Reibnegger and Schrabmair BMC Medical Informatics and Decision Making 2014, 14:99

http://www.biomedcentral.com/1472-6947/14/99 BMC

Medical Informatics & Decision Making

RESEARCH ARTICLE Open Access

Optimum binary cut-off threshold of a diagnostic
test: comparison of different methods using
Monte Carlo technique

Gilbert Reibnegger and Walter Schrabmair

Abstract

Background: Using Monte Carlo simulations, we compare different methods (maximizing Youden index,
maximizing mutual information, and logistic regression) for their ability to determine optimum binary cut-off
thresholds for a ratio-scaled diagnostic test variable. Special attention is given to the stability and precision of the
results in dependence on the distributional characteristics as well as the pre-test probabilities of the diagnostic
categories in the test population.

Methods: Fictitious data sets of a ratio-scaled diagnostic test with different distributional characteristics are
generated for 50, 100 and 200 fictitious “individuals” with systematic variation of pre-test probabilities of two
diagnostic categories. For each data set, optimum binary cut-off limits are determined employing different methods.
Based on these optimum cut-off thresholds, sensitivities and specificities are calculated for the respective data sets.
Mean values and SD of these variables are computed for 1000 repetitions each.

Results: Optimizations of cut-off limits using Youden index and logistic regression-derived likelihood ratio functions
with correct adaption for pre-test probabilities both yield reasonably stable results, being nearly independent from
pre-test probabilities actually used. Maximizing mutual information yields cut-off levels decreasing with increasing
pre-test probability of disease. The most precise results (in terms of the smallest SD) are usually seen for the
likelihood ratio method. With this parametric method, however, cut-off values show a significant positive bias and,

non-parametric methods.

hence, specificities are usually slightly higher, and sensitivities are consequently slightly lower than with the two

Conclusions: In terms of stability and bias, Youden index is best suited for determining optimal cut-off limits of a
diagnostic variable. The results of Youden method and likelihood ratio method are surprisingly insensitive against
distributional differences as well as pre-test probabilities of the two diagnostic categories. As an additional bonus of
the parametric procedure, transfer of the likelihood ratio functions, obtained from logistic regression analysis, to
other diagnostic scenarios with different pre-test probabilities is straightforward.

Background

Evaluation of diagnostic tests is an important issue in
medical disciplines. Best known is the analysis of simple
diagnostic test situations which can be represented by
means of a 2 x 2-contingency table: one dimension of
such a table is defined by two diagnostic categories (e.g.,
“non-diseased” versus “diseased”), and the second dimen-
sion represents the dichotomous test result (e.g., “normal”
versus “pathological”). According to its importance, there
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is a large literature on the subject. A recent series of
review articles presents an excellent overview cover-
ing all relevant theoretical and practical aspects of
the subject [1-4].

An interesting way of evaluating diagnostic tests is
provided by information theory [5-9], and an alternative
elegant way of dealing with multiple, variably scaled diag-
nostic variables, has been suggested in 1982 by Albert
[10]: he demonstrated that logistic regression analysis
can be employed to compute likelihood ratio functions
which, in analogy to the well-known likelihood ratio ob-
tained from a simple 2 x 2-contingency table, are useful to
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compute post-test probability functions of the diagnostic
categories investigated. A critical step when applying lo-
gistic regression results for the computation of likelihood
ratio functions is a correction according to the pre-test
probabilities of the diagnostic categories actually used for
the regression procedure [10]. A combination of Albert’s
findings with a generalization of the computation of post-
test probabilities for more than two diagnostic categories
[11,12] was demonstrated [13].

In an attempt to (1) direct new awareness to Albert’s
time-honoured but nevertheless most relevant results re-
garding the use of logistic regression analysis in clinical
chemistry, and to (2) compare logistic regression analysis
with other methods for dividing patients into those with
low versus those with high risk of being “diseased”, we here
present the results of Monte-Carlo simulation studies. Spe-
cifically, for a diagnostic dilemma (“diseased” versus “non-
diseased”) we simulate data sets for a fictitious diagnostic
variable x with different pre-specified distributional charac-
teristics for the two diagnostic categories. Then, we search
for the optimum cut-off threshold of x including the fol-
lowing methods:

e maximizing the mutual information of the respective
2 x 2-contingency table obtained by systematically
varying a binary cut-off threshold for the diagnostic
variable x

e maximizing the Youden index (Youden index =
sensitivity + specificity —1) by systematically varying
a binary cut-off threshold for the diagnostic
variable x

e performing a logistic regression analysis on the
problem and searching the value of the diagnostic
variable x for which the logistic regression-derived
likelihood ratio (LR) function, properly corrected for
the pre-test probabilities of the diagnostic categories
used for the regression procedure, attains unity (i.e.,
the test value at which the post-test probabilities of
the diagnostic categories equal the pre-test
probabilities).

Major results of the simulations investigated are, for
each of these three statistical procedures, the respective
optimum cut-off values as well as their associated sensi-
tivities and specificities. Besides mean values of these
quantities of central interest, important “by-products” of
the Monte-Carlo approach are their SD observed over
the repetitive computer experiments.

We perform such calculations for four scenarios
using different distributional characteristics underlying
the computer-generated test data. Besides employing dif-
ferent sample sizes, as the most important additional con-
trol variable pre-test probabilities of disease [P(D)] are
systematically varied over a wide range (from 0.10 to 0.90).
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With these Monte-Carlo simulation experiments we
attempt to answer the following research questions:

e How well are the two non-parametric methods
(maximizing mutual information, maximizing
Youden index) and the parametric method (LR
technique based on logistic regression analysis)
suited for determining optimum binary cut-off levels
of a ratio-scaled diagnostic test, given different
distributional characteristics of test data, and how
well do the results of the three methods agree with
the theoretical crossing points of the distribution
functions underlying the two diagnostic categories?

e How do total numbers of test data and their
composition in terms of pre-test probabilities of the
two diagnostic categories influence the results?

e Which of the techniques yields the most precise
estimates in terms of the resulting SD values of the
Monte Carlo simulation runs?

Methods

All computations are done using the commercially avail-
able computer software MATHEMATICA, version 9, by
Wolfram Research, Inc., Champaign, IL, USA.

First, for the categories “no disease” and “disease”,
according to P(D) chosen, fictitious patient data sets
are generated using the random number generator of
MATHEMATICA in combination with one out of many
possible distribution functions: thus, for both diagnostic
categories, fictitious data of a ratio-scaled diagnostic vari-
able are generated following the chosen distribution func-
tions. We choose total numbers of fictitious data sets of
50, 100 and 200, and we assume pre-test probabilities
of category “disease” [P(D)] increasing from 0.10 to 0.90
in steps of 0.10. We simulate four different diagnostic
scenarios:

e Scenario 1: The lognormal distribution with mean
value 2.0 and standard deviation 0.4 is assumed for
the “healthy” category, and with mean value 2.5 and
standard deviation 0.3 for the “diseased” category.

e Scenario 2: The chi-square distribution with 7
degrees of freedom is assumed for the “healthy”
category, and with 10 degrees of freedom for the
“diseased” category.

e Scenario 3: The inverse gamma distribution with
shape parameter 6.0 is assumed for the “healthy”
category and 3.0 for the “diseased” category. The
scale parameter is set to 20.0 for both categories.

e Scenario 4: The chi-square distribution with 6
degrees of freedom is assumed for the “healthy”
category; for the “diseased” category, the Weibull
distribution is chosen with shape parameter 10.0
and scale parameter 20.0.
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Using the MATHEMATICA function FindRoot, we
obtain the following crossing points for the distribution
functions of the two diagnostic categories: Scenario 1,
x=9.20041; Scenario 2, x=7.47228; Scenario 3; x=
5.10873; and Scenario 4, x =13.4333. Differences from
these values define the bias of the actually detected mean
cut-off levels.

Analyses done on each data set include:

e “Empirical” determination of the cut-off value at
which mutual information is maximum (“Mutual
information method”): the cut-off value is
systematically varied over the range of all test values
by increments of 1.0, and that cut-off value is
searched for which the resulting 2 x 2-contingency
table produces the maximum mutual information.

e Determination of the cut-off value at which Youden
index is maximum. In the following, we shall
designate this method as “Youden index method”.
The cut-off value is systematically varied over the
range of all test values by increments of 1.0, and that
cut-off value is searched for which the resulting
2 x 2-contingency table produces the maximum
Youden index.

e Logistic regression analysis and calculation of the LR
function (with proper correction for P(D) .
Determination of the test values for which the LR
functions become equal to unity (“LR method”).
Briefly, logistic regression analysis on a data set for
N fictitious “individuals” yields a linear predictor
function a0 + ol x, where x is the test result. The
parameters o0 and ol denote the intercept and the
slope of the linear predictor. The linear predictor
must be corrected for the pre-test probabilities of
the diagnostic categories in order to yield the
corrected linear predictor (equal to the natural
logarithm of the LR function [10]):

the argument of the logarithm on the right side of
the equation being the pre-test odds.

Thus, for each data set, according to each of these
three methods, three cut-off limits as well as their asso-
ciated sensitivities and specificities are computed as
main results.

These analyses are repeated 1000 times in order to get
not only estimates of these quantities of interest, but
also “empirical” estimates for their SD values.

Additionally, the effects of P(D) on the parameters a0
and ol as well as on the properly corrected intercept para-
meter and, hence, on the post-test probabilities computed
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thereof under different diagnostic situations, are demon-
strated for a specific example.

For convenience, we supply the MATHEMATICA do-
cuments necessary to reproduce our results: Additional
file 1 (help.docx) gives a short explanation how to use
the MATHEMATICA notebooks monte_carlo_SDev.nb
(Additional file 2) which performs the necessary statis-
tical calculations as well as the Monte Carlo simulation,
and distributions.nb (Additional file 3) which produces
graphical visualizations of the distribution functions used,
and which calculates the crossing points of the two distri-
bution functions for the “non-diseased” and the “diseased”
fictitious individuals.

Results

The Monte Carlo experiments

For the Monte-Carlo experiments, we use the following
conditions: total numbers of fictitious “individuals” are
chosen as N =50, 100 and 200.

P(D) is varied, in steps of width 0.10, between P(D) =0.10
and P(D) =0.90.

At each P(D), 1000 data sets, each consisting of N =50,
100 or 200 randomly chosen test values x, are generated
according to the four distributional scenarios detailed in
the Methods section. Figure 1 demonstrates the distribu-
tion functions underlying the four scenarios.

Each data set contains N test values, of which N x P(D)
values are associated with “Disease”, and N x [1 — P(D)]
values are labelled “No disease”. For each data set, the
optimum cut-off threshold for x is determined by each of
three different techniques (see Methods section).

Table 1 reports the ranges of the resulting mean values
(and SD values) of the optimum cut-off values together
with the associated sensitivities and specificities, obtained
by the variation of P(D) from 0.1 to 0.9 in steps of 0.1.

For the mean cut-off values and their SD values ob-
tained with each of the three methods, Figure 2 demon-
strates for the four scenarios the dependence on P(D) as
well as the deviations with respect to the theoretical
crossing points of the distribution functions underlying
the two diagnostic categories. (Notably, each result is based
on 200 fictitious individuals and 1000 repetitions.)

Table 1 and Figure 2 reveal important and characteris-
tic features of the results: first, while the Youden index
method as well as the LR method produce cut-off levels
which are remarkably stable with respect to the large
variation of P(D), the Mutual information method yields,
irrespective of the distributions used, monotonously de-
creasing cut-off levels with increasing P(D). So obvi-
ously this technique in the case of small P(D) optimizes
specificity of the test, and with high P(D), sensitivity is
optimized. Second, the Mutual information method is
invariably associated with the largest SD values, followed
by the Youden index method; the parametric LR method
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Figure 1 Four different distributional scenarios. The panels a - d show the visualizations of the four scenarios (see Methods section) studied.
The distributional characteristics as well as the parameters determining the exact shapes of the distributions are shown in the titles of each panel.
Blue: the distributions underlying the “non-diseased” category; red, the distributions underlying the “diseased” category. The arrows point at the
crossing points of the distribution functions of the two diagnostic categories, and the numbers associated with arrows are the x-coordinates of

these crossing points.

shows by far the smallest variations. On the other hand,
the LR method tends to produce a constant positive bias;
with the exception of Scenario 4 (strongly separated distri-
bution functions underlying the two diagnostic categories)
the cut-off levels found with this method lie consistently
above the theoretical crossing points of the respective dis-
tribution functions. In fact, the smallest bias is found with
the Youden index method; with the Mutual information
method cut-off levels at small P(D) are generally too high,
and too low with high P(D).

Figure 3 visualizes in more detail the results obtained
for Scenario 1 (lognormal distributions with mean value
2.0 and standard deviation 0.4 for the “healthy” category,
and with mean value 2.5 and standard deviation 0.3 for

the “diseased” category) and 200 fictitious “individuals”
(N =200).

In accordance with Table 1 and Figure 2, the cut-off
values and hence, the associated specificities, found by
the LR method are usually slightly higher than those de-
tected with the two non-parametric techniques. Con-
sequently, the latter methods yield slightly better test
sensitivities but slightly worse specificities than the LR
method. As already shown in Figure 2 for the mean cut-
off levels, also for sensitivities and specificities the stron-
ger dependence of the Mutual information method on
P(D) is clearly obvious from Figure 3 (panels a2 and a3).
Analogously, also for the SD values of cut-off levels as
well as of sensitivities and specificities the order LR
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Table 1 Results of the Monte Carlo simulations
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N Mutual information Youden Likelihood ratio
Mean SD Mean Sd Mean SD
Scenario 1 (lognormal) Cut-off 8.1-104 17-26 90-9.7 12-18 9.9 -10.1 05-1.1
50 Se 0.78 - 0.86 0.17-0.30 0.82 - 091 0.10-0.14 0.74 - 0.76 0.08 - 0.16
Sp 0.69 - 0.76 0.18-0.23 0.73-0.82 0.12-0.17 0.78-0.78 0.06 - 0.14
Cut-off 8.1-100 14-22 92-95 10-14 100-10.10 04-07
100 Se 0.84 - 0.89 0.11-0.19 0.81-0.87 0.09-0.13 0.74 -0.75 0.05-0.11
Sp 0.65 - 0.74 0.15-0.22 0.72-0.78 0.09 - 0.15 0.78-0.78 0.04-0.10
Cut-off 78-97 11-19 92-94 08-1.1 100 -10.1 03-05
200 Se 0.83 - 091 0.08 - 0.16 0.82 - 0.85 0.07 - 0.10 0.74 - 0.74 0.04 - 0.08
Sp 061-0.72 0.12-0.18 0.71-0.75 0.08 - 0.12 0.78-0.78 0.03 - 0.07
Scenario 2 (chi-square) Cut-off 74-93 33-41 75-81 19-27 82-84 06-1.1
50 Se 0.67 - 0.70 026 - 0.35 0.69 - 0.80 0.17 - 90.21 0.59 - 061 0.08 - 0.17
Sp 062 -0.73 0.24 - 0.30 065 - 0.77 0.17-0.22 069 - 0.70 0.07 - 0.15
Cut-off 74-90 3.1-41 75-80 15-22 83-84 04-08
100 Se 0.66 - 0.71 023 -0.30 0.68 - 0.76 0.14-0.18 0.59 - 061 0.06 - 0.12
Sp 061 -0.69 023 -0.29 064 - 0.72 0.14-0.19 069 - 0.70 0.05-0.10
Cut-off 70-88 24-39 75-79 12-18 83-84 03-05
200 Se 067 -0.72 020 - 0.27 067 -0.72 0.12-0.16 0.59 - 0.60 0.04 - 0.09
Sp 0.59 - 0.65 021-0.26 063 - 0.67 0.12-0.17 069 - 0.70 0.03 - 0.07
Scenario 3 (inverse gamma) Cut-off 51-71 17-26 51-58 09-16 54-58 05-09
50 Se 0.64 - 0.76 0.17 - 0.34 0.75-0.83 0.11-0.17 069 - 0.72 0.08 - 0.17
Sp 0.80 - 0.87 0.15-0.20 0.81-0.90 0.11-0.15 0.84-0.85 0.05-0.12
Cut-off 51-72 14-23 51-56 08-13 54-57 03-06
100 Se 0.63 - 0.76 0.15-0.27 0.75-0.79 0.09 - 0.14 0.69 - 0.71 0.06 - 0.12
Sp 0.81-0.87 0.12-0.19 0.81-0.85 0.09-0.13 0.84-0.85 0.04 - 0.08
Cut-off 51-72 1.1-22 51-53 06-10 55-56 02-05
200 Se 062 - 0.76 0.12-0.21 0.75-0.78 0.08 - 0.11 069 - 0.71 0.04 - 0.09
Sp 0.80 - 0.89 0.09 - 0.17 0.80-0.83 0.08-0.11 0.84-0.85 0.02 - 0.06
Scenario 4 (mixed) Cut-off 99-142 16-25 104 - 14.1 16-29 12.1-146 1.1-18
50 Se 041 -047 032 -045 0.99 - 1.00 0.01 - 0.03 0.98 - 1.00 0.02 - 0.03
Sp 0.65 - 0.82 022 -0.24 0.97 - 0.99 0.03 - 0.04 0.97 - 0.98 0.03 - 0.06
Cut-off 11.0- 146 13-20 11.7-142 12-23 126-139 07-16
100 Se 048 - 0.69 043 - 047 0.98 - 1.00 0.02 - 0.02 0.98 - 0.99 0.02 - 0.03
Sp 0.79 - 0.94 0.13-0.23 0.97 - 0.98 0.02 - 0.04 097 - 097 0.02 - 0.05
Cut-off 114-146 1.0-14 12.5-139 09-17 13.1-136 05-12
200 Se 0.65 - 0.91 0.26 - 046 0.98 - 0.99 0.01 - 0.02 0.98 - 0.98 0.01 - 0.02
Sp 0.90 - 0.97 004 -0.16 0.96 - 0.98 0.02 - 0.03 0.96 - 0.97 0.01-0.03

For the 4 distributional scenarios and for total numbers of 50, 100 and 200 fictitious “individuals”, the ranges of mean values and SD values, found by varying P(D) from
0.1 to 0.9 in steps of 0.1, of optimal cut-off limits and sensitivities and specificities are reported. Mean values and SD values are based on 1000 repetitions each.

method < Youden index method < Mutual information
method is obtained.

Closer inspection of the SD results in Table 1 shows
in addition that in accordance with expectation, the
variances of the results decrease with increasing sample
size N.

Dependence on P(D) of the parametric estimates

obtained by the LR-method

Despite the remarkable stability of the optimum cut-off
thresholds as well as of sensitivities and specificities ob-
tained by the parametric LR method over a broad range
of P(D), the mean estimates of the logistic regression
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Figure 2 Bias and precision of the cut-off levels by the three methods in dependence on pre-test probability P(D). For the computations
employing sample sizes of 200 fictitious “individuals”, the mean cut-off levels (based on 1000 repetitions each) detected by the three methods
are shown together with their SD values in dependence on P(D) (black curves with error bars) and in comparison with the crossing points of the
theoretical distribution functions of the two diagnostic categories (red horizontal lines).

analyses («0 and al) nevertheless are somewhat depen-
dent on P(D), and this dependence even remains after
proper correction. For the example shown in Figure 3
[Scenario 1 (lognormal distributions with mean value 2.0
and standard deviation 0.4 for the “healthy” category,
and with mean value 2.5 and standard deviation 0.3 for
the “diseased” category) and 200 fictitious “individuals”
(N =200)], at P(D) =0.10 the uncorrected mean intercept
estimate (a0) is -5.246, and at P(D) =0.90 it increases
to -3.075. Hence, the mean corrected intercept esti-
mate decreases from -3.049 to -5.273 between these limits;
and the mean slope estimates (al) increases from 0.303
to 0.535. So in fact, also the corrected linear predictor
functions (as well as the LR functions) change some-
what according to P(D). How strongly influence these

dependencies the estimated post-test probabilities of dis-
ease? To answer this question, the mean values of the
Monte-Carlo estimates of the logistic regression analyses
at P(D) =0.10, 0.50 and 0.90 were used to calculate three
respective corrected LR functions. With each of these
three functions, then, according to the fact that the post-
odds can be computed by multiplication of the pre-odds
by the LR % = % x LR(x)|, we compute the
post-test probabilities P(D|x) (conditional probabilities for
disease given test result x) as functions of test value x,
again for three P(D) =0.10, 0.50 and 0.90.

Figure 4 shows the resulting curves of the post-test

probabilities. Notably, if the corrected estimates of the
logistic regression analyses were independent from P(D)
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Figure 3 The dependence of the cut-off levels and the associated sensitivities and specificities on P(D) for a representative example.
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J

of the data set employed, the three LR functions would
coincide, and we would finally obtain only three different
and parallel sigmoid curves (one for each P(D) used for
the second step of this computation). However, as the
estimated slope parameters (al) increase with increasing
P(D) in the data sets used for the logistic regression ana-
lyses, the sigmoidal post-test probability curves are steeper
with respect to variation of test value x when we employ
the estimates of logistic regression analyses obtained at
higher P(D). Interestingly, each three curves obtained with

the three different sets of logistic regression estimates for
a specified P(D) in the second calculation step (in Figure 4
these are the curves with the same line style each) cross at
a test value x ~ 10 and at a post-test probability which ap-
proximates the actually specified P(D) (look at the little ar-
rows in Figure 4).

Taking into account the results from Figure 2, we can
easily understand this behaviour: Figure 3, panel al,
shows that with the LR method, a cut-off value of x = 10
is obtained over the whole range of P(D). In other words,
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Figure 4 The effect of P(D) on post-test probability functions
obtained by the LR method. Post-test probability functions P(D|x) of
diagnostic value x, computed at different P(D) of 0.10 (dash-dotted
lines), 0.50 (solid lines) and 0.90 (dashed lines). The three curves at each
pre-test probability are obtained from the Monte Carlo experiment
shown also in Figure 3 (scenario 1, 200 fictitious data sets) using the
LR method, employing data sets with P(D) of 0.10 (red), 0.50 (black)
and 0.90 (blue). Note that all three curves with the same colour run
"parallel” to each other; i.e, they are obtained using the same slope
parameter [mean value of the 1000 estimates for al at the respective
P(D)]. The little arrows denote the crossing regions of the three curves
obtained with the three different LR functions (see text for explanation).

at x =~ 10, all three different LR functions yield approxi-
mately unity, and hence, the post-test probabilities ap-
proximate P(D).

In addition we note, that for each of the three different
LR functions the respective set of three curves at differ-
ent P(D) in the second calculation step (in Figure 4 these
are the curves with the same colour) shows “parallel”
course, due to their common slope parameter ol being
representative for the respective LR function.

Discussion

In this paper, we compare a parametric and two non-
parametric methods of determining optimum binary cut-
off levels of a ratio-scaled test using Monte Carlo
technique. For scenarios with quite different distributio-
nal characteristics underlying the computer-generated
data sets, and for different total numbers of fictitious
“individuals” (i.e., data sets), we focus on the effects of
varying P(D) on the optimum cut-off levels obtained,
and on sensitivities and specificities associated with these
threshold values.

Our study shows that the Youden index method and
the LR method yield very stable mean cut-off levels over
the whole range of P(D), while the results of the Mutual
information method show a characteristic monotonous
decrease of the mean cut-off values with increasing P(D).
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While the parametric LR method, based on logistic regres-
sion analysis followed by proper correction of the inter-
cept parameter for P(D), produces by far the most precise
estimates (smallest SD values), the method yields results
which are positively biased for three of the four distribu-
tional scenarios studied. The best agreement between
mean cut-off levels is obtained by the Youden index me-
thod, and the worst precision (largest SD values) is gene-
rally found by the technique of maximizing the mutual
information statistic.

In perfect accordance with the behaviour of the mean
optimum cut-off levels is the effect of the distributional
scenarios as well as of P(D) on important test charac-
teristics like sensitivities and specificities (and their SD
values). Notably, as the LR technique generally produces
the highest estimates of optimum cut-off levels (nearly
irrespective of the distributional scenarios), it also yields
the highest mean values for specificities, and in turn, the
smallest mean values for sensitivities.

The estimates of the logistic regression analysis are
somewhat dependent on the actual P(D) used, and post-
test probability functions for the presence of disease, given
a certain value of the diagnostic test variable, therefore
show somewhat different slopes and positions; but as
shown in Figure 4, the different curves obtained from lo-
gistic regression analyses with different P(D), when ap-
plied to compute post-test probabilities for a situation
with an arbitrarily specified P(D) (in the second step), all
cross approximately at a point in a P(D|x) vs. x diagram
the abscissa of which is approximately equal to the op-
timum cut-off value and the ordinate of which approxi-
mates the specified P(D) (in the second step).

The results of the Monte Carlo simulations reported
here appear to be representative for a broad variety of
distributional characteristics underlying the test data in
the “non-diseased” and the “diseased” category. Moreover,
the results do not greatly vary when using 50, 100 or 200
fictitious “individuals”; clearly, the SD values obtained for
increasing numbers of “individuals” are slightly decreasing.
The study is restricted insofar as in any case, 1000 repeti-
tions are employed for computing the respective mean
values and SD values; however, this number is apparently
high enough to guarantee quite stable estimates.

One might question the use of the crossing points of
the involved distribution functions as the reference value
for determining the bias of the methods: the crossing
points of the distribution functions as used in our work
imply a P(D) of 0.50 (both diagnostic categories would
have the same weight) and, of course, varying the rela-
tive weights of the two distribution functions would lead
to varying crossing points. For example, the theoretical
crossing points for the distribution functions of scenario
4 vary between 15.748 and 11.358 when P(D) changes
from 0.10 to 0.90; the reported value of 13.4333 is
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obtained for P(D) =0.50. However, we deliberately use
the crossing points of the equally weighted distribution
functions as the stable and correct reference value be-
cause we think that in diagnostic practice, the compos-
ition of a test sample with arbitrary P(D) should have
as little effect as possible on critical results such as the
optimum cut-off threshold. And in the light of these
considerations, it is particularly surprising and satisfy-
ing that the Youden index method and the LR method
indeed provide optimum cut-off value which are essen-
tially independent from P(D).

In this work, we have concentrated on the specific
influence of varying P(D) on few critical results of the
diagnostic evaluation process; namely, the optimum cut-
off levels and their associated sensitivities and specific-
ities. We have not included many other important facets
of modern test evaluation theory such as, e.g., utility as-
pects. It would certainly be promising to extend such
simulation studies as our present one also on these and
other advanced issues.

Conclusions

Over a remarkably wide spectrum of distributional sce-
narios and over a wide range of different P(D) values,
the Youden index method and the LR method give quite
satisfactory results for optimum cut-off values in terms
of stability and of test characteristics derived thereof.
The results of the Mutual information method are stron-
ger dependent on P(D) and, in addition, show the highest
variation. Notably, the parametric LR technique yields par-
ticularly precise, however frequently positively biased re-
sults. A bonus of this method, on the other hand, is the
straightforward transferability of the results to situations
with other pre-test probabilities.
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