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Abstract

Background: Traumatic pelvic injuries are often associated with severe, life-threatening
hemorrhage, and immediate medical treatment is therefore vital. However, patient prognosis
depends heavily on the type, location and severity of the bone fracture, and the complexity of the
pelvic structure presents diagnostic challenges. Automated fracture detection from initial patient
X-ray images can assist physicians in rapid diagnosis and treatment, and a first and crucial step of
such a method is to segment key bone structures within the pelvis; these structures can then be
analyzed for specific fracture characteristics. Active Shape Model has been applied for this task in
other bone structures but requires manual initialization by the user. This paper describes a
algorithm for automatic initialization and segmentation of key pelvic structures - the iliac crests,
pelvic ring, left and right pubis and femurs - using a hierarchical approach that combines directed
Hough transform and Active Shape Models.

Results: Performance of the automated algorithm is compared with results obtained via manual
initialization. An error measures is calculated based on the shapes detected with each method and
the gold standard shapes. ANOVA results on these error measures show that the automated
algorithm performs at least as well as the manual method. Visual inspection by two radiologists and
one trauma surgeon also indicates generally accurate performance.

Conclusion: The hierarchical algorithm described in this paper automatically detects and
segments key structures from pelvic X-rays. Unlike various other x-ray segmentation methods, it
does not require manual initialization or input. Moreover, it handles the inconsistencies between
x-ray images in a clinical environment and performs successfully in the presence of fracture. This
method and the segmentation results provide a valuable base for future work in fracture detection.
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Background

Prompt and appropriate treatment of pelvic injury is vital
to patient survival. Pelvic fractures are among the most
life-threatening injuries that can be suffered by a major
trauma patient. They are strongly associated with impact
injuries, particularly moving vehicle accidents. One six-
year case study of 119 male pelvic trauma patients at a
large level 1 trauma center found that 42.8% of fractures
were caused by motor vehicle collisions (MVC) [1]. Other
mechanisms causing pelvic disruption include falls from
a height (30%) and crush injury under heavy weights
(10%) |2]. Fractures can also cause laceration of the sur-
rounding soft tissue and neural and vascular structures,
and involve neighboring structures such as the urogenital
system, leading to very complex injuries and a high mor-
tality rate. Pelvic injuries caused by high-energy impacts
that destroy the integrity of the pelvic ring are associated
with a mortality rate of between 5 and 20% [2], and many
of those who survive suffer permanent disability. Acetab-
ular fractures, although not as potentially life threatening,
are also associated with significant morbidity [3].

In polytraumatized patients, the ATLS Guidelines recom-
med pelvic x-ray imaging as a vital first diagnostic step [4].
The process is fast, cheap, and causes relatively little dis-
turbance to the injured patient. The resulting x-ray image
can quickly reveal the extent of damage to the bone struc-
ture of the pelvis, such as fracture, pelvic ring disruption,
and widening of the pubic bone gap. However, the struc-
ture of the pelvis is complex, and fractures may be hard to
recognize on low resolution x-rays; discussion with physi-
cians suggested uncertainty even among medical profes-
sionals. This suggests that a system capable of quickly
identifying pelvic fracture would prove valuable in a
trauma center environment. Since fracture location has
considerable impact on both severity and treatment of the
injury, as well as the appearance of the fracture in a radio-
graph image, the first step in constructing such a system is
to correctly segment the pelvis into distinct regions. This
paper focuses on detection of the left and right iliac crests,
the pelvic ring, the left and right femurs and the left and
right pubis. By isolating and separating these three struc-
tures within x-ray images, we build a valuable base for
future automatic fracture identification. More impor-
tantly, our algorithm is entirely automated, unlike other
x-ray segmentation methods which require the user to
manually initialization detection for each structure.

Prior work

Multiple previous studies have focused on the segmenta-
tion of MRI and CT images, including those of the pelvic
and abdominal areas [5,6]. However, compared to other
radiological imaging modalities, segmentation of x-rays
has not been as widely researched. This may be due to the
additional complexities involved in radiograph imaging.
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Different tissues may have similar absorption rates, lead-
ing to blurred edges and a lack of detail [7]. Delineating
bone matter from soft tissue can also be challenging due
to low contrast, particularly when multiple bones overlap.
This is especially problematic in pelvic radiographs, as the
femurs overlap with the main structure of the pelvis [8].
Pelvic x-rays are prone to another specific complication:
the prescence of gas inside the colon, which causes dark
shadows to appear over the iliac fossa. [9]

One early attempt at radiograph segmentation by Manos
[10] employed region growing and merging according to
size, similarity, and connectivity. The generated regions
were then labeled according to their grey level informa-
tion. This approach was limited, however, as it considered
neither spatial information nor existing knowledge of
anatomy. Other early studies considered the problem of
identifying lung regions in chest radiographs. Vittitoe [11]
applied Markov random field models, while Duryea [12]
and Pietka [13] used rule-based heuristics. The same prob-
lem was addressed by McNitt-Gray [14], instead using a
classifier approach; each pixel was placed into one of sev-
eral anatomic classes according to various locally calcu-
lated features.

More recent efforts have focused on the use of deformable
models, due to their ability to segment complex structures
and account for real-world variability in shape and
appearance. A learning-based model approach can incor-
porate prior knowledge of the problem, and learn the var-
iation from a set of annotated training examples. Two
specific learning-based algorithms, Active Shape Model
(ASM) and Active Appearance Model (AAM), have proven
successful in segmenting CT, MRI, and x-ray images [15-
17]. Boukala [18] successfully applied the ASM algorithm
to pelvic x-rays; however, individual structures were not
segmented, and the focus was on pathological deformities
in hip replacement patients, rather than pelvic fractures
sustained in traumatic injury.

Our approach

In a clinical environment, there are numerous issues com-
plicating the segmentation of pelvic x-rays. The novelty of
the system described in this paper is its ability to handle
the following challenges: uncertain horizontal and verti-
cal position of the patient, variations in patient pose
angle, and inconsistencies due to differences in x-ray
machine configuration. Unlike other segmentation algo-
rithms, our method also performs successfully in the pres-
ence of fracture, as is necessary for clinical use. Our
segmentation approach is hierarchical; the algorithm
begins with identification of the femoral shafts, and uses
the information obtained at each successive stage to ini-
tialize the next. The shafts of the femur are distinctly visi-
ble in the majority of pelvic x-rays, and are identified via
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directed Hough straight line detection. The knowledge of
the shafts' width and position is used to direct the Hough
transform to locate the circular femoral heads. Once the
head and shaft positions are known, the ASM algorithm
can be initialized and the combined femur structure is
detected. Three specific reference points - the estimated
pelvic ring center, and two points on the identified femur
model shapes - are then used to initialize ASM for pelvic
ring detection. This method may not not be accurate in
the presence of very severe deformity, where a femoral
head has been forced inside the pelvic ring. However, our
algorithm may not be required for such obvious cases,
where the physician can clearly observe the deformity in
the x-ray image. Once the size and position of the pelvic
ring is known, ASM can be initialized for detection of the
left and right pubis via two reference points. Directed
Hough Transform is also used to locate the iliac crests
based on the known position of the pelvic ring. The entire
process is outlined in Figure 1. Figure 2 presents an over-
view of the pelvic structure.

Methods

Data

The data was provided by Carolinas Healthcare System
(CHS), and consisted of 20 pelvic fracture patients and 52
x-ray images (pre- and post-surgery). The full dataset,
including post-operative patients, was used to calculate a
probability distribution for femoral shaft and head size, as
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Flowchart of pelvic segmentation process. This flow-
chart illustrates the steps of the hierarchical initialization and
segmentation algorithm.
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Figure 2
Bones of the Pelvis. An x-ray showing key structures of
interest located within the human pelvis.

described later in the paper. The dataset was then filtered
to include only those x-rays taken upon the patient's ini-
tial arrival at the hospital, prior to surgery and internal fix-
ation, to be used for training the segmentation algorithm.
This set contained 25 images. All x-rays were resized to a
standard width of 1000 pixels, though image height var-
ied across the set. Due to the significant differences in pel-
vic anatomy between male and female patients, we chose
to focus on male patients. The user of the final system
would therefore specify the patient's gender before seg-
mentation can be performed; however, this information is
readily available and should not complicate the process in
a trauma center environment. The training set consisted of
5 patients (7 images), and the test set contained 15
patients (18 images). We anticpated that our algorithm
can handle female patients using simple changes to ini-
tialization that account for the anatomical differences.

Detection of femoral shafts

The femurs are among the most distinct structures in a pel-
vic x-ray, and typically suffer little deformity except in
cases of severe femoral fracture. Therefore, the left and
right femoral shafts are used as reference points to deter-
mine the patient's horizontal displacement from the
center. These shafts form clear straight lines within the
image, and so initial detection can be performed using
directed Hough transform that is restricted to + 45 degrees
of the vertical. This restriction avoids horizontal artifacts
towards the base of the x-ray, such as measurement marks.
The Hough Transform is a feature extraction method best
suited to detecting regular geometric shapes with clear
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parametric forms. The straight lines of the femoral shafts
can be described by the following parametric equation:

p =xcos6 +ysinf (1)

where p is the normal distance from the origin to the line,
and @is the angle between the normal and the x-axis.

Hough transform is dependent on the quality of initial
edge detection, and may therefore prove problematic in
noisy or complex images such as radiographs. To circum-
vent this, the algorithm initially applies histogram equal-
ization and an unsharp mask to the original pelvic x-rays,
to increase the definition of the femoral shaft edges. This
is followed by rough Canny edge detection. The Hough
transform is applied only to the lowest 10% of the edge-
detected image, which handles the difference in shaft
length caused by the lack of a standard vertical position
for patients during x-ray imaging. The transform is also
restricted to lines that are + 45 degrees either side of the
vertical, to prevent the detection of horizontal line arti-
facts at the base of the x-ray, such as measurement bars.
Once a candidate set of lines is generated, the algorithm
then calculates which line pairs most likely correspond to
the shaft edges. Following the method developed by Chen
et. al [15], lines are paired according to width between
them and their intensity gradient direction. Femoral shaft
width varies from patient to patient, due to differences in
build. However, examination of our training samples
found that the probability of two lines forming a shaft
contour could be estimated based on the distance
between them. To increase the sample size, we used the
full dataset, which also contained x-rays taken after the
installation of non-femur hardware (which did not affect
raw shaft width). We found that the shaft width has a uni-
modal distribution, which can be modelled by a Gaussian
G,, with g, = 87.75 pixels and ¢, = 5.0817 pixels. The
probability p; that the pair of lines i in the test image form
a shaft contour, based on width alone, is given by:

pw = Gw(wi | :uwlaw) (2)

where w; is the distance between the two lines in the pair,
i.e. the expected shaft width. If grey-scale information is
taken into consideration, as suggested in [15], it is intui-
tive that the intensity gradient of the leftmost line should
change from dark to bright, and vice versa for the right-
most line. The mean of the magnitude of these gradients
for each line should also be large, to detect a true bone
contour. Therefore, the probability p; that a pair of lines i
forms a shaft contour, based on both width between lines
and intensity gradient, is given by:

pi o< MiGw(wi | .usrcs) (3)
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where M; is the mean of the intensity gradient magnitudes
of the points along both lines in the pair. Each candidate
pair i has a probability p; of representing the femoral shaft,
and the top four mostly likely candidate pairs are kept. To
ensure that the correct two pairs are chosen, we use the
distance between the left and right femur, measured from
the inner contour of each. Again, the shafts were paired
together, and the distribution was modelled as a Gaussian
with g; = 700.86 pixels and o, = 34.53 pixels. The proba-
bility p; that a pair of detected shafts j accurately match the
shafts in the actual image is given by:

pjo<Gyld| g o) (4)

where d. is the distance between the inner contours of the
left and right femoral shafts. The shaft pair with the high-
est value of p; represents the final detected shaft position.

Detection of femoral heads

Once the positions of the femoral shafts are known, the
patient's approximate horizontal displacement can be cal-
culated as the horizontal distance between the center
point of the shafts and the center of the image. This infor-
mation is later used in detecting the pelvic ring, to aid in
accurate initialization of the active shape model. How-
ever, the femoral shafts alone do not provide adequate
knowledge of the patient's approximate vertical position.
Therefore, the next step is to determine the location of the
femoral heads; vertically, these are positioned at the base
of the pelvic ring. Since the femoral heads are typically cir-
cular, directed Hough transform is again a suitable
method. The parametric equation for a circle is:

(x=a)’ +(y-b)* =1’ (5)

where r is the circle radius, and a and b are the coordinates
of the circle center. Hough transform for circle detection
requires a 3D accumulator, increasing the computational
complexity of the process. To both improve speed and
reduce the probability that incorrect circles are found, we
again restrict the area of search and also determine the
probability of a circle being correct based on the width of
the femoral shaft. The area of search is restricted to 200
pixels right of the left femur, and 200 pixels left of the
right femur. Study of the dataset confirmed that the fem-
oral heads typically appear in this area of the image. Ver-
tically, the search is restricted to the bottom 2/3 of the
image; even in training x-rays with severe vertical displace-
ment, the femoral head is still visible within this portion.
To prevent detection of undesired circular structures - such
as circles formed by the outer curves of the pelvic structure
- we restrict the circle radius to a range obtained from
analysis of the full dataset (60-90 pixels). This avoids the
majority of incorrect circles. With a larger dataset, we hope
to construct another Gaussian distribution to estimate the
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Figure 3
Hough line detection of femoral shafts. Results of
directed Hough Transform for detection of femoral shafts.

probability of a detected circle representing the femoral
head; however, using a pixel range did not affect the qual-
ity of our results. Figures 3 and 4 demonstrate the results
of directed Hough Transform.

The approximate positions of the femoral heads are now
known, and used to initialize the active shape algorithm
for detection of the combined femur structure.

General active shape model algorithm
In ASM, the target shape is defined by a set of landmark
points. The first stage is to determine and label the land-

Figure 4
Hough circle detection of femoral heads. Results of
directed Hough Transform for detection of femoral heads.
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marks in a set of training images, which will be used to
generate the Point Distribution Model (PDM) that
describes the target shape. The final labeled training set, S,
contains N shapes with k landmarks each. Each shape is
therefore represented as a vector of (x, y) coordinates
defining each of its landmarks in sequence. Due to the
wide variation across patients in pose angle and position,
it is vital that the training shapes be correctly aligned.
Given two shape vectors z;and z;, a transform T4 x v, is
calculated which aligns z; to z; where s is the scaling value,
@is the rotation angle, X, is the horizontal translation and
Y, is the vertical translation. These last two values are par-
ticularly vital in dealing with pelvic x-ray images, as there
is no standard initial position for each patient. Note that
these measures are automatically calculated by the algo-

rithm. After alignment, PCA is applied, so each training
shape can be approximated by:

x=x+Db (6)

where P contains the t eigenvectors of the covariance
matrix, and b is a t-dimensional vector which defines the
parameters for the deformable model. A limit is placed on
the possible change in b, to ensure that the generated
shape is similar to the shapes in the training set.

The training set is also used to build a statistical grey level
model, by sampling the neighboring pixels of each land-
mark point. Specifically, a model is built for each separate
landmark, by sampling the derivative of the intensity val-
ues along the profile normal to the landmark in each
training image. These samples are normalized, and the
mean g and covariance S, are evaluated for each land-

mark point. During each iteration of the shape matching
process, a specific number of pixels are sampled along the
profile normal to each current model point. The quality of
fit for each is calculated as the Malanobis distance of the
sample from the model mean, given by:

f(gs):(gs _g)TSg_l(gs _g) (7)

The pixel with the lowest value of f(g,) is the new "best"
position for the model point; this is repeated for each
point. The shape parameters b are then updated to fit these
new positions. The algorithm halts when an iteration
results in no significant changes in b.

ASM for femur, pelvic ring and pubis detection

In this study, ASM is applied separately to detection of
both the femurs and the pelvic ring. As with the femoral
shafts, the pelvic ring is distinctly visible within the major-
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ity of x-rays, and suffers relatively little deformation in
typical pelvic fractures. Determining its location in turn
determines the approximate position of the iliac crests.
However, the ASM algorithm is highly sensitive to initial-
ization, and a poor starting position for the mean shape
produces unsatisfactory results. Our system circumvents
this via its hierarchical approach. The positions of the
femoral shafts and heads are already known, following
the use of directed Hough Transform. This knowledge is
used to initialize the ASM femur model. During training,
35 landmarks are used to describe the femur; this choice
was based upon experimental results. We limit the change
in shape parameters to 40, where o is the standard devia-
tion; this allows the starting shape to deform to fit femur
shapes at various angles without losing its base structure.
In each iteration, the algorithm examines 20 pixels along
the profile either side of the model point to find a new
best position. Figure 5 illustrates an example of left femur
detection using ASM.

Identifying the femurs in turn allows for correct initializa-
tion of the ASM shape for the pelvic ring; across all train-
ing images, it was found that the femoral heads and pelvic
ring are typically <100 pixels apart horizontally. The
uppermost landmark on the ASM model for each femoral
head was selected as a ring reference point, and a horizon-
tal search for the largest intensity gradient value was per-

Figure 5
Example ASM detection of left femur. Example of left
femur detection using ASM algorithm.
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fomed across a +100 pixel range from this point. A sudden
change in grayscale intensity corresponds to the inside
edge of the pelvic ring; the pixel with the largest value is
recorded as a pelvic ring initialization point. After this is
repeated for both femurs, the two initialization points are
used in initializing the ASM shape for pelvic ring detec-
tion. Note that prior detection of the femurs is vital; the
pelvic ring alone cannot be used as a reference structure
for segmentation, as its horizontal and vertical position in
the x-ray image is unknown. In the training phase, 30
landmarks are used to describe the pelvic ring; as with the
femur model shape, these are a mixture of structural and
auxiliary points. In this case, only 10 pixels either side of
the profile point are searched, to prevent the shape from
aligning to the internal gaps in the pubic bones beneath
the pelvic ring. Shape parameter change is again limited to
4o0.

The ASM detected position of the pelvic ring is then used
to initialize ASM for detection of the left and right pubis,
via the use of control points along the base of the ring. In
this case, 23 landmark points describe the outer edge of
the pubis bone, and 8 landmarks describe the inner edge.
Shape parameter change is limited to 3o-and 15 pixels are
searched either side of each profile point.

Since speed is important in a medical trauma environ-
ment, our approach employs a multi-resolution version of
the ASM algorithm. Each training and test image is
decomposed into multiple lower resolution images, each
a smoothed and subsampled version of the last; these cor-
respond to levels of a Gaussian pyramid. The search for
the desired shape begins at the highest level: the lowest
resolution image. When the ASM algorithm converges at a
specific level - i.e. there is no significant change in the
model points - the next highest resolution image is used.
In this way, the location of the identified shape is refined
over progessively higher resolutions. The original image is
considered only at the final stage of the process, when
only slight changes are expected in the model point posi-
tions. The algorithm in this paper uses 3 levels for detec-
tion of the pelvic ring, as its simple shape remains intact
at the lowest image resolution. When using ASM to detect
the femurs and pubis, it was found that the model shapes
suffered considerable distortion at low resolutions, and
therefore 2 levels were used. For detection of the iliac
crests, only one level was used.

Detection of iliac crests

The left and right iliac crests are typically circular, and
directed Hough transform can therefore be used to detect
their approximate location. However, depending on the
patient pose angle, one crest may appear hooked, rather
than circular. Analysis of the dataset revealed that at least
one the crests was always detected. This is intuitive from
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knowledge of pelvic structure; within the expected range
of patient rotation angles, at no point would both crests
become distorted. Analysis also supported the assump-
tion of approximate symmetry about the pelvic ring.
Therefore, the position of the detected crest can be used to
determine the position of the undetected crest. Once
directed Hough transform has determined the approxi-
mate location of an iliac crest, the ASM starting shape is
initialized using a specific reference point on the Hough
transform circle, as well as knowledge of the pelvic ring
position. The iliac crest shape is described by 22 points,
shape parameter change is limited to 5¢; and 35 pixels are
searched either side of each profile point. As with all
selected ASM parameters, these values were determined
empirically.

Results and discussion

Evaluation

ANOVA test

Since the purpose of the hierarchical algorithm described
in this paper is to automatically initialization detection of
key pelvic structures, performance is compared versus
manually initialized ASM. This second set of examples is
generated by a user manually placing the ASM template
within the desired structure in the x-ray image, and then
running the ASM algorithm. Since our algorithm is
designed for hierarchical automated initialization of ASM,
our primary concern is how it performs versus manual ini-
tialization, rather than how ASM itself performs on the
pelvic structures. Note that in several cases, ASM is insuf-
ficient to correctly detect structures regardless of initializa-
tion; we are further developing a form of ASM that
maintains shape curvature and offers greater control over
deformation.

Across a set of 20 images, three key structures - the left iliac
crest, left femur and pelvic ring - are manually labeled and
taken as the 'true' reference shapes. For each image, the
difference in area between this reference shape and the
shape detected via our algorithm is calculated and nor-
malized by the area of the reference shape. In other words,
where A is the reference shape (i.e. a set of pixels) and B is
the shape detected via our algorithm, our normalized
error measure e is calculated as:

_ (A-B)U(B-A)

area(A) (8)

The same error measure is calculated for the reference
shape and the shape detected via manually-initialized
ASM. ANOVA is then performed for all three structures to
determine whether there is a significant difference
between results obtained via manual initialization and
results obtained using our hierarchical automatic initiali-
zation algorithm.

http://www.biomedcentral.com/1472-6947/9/S1/S2

When comparing results for pelvic ring detection, ANOVA
calculates a p-value of 0.8431. For iliac crest detection, p =
0.0776, and for femur detection p = 0.6078. These p-val-
ues indicate no significant difference between results for
manual initialization and our automatic method. It
should be noted that in all three cases, the sum of normal-
ized error measure for our automated method is less than
the sum for manual initialization. This is particularly not-
icable in iliac crest detection, explaining the lower p-value
for that ANOVA test. Figures 6, 7 and 8 present the
ANOVA boxplots for left iliac crest detection, left femur
detection and pelvic ring detection respectively. It can be
seen that the automatic initialization offers slightly more
consistent results, with less variance.

Visual inspection

As with many image-processing techniques, visual inspec-
tion may be helpful in evaluating performance. The
results were evaluated by two radiologists and one trauma
surgeon. Detection of each structure was classified across
the fifteen test images into three categories: Good, Accept-
able, and Unacceptable. These categories are subjective,
but since our algorithm is trained on a set of human-
labeled images, the classification provides useful feed-
back. The results are presented in Table 1. The left and
right pubis show a number of unacceptable results. How-
ever, the crests, femur and pelvic ring are almost always
detected to at least an acceptable standard; typically, seg-
mentation is rated as good.

Figures 9 and 10 illustrate some successful segmentation
examples. Edge detection is generally accurate for all key
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Figure 6

ANOVA boxplot for left iliac crest detection. Boxplot
generated from ANOVA test for left femur detection results
using manual ASM initialization and using our hierarchical
automated algorithm.
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Figure 7

ANOVA boxplot for left femur detection. Boxplot gen-
erated from ANOVA test for left iliac crest detection results
using manual ASM initialization and using our hierarchical
automated algorithm.

structures. This suggests that the automated algorithm
performs accurate initialization of the ASM starting shape.
In both Figures 9 and 10 the detected right iliac crest is not
smooth, but this is expected to improve by applying prior
image processing to enhance the dark outer edges of the
crest. The crucial outcome is that the algorithm locates the
correct region for each structure and therefore successfully
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Figure 8

ANOVA boxplot for pelvic ring detection. Boxplot
generated from ANOVA test for pelvic ring detection results
using manual ASM initialization and using our hierarchical
automated algorithm.
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Table I: Visual inspection results

Structure Good Acceptable Unacceptable
Left lliac Crest Il 4 0
Right lliac 12 2 |
Pelvic Ring 10 5 0
Left Pubis 9 | 5
Right Pubis 10 | 4
Left Femur 12 3 0
Right Femur Il 3 |

Segmentation performance of all key structures over |5 test images,
as evaluated by experts.

initializes ASM, with performance at least equal to man-
ual initilization by the user. These areas can later be ana-
lyzed to detect particular types of fracture. The hierarchical
nature of our method allows for rapid and accurate detec-
tion of these areas, using basic anatomical information
and knowledge gained at each step of the process.

Figures 11 and 12 demonstrate some difficulties in seg-
mentation. In Figure 11, detection of some structures is
very accurate (left femur, right iliac crest, pelvic ring, left
pubis), but detection of the right pubis is distorted, and
part of the left iliac crest is excluded. The first issue may be
due to the variation in pubis bone shape and angle across
the dataset and may be improved by training across a
wider range of patients or using more control points dur-
ing initialization. Detection of the left crest, meanwhile,
appears to have converged towards an internal 'false edge'
with similar greyscale intensity statistics to the true edge.
Figure 12 demonstrates excellent detection of the crests
and ring and reasonable detection of the femurs.

Detection of the pubis bones, however, is less accurate;
this may be due to the reason described above.

Discussion

The results of our algorithm on test images are promising,
and the hierarchical approach greatly aids in correct ini-
tialization of the ASM shape algorithm.

Despite occasionally poor detecton of contours, it can be
observed in all images that the general position of each
structures was correctly determined. This will allow each
area to be analyzed for specific fracture characteristics.
Furthermore, the similarity in results between our auto-
matic algorithm and manual initialization suggests that
the detection issues are due to ASM itself. Independently
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Figure 9

Automated detection results: first example. Example
results for automated detection of all key pelvic structures.
Results are accurate for all regions.

of this, ANOVA results indicate that our automatic initial-
ization algorithm performs at least as well as manual ini-
tialization in detection and segmentation of key pelvic
structures.

As evaluated by two radiologists and one trauma surgeon,
detection of the crests, the ring, and the femurs was gener-
ally accurate in almost all cases. Detection of the pubis

Figure 10

Automated detection results: second example. Exam-
ple results for automated detection of all key pelvic struc-
tures. Results are accurate for all regions.

http://www.biomedcentral.com/1472-6947/9/S1/S2

proved more of a challenge, but we intend to use more
control points to control placement and perhaps prior
deformation of the template shape before performing
ASM detection. In some cases, artifacts on the x-rays
caused the detection of false edges; if these can be distin-
guished from bone, possibly via texture analysis, these
false edges can be avoided. The algorithm performs fairly
well in the presence of background intensity variations. In
Figure 9 it can be seen that the detection of the iliac crests
was successful despite the dark edges of the structure com-
pared to other example images. This indicates that the pre-
processing of the images was successful in alleviating
brightness and constrast variations. Background soft tis-
sue, which can display similar intensity statistics to bone,
was also correctly excluded from the segmentation results.
Though there is frequent noise and intensity variation
within the pelvic ring area, this structure was also success-
fully detected. Improvements can be made to the algo-
rithm to compensate for the significant histogram
differences between images. This preprocessing would
naturally be automatic, to be integrated fully into the
existing system.

Our method is fully automated, and, excluding the need
for labelled training examples, no input is required from
the user. The number of training examples required is also
relatively low. As our dataset consists of pelvic injury
patients, we have observed that the algorithm performs
well in the presence of fracture. By isolating specific pelvic
regions, we can then search these areas for fracture via
such methods as texture analysis. Exceptions will occur
when the pelvic ring is completely disrupted or the femurs
are severely fractured. However, these injuries are so
severe and so clearly visible that it is unlikely our system
would be necessary.

Fractures of the pubis may be challenging to detect using
our method in its current form, as the superior ramus and
inferior ramus can break into two separate parts. This cre-
ates a gap in the bone edge. However, ASM may actually
aid in detecting such fractures. if we are able to superim-
pose the general shape on the x-ray, we will be able to
detect sudden dark spots (i.e. gaps) along the bone edge.
The success of this approach will depend on alterations
made to the fitness function, to better preserve the shape
of the pubis in the presence of significant edge disruption.

Time complexity for the algorithm is acceptable; when
tested on an Intel quad-core machine with 4 GB RAM,
running time for a single image was approximately 1
minute. As the most time-consuming step is Hough circle
detection, it is likely that the running time can be
decreased by reducing the range of radii searched. This can
be achieved by modelling the ratio of femoral head radius
to femoral shaft width as a Gaussian, as outlined in [15],
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Figure 11

Automated detection results: third example. Example
results for automated detection of all key pelvic structures.
Results are good for pelvic ring, right crest and left pubis.
Performance on other structures demonstrates some issues.

and searching the 95th percentile of the normal cove. We
believe the same approach will apply to Hough detection
of the iliac crests; preliminary analysis of the dataset sug-
gests a relationship between crest radius and pelvic ring
width. The ASM steps were quickly completed, which is
likely due to the multi-resolution approach.

Figure 12

Automated detection results: fourth example. Exam-
ple results for automated detection of all key pelvic struc-
tures. Results are good for pelvic ring, both crests and the
right femur. Performance on other structures demonstrates
some issues, particularly left and right pubis.

http://www.biomedcentral.com/1472-6947/9/S1/S2

Although training is required for the algorithm to perform
successfully, based on the current approach we anticipate
it would need to be performed once per x-ray machine, in
order to take account of differences in grey-scale range and
intensity. Note that once these differences are equalized
via preprocessing - an area we are currently exploring -
training could be done offsite, using a separate database of
past patients, prior to deployment of the system.

Conclusion

This paper provides a automated hierarchical method for
segmentation of key structures from pelvic x-ray images:
the iliac crests, the femurs, the pelvic ring and the pubis
bones. First, directed Hough transform is used to detect
the femur shafts, and so correctly determine the patient's
horizontal position within the image. Hough transform is
then combined with ASM to detect the femur - and in
turn, the acetabulum. The position of the femurs is used
to initialize ASM for pelvic ring detection, and the loca-
tion of the pelvic ring is then used to initialize ASM for the
pubis bones and to direct Hough transform for detection
of the iliac crests. After the general position of the crests is
known, ASM is applied. Our method offers several
improvements over existing approaches. First, and most
crucially, it is entirely automatic, requiring no user input
other than specifying the patient's gender. It also performs
accurately in the presence of fracture and deals with sev-
eral issues affecting x-ray imaging in a clinical environ-
ment; specifically, uncertain pose angle and position of
patient, and greyscale variations caused by differences
between x-ray machines.

Future work will focus on refinement of the algorithm,
particularly in dealing with a wider range of patient pose
angles. As future work, we will also incorporate the Hough
transform results into the active shape model algorithm
for weighting, as well as for initialization of the starting
shape. The Active Appearance Model algorithm (AAM)
will also be tested for comparision; this has also been used
within the literature for segmentation of medical images.
We also plan to more finely control the deformation of
the ASM template via the use of splines for maintaining
curvature. After the segmentation process has been
refined, work will begin on fracture detection within the
identified structures. This will be integrated into a more
comprehensive system under development, where details
of fracture type and severity can be combined with physi-
ological and demographic information to provide accu-
rate diagnostic recommendation to physicians.
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