. Using the
two-test setup, DES was suggested for the majority
of patients (81.8% at 1 year; 85.3% at 3 years). The
overall probability of restenosis was 6.4% at 1 year
(6.2% at 3 years) and that of hazardous events was
3.3% (7.9%). This yielded a total rate of adverse ef-
fects of 9.7% for 1-year hazardous events and 14.1%
for 3-year hazardous events. Compared to the base-
line treatment, where the rate of adverse effects was
14.1% and 18.8%, respectively, this resulted in a rela-
tive reduction of 31.2% (95% CI, 25.4 to 39.0) and
25.0% (95% CI, 17.8 to 30.2).
Similar results were obtained when analyzing clin-

ical restenosis (see Table 5). The absolute decrease
in adverse effects was highly significant with 3.2%
and 4.9% (both P < 0.001) for the 1-year and 3-year
endpoints, respectively, corresponding to 33.2% (95% CI,

Figure 5 Histograms of area under receiver operating characteristics curve for subgroup-specific and global classifiers. Histograms show
the area under receiver operating characteristics curve (AUC) for angiographic restenosis and hazardous events classifiers after feature selection
and operating point selection. White bars indicate the performance of ℓ2 regularized logistic regression models trained on the whole population
using only feature selection and operating point selection, but no partitioning. Gray bars indicate the performance of subgroup-specific classifiers.
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26.6 to 41.9) and 25.0% (95% CI, 20.4 to 31.4) of relative
reduction.
Furthermore, we performed the same analyses with-

out partitioning and used a single global classifier in-
stead. With respect to angiographic restenosis, the
resulting probability of adverse effects was 10.6%
(95% CI, 9.1 to 12.0) and 15.8% (95% CI, 14.3 to 17.7),
which is significantly higher (P < 0.001) compared to
results above (see Additional file 1: Table S7).

Costs

Based on the estimates P̂ sBMSð Þ , P̂ sDESð Þ and P̂ sCABGð Þ
and Medicare reimbursements in U.S. dollars of the
fiscal year 2013, we calculated average costs of initial
treatments and corrective procedures per patient.
Thus, costs of procedures are based on the average re-
imbursement rates across all hospitals in the U.S.,
which are covered by the Medicare health insurance
program (see Additional file 1 for details).

Table 4 Estimates of key quantities characterizing the performance of the proposed two test workflow when
1-year or 3-year occurrences of hazardous events (HE) are taken into account along with 6-month angiographic
restenosis results

Estimated quantity 1-year HE 3-years HE

Mean 95% CI Mean 95% CI

P̂ sBMSð Þ 9.7 3.6 – 18.0 5.0 2.6 – 9.5

P̂ sDESð Þ 81.8 74.3 – 87.5 85.3 81.4 – 87.7

P̂ sCABGð Þ 8.5 7.5 – 9.0 9.6 7.8 – 10.6

P̂ Restenosis sBMSj Þð 0.1 0.0 – 0.0 0.0 0.0 – 0.0

~P Restenosis sDESj Þð 7.6 6.7 – 7.9 7.0 6.1 – 7.5

P̂ Restenosisð Þ 6.4 5.5 – 6.9 6.2 5.3 – 6.6

~P Hazard sBMSj Þð 0.0 0.0 – 0.0 1.5 0.0 – 16.7

P̂ Hazard sDESj Þð 3.2 2.1 – 3.5 8.2 7.2 – 9.5

P̂ Hazardð Þ 3.3 2.5 – 3.8 7.9 6.9 – 9.5

Baseline estimate for P(Adverse effect) 14.1 12.6 – 14.5 18.8 17.6 – 19.6

Proposed estimate for P(Adverse effect) 9.7 8.3 – 10.6 14.1 12.4 – 15.6

ΔP(Adverse effect) 4.4 3.5 – 5.4 4.7 3.4 – 5.5

The acronyms sBMS, sDES and sCABG denote that the proposed model suggested treatment with bare-metal stents, drug-eluting stents or coronary artery bypass
grafting, respectively. Baseline refers to predominant treatment with drug-eluting stents as described in section “Baseline Effectiveness and Costs”.

Table 5 Estimates of key quantities characterizing the performance of the proposed two test workflow when 1-year or
3-year occurrences of hazardous events (HE) and clinical restenosis are taken into account

Estimated quantity 1-year 3-years

Mean 95% CI Mean 95% CI

P̂ sBMSð Þ 5.6 3.4 – 9.8 6.4 3.1 – 13.0

P̂ sDESð Þ 85.5 81.9 – 87.6 84.1 78.4 – 87.2

P̂ sCABGð Þ 8.9 8.2 – 9.2 9.5 8.5 – 10.4

P̂ Restenosis sBMSj Þð 0.0 0.0 – 0.0 0.0 0.0 – 0.0

~P Restenosis sDESj Þð 2.9 1.9 – 3.4 8.2 7.6 – 9.0

P̂ Restenosisð Þ 2.7 1.8 – 3.1 7.1 6.4 – 7.9

~P Hazard sBMSj Þð 7.2 0.0 – 16.1 9.9 0.0 – 21.4

P̂ Hazard sDESj Þð 3.2 2.0 – 3.5 7.4 5.6 – 8.9

P̂ Hazardð Þ 3.9 2.7 – 4.6 7.6 6.2 – 8.9

Baseline estimate for P(Adverse effect) 9.7 8.4 – 10.3 19.7 18.2 – 20.7

Proposed estimate for P(Adverse effect) 6.5 5.0 – 7.6 14.7 13.1 – 16.1

ΔP(Adverse effect) 3.2 2.7 – 3.8 4.9 4.1 – 6.2

The acronyms sBMS, sDES and sCABG denote that the proposed model suggested treatment with bare-metal stents, drug-eluting stents or coronary artery bypass
grafting, respectively. Baseline refers to predominant treatment with drug-eluting stents as described in section “Baseline Effectiveness and Costs”.
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From Table 6 it is evident that the proposed setup re-
sulted in slightly increased estimated expenses for the
initial treatment ($285 to $499), but savings for any cor-
rective procedures due to lower probability of adverse
effects ($834 to $1,229). This resulted in estimated over-
all savings of 4.7% (95% CI, 3.1 to 7.0) and 2.7% (95% CI,
1.8 to 4.2) per patient at 1 year, when considering angio-
graphic and clinical restenosis, respectively. Estimated
total savings were equivalent to $693 and $441 per pa-
tient. Increasing the time frame to three years resulted
in a modest increase of initial treatment costs. The over-
all costs decreased by 3.8% (95% CI, 2.7 to 5.3) and 4.0%
(95% CI, 2.9 to 6.4) per patient, compared to the base-
line treatment workflow. With respect to total savings,
this amounted to $693 and $739, respectively.
Finally, we investigated the relationship between BMS

and DES procedure costs on the estimated total savings
by increasing and decreasing the costs by 25% in steps
of 1.25%. Therefore, BMS costs ranged between $8,900
and $14,833, and DES costs between $9,342 and
$15,571. Figure 6 shows that procedure costs of BMS
and DES are dependent on each other. Thus, changing
the costs of one of them suggested changing the other
one as well in order to sustain the same amount of sav-
ings per patient. No setting resulted in a total loss, indi-
cating robustness to actual stent costs. Furthermore, we
observed that for the 3 year time frame the cost savings
decreased slightly and that the relationship between
BMS and DES treatment costs was weaker (illustrated
by higher slope of contour lines in Figure 6).

Discussion
We developed a two-stage stratification procedure for
patients with coronary atherosclerosis that is based on:
1) the current clinical knowledge about three common
treatment options (BMS, DES, and CABG), 2) differ-
ences in feature availability and importance among pa-
tient subgroups, and 3) the objective to only deviate

from the currently preferred treatment with DES for pa-
tients that would benefit – in the case of CABG – or be
at no increased risk – in the case of BMS – with an al-
ternative treatment.
We found that the proposed two-test setup resulted in

an increased estimated effectiveness as well as lower es-
timated costs when compared to the baseline workflow
in all settings. By optimizing negative and positive pre-
dictive values of patient subgroup-specific classifiers, we
accounted for current clinical evidence that DES are
dominating BMS only for a subset of patients [15] and
that DES are a viable alternative to CABG for certain pa-
tient subgroups [1].
In the analyses of clinical restenosis, the rate of resten-

osis differed considerably between the 1-year and 3-year
analysis. This increase is due to the fact that the time
point for restenosis varied (1 or 3 years) whereas it was
fixed previously (6 months). Therefore, an increase in
the restenosis rate was expected due to the longer time
period considered.
The current clinical practice for coronary revasculari-

zation focuses to a large extent only on PCI with DES
and CABG as its alternative, but ignores treatment with
BMS. However, patients at low risk of restenosis could
still benefit from BMS [15]. We identified these patients
and were able to minimize the estimated rate of resten-
osis for these patients. For a preponderating portion of

validation runs the estimate P̂ Restenosis sBMSj Þð was
zero. We attributed this result to the fact that both the

estimate P̂ Restenosis sBMSj Þð as well as the objective in
eq. (1) incorporate NPV(TR, θR) and thus classifiers with
a negative predictive value of 1 were selected preferably,
which resulted in a restenosis rate of zero.
Furthermore, the SYNTAX trial [1] demonstrated that

there exists a grey area where the outcome of DES and
CABG treatment does not differ significantly. Hence, for
some patients, PCI with DES would be as effective as
CABG, but significantly less perilous. We incorporated
this knowledge in our method and observed that the es-
timated proportion of hazardous events for patients
treated with DES was low (3.2 to 8.2%).
The proposed two stage setup deviated from the base-

line workflow only for a small set of patients. This is
where there is no increase in risks, as in the case of
BMS versus DES, or where it is very likely that they
would benefit from an alternative treatment, as in the
case of CABG versus DES. When evaluating treatment
risks, only those factors that are most decisive – based
on results of clinical studies [1,11-14] – were considered,
instead of trying to model all possible risks and their in-
terrelationships. For instance, when assessing the risks
of BMS treatment we do not suggest ignoring hazardous
events in this setting, but based on previous results

Table 6 Estimated mean costs per patient in U.S. dollar
for initial treatment and corrective procedures according
to equations (3) and (4), respectively

Restenosis Angiographic
restenosis

Clinical
restenosis

Hazardous events 1-year 3-years 1-year 3-years

Initial Costs (Baseline) 13,821 13,822 13,801 13,799

Initial Costs (Proposed) 14,106 14,321 14,193 14,289

Corrective procedure (Baseline) 3,022 4,325 2,297 4,439

Corrective procedure (Proposed) 1,943 3,131 1,463 3,210

Total savings 794 693 441 739

Total savings (%) 4.71 3.82 2.74 4.05

Baseline refers to predominant treatment with drug-eluting stents as described
in section “Baseline Effectiveness and Costs”.
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[11-13], it is known that the rate of hazardous events
differs only slightly among BMS and DES treatments.
Therefore, predicting hazardous events in this setting
would add little additional information.
With respect to economic implications, we noticed

that average costs per patient for index procedures
slightly increased, whereas average costs per patient
for corrective procedures decreased. The former can
be explained by the small cost difference between
BMS and DES treatment ($590), together with high
expenses associated with CABG ($28,683). Therefore,
performing stenting twice, once for the index proced-
ure and once for the corrective procedure, instead of
one surgery would still be less expensive at the popu-
lation level than treating the patient by CABG first.
This severely diminished the amount of total savings,
especially in early stages.
Regarding angiographic restenosis, we observed that

the total amount of savings decreased from the 1-year
to the 3-year hazardous events analysis and that the
percentage of suggested BMS treatment dropped from
8.8% to 4.4%, favoring DES and CABG. Treating a large
number of patients with procedures that were more ex-
pensive than BMS increased initial treatment costs and
ultimately lowered the total savings.
It is important to note that the method proposed here

and the SYNTAX score [53] – an algorithm to grade the
complexity of CAD based on angiographic data – address
different aspects related to CAD. Sianos et al. [53] state
the SYNTAX score “is focusing on anatomy of coronary
vasculature and not on treatment plan” (p. 226). The
SYNTAX score II aimed to overcome this limitation by
considering clinical variables in addition to the anatomical
SYNTAX score. Although this model performs well, it was
derived from a data set composed of patients with left
main coronary disease or three-vessel disease. Thus, the
SYNTAX score II can facilitate decision making only for a
subset of patients that satisfy these criteria.

In addition, only lesions with more than 50% reduction
in luminal diameter should be included in the SYNTAX
score. In contrast, our approach does not have any ex-
clusion criteria and is based on all available information
for one patient – including those mentioned above – to
assess the risk of particular treatment options. In fact,
the SYNTAX score could complement our approach as
an additional source of information in helping to esti-
mate risks of therapeutic options.
These results showed that considering BMS and

CABG as alternatives to DES is one effort to a more per-
sonalized treatment regime that could also positively im-
pact treatment costs. Further research, in particular in
the form of a prospective study, would provide add-
itional insight into the magnitude of these effects.

Limitations
One of the major limitations, subject to all retrospect-
ive observational analyses, is that treatment was deter-
mined by physicians and was not random. This
inherent and unavoidable bias might lead to identifying
false estimators. Because data were collected over a
period of eight years, changes in technology during
this time span, such as changes in data collection
protocol, might have influenced obtained measure-
ments. Therefore, temporal latent effects could pos-
sibly affect our models.
Due to the requirement of angiographic follow-up at

6 months after intervention and the collection of bio-
markers, the patient population used was relatively
small. As a consequence, some subgroups could not be
analyzed. In our analyses, we treated multiple consecu-
tive interventions per patient as independent and did
not take the outcome of previous procedures into ac-
count. Risk prediction was formulated as a binary classi-
fication problem instead of predicting time-to-event.
Furthermore, our data did not include medications and
their influence on biomarker measurements could not

Figure 6 Comparison of costs of bare-metal and drug-eluting stents with respect to total saving. Solid lines indicate contour of total
savings. Estimation is based on angiographic restenosis together with hazardous effects at 1-year (left) and at 3-years (right).
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be quantified. Finally, our estimates with respect CABG
are solely based on data we retrieved from literature
and models used for restenosis prediction only showed
modest performance, which was observed by Amin
et al. [19], too.

Conclusions
We demonstrated that by considering multiple treat-
ment options for coronary atherosclerosis and modeling
their respective risks, the estimated overall adverse ef-
fects and costs could be reduced. This could lead to
more efficacious and personalized treatment for patients,
and significant economic impact at the population level.
When projecting our results on the estimated 1,085,357
coronary revascularization procedures performed on
adults in the U.S. in 2007 [54], this would positively
affect approximately 47,756 and 51,012 patients for
angiographic restenosis at one and three years, respect-
ively, which accumulates to estimated cost savings ran-
ging from $475.4 to $842.2 million dollars, depending
on the respective outcome (angiographic or clinical re-
stenosis) and time frame (one or three years).

Endnotes
aDerived from the study of the same name (SYNergy

between Percutaneous Coronary Intervention with
TAXus and Cardiac Surgery).
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Additional file 1: Supplementary material. PDF document containing
supplementary materials.
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