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Abstract
Background: Combining multiple databases with disjunctive or additional information on the
same person is occurring increasingly throughout research. If unique identification numbers for
these individuals are not available, probabilistic record linkage is used for the identification of
matching record pairs. In many applications, identifiers have to be encrypted due to privacy
concerns.

Methods: A new protocol for privacy-preserving record linkage with encrypted identifiers
allowing for errors in identifiers has been developed. The protocol is based on Bloom filters on q-
grams of identifiers.

Results: Tests on simulated and actual databases yield linkage results comparable to non-
encrypted identifiers and superior to results from phonetic encodings.

Conclusion: We proposed a protocol for privacy-preserving record linkage with encrypted
identifiers allowing for errors in identifiers. Since the protocol can be easily enhanced and has a low
computational burden, the protocol might be useful for many applications requiring privacy-
preserving record linkage.

Background
Combining multiple databases with disjunctive or addi-
tional information on the same person is occurring
increasingly throughout medical research. More than 55%
of approximately 3,400 entries in PubMed on "record
linkage" have been published over the last 10 years. Since
many studies in public health and epidemiology are
based on surveys, it is surprising that there are now more
entries in Pubmed on "record linkage" than on the com-
bination of "survey" and "respondents". The availability
of large medical databases and unique person identifier
(ID) numbers has made widespread use of record linkage
possible. But in many research applications not all data-
bases contain a unique ID number. In such situations,
probabilistic record linkage is most frequently applied for

the identification of matching record pairs [1]. However,
in many applications the identifiers have to be encrypted
due to privacy concerns, which is problematic because
linking encrypted identifiers can result in serious compli-
cations. Although there are some intriguing approaches
proposed in the literature, these have a number of prob-
lems, for instance they involve very high computing
demands or high rates of false positives or false negatives.
Hence we developed a new procedure which addresses
these problems.

Introduction
Medical databases of people usually contain identifiers
like surnames, given names, date of birth, and address
information. Distribution of scientific files containing
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such information is legally restricted in most countries.
The problem of finding records that represent the same
individual in separate databases without revealing the
identity of the individuals is called "privacy-preserving
record linkage" [2], "blind data linkage" [3], or "private
record linkage" [4]. Methods for privacy preserving record
linkage can be subsumed under the general field of pri-
vacy preserving data integration [2] which also comprises
a vast literature on privacy preserving database joining
and querying [5-9]. However, this work either uses exact
identifier comparisons or does not address the problem of
generating micro data sets which are usable for general
statistical purposes.

Initially, the obvious solution for privacy-preserving
record linkage seems to be the encryption of the identifi-
ers with a standard cryptographic procedure. An example
is the Keyed-Hash Message Authentication Code (HMAC)
introduced by [10]. The data holders apply a HMAC using
a previously agreed secret key on the identifiers in their
databases and send only the results of the HMAC (the
hash values) to a third party [11]. Since the identifiers
agree exactly if their corresponding hash values agree, the
third party can link matching records without knowing
the identifiers. Variants of this protocol using exact match-
ing have been published [12,13].

Since these protocols require exact matching of identifiers,
they do not tolerate any errors in these identifiers: Due to
the design specifications of cryptographic functions, the
slightest input variation results in many changes to the
output (ideally, a change of one input bit should cause a
change in half of the output bits). Applying probabilistic
record linkage [1,14] improves the situation considerably
since it does not require exact agreement in all (or even
most) identifiers. Rather, agreements in strongly differen-
tiating identifiers might balance disagreements in other
identifiers. However, using string similarity functions
within a probabilistic record linkage system will improve
the linkage quality considerably. In addition, since
records with variations of identifiers may have different
characteristics to records with exact matching identifiers,
restricting the linkage in this manner is not an option.
Therefore, a method for approximate string matching in
privacy-preserving record linkage is required. Originally,
encoding identifiers phonetically before hashing them
and using them with probabilistic record linkage proce-
dures was suggested to achieve this [15,16]. In a seminal
paper, Churches and Christen [11] recommended creat-
ing bigrams before hashing thereby allowing one to calcu-
late bigram similarity scores between identifiers. The
motivation on which these suggestions are based is to
transform the identifiers in a manner that allows consid-
eration of string similarities in a probabilistic record link-
age procedure despite encrypting them. The aim of our
paper is to describe a new method for the calculation of

the similarity between two encrypted strings for use in
probabilistic record linkage procedures.

Related work
Several methods for approximate string matching in pri-
vacy-preserving record linkage have been proposed (for
reviews see [12,17,18]). The protocols can be classified
into protocols with or without a trusted third party.

Three-party protocols
Some protocols rely on exact matching of encrypted keys
based on phonetically transformed identifiers by a third
party. Such protocols are used for cancer registries [19,20]
and information exchange between hospitals. In the pro-
posal of [15,16] identifiers are transformed according to
phonetic rules and subsequently encrypted with a one-
way hash function. To prevent some cryptographic attacks
on this protocol, the identifiers are combined with a com-
mon pad before hashing. The hash values are transferred
to a third party who hashes them again using another pad.
Then the third party performs exact matching on the
resulting hash values. Despite exact matching, the linkage
allows for some errors in identifiers, because hash values
of phonetic encodings are matched. Providing database
owners do not collude with the third party the protocol is
secure. However, string comparison using phonetic
encodings usually yields more false positive links than
string similarity functions [21-23].

[11] suggested a protocol based on hashed values of sets
of consecutive letters (q-grams, see below). For each
string, the database holders A and B create for each record
the power set of the q-grams of their identifiers. Each sub-
set of the power set is hashed by an HMAC algorithm
using a common secret key of the database owners. A and
B form tuples containing the hash values, the number of
q-grams in the hashed subset and the total number of q-
grams and an encryption of the identifiers to a third party
C. The number of tuples is much larger than the number
of records. To calculate the string similarity between two
strings a and b, C computes a similarity measure based on
the information in the tuples. As [11] shows, C is able to
determine a similarity measure of a and b by selecting the
highest similarity coefficient of the tuples associated with
a and b. To prevent frequency attacks, [11] propose to use
an additional trusted party, thereby extending the number
of parties involved to four. Furthermore, they recommend
hiding the tuples among tuples created from dummy
strings using Rivest's "chaffing and winnowing" technique
[24]. Apart from an increase of computational and com-
munication costs [25,26], the protocol is prone to fre-
quency attacks on the hashes of the q-gram subsets with
just one q-gram [17,18].

[27] used the value of a second identifier for padding
every single character of a string before encryption. Subse-
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quently, a third party is able to compare strings on the
character level and to compute a string similarity. This ele-
gant protocol requires a total flawless second identifier.
However, a second identifier with few different values is
open to a frequency attack.

In the protocol of [28] two data holders, holding lists of
names, build an embedding space from random strings
and embed their respective strings therein using the
SparseMap method [29,30]. Then, each data holder sends
the embedded strings to a third party which determines
their similarity. To create the embedding space, data
holder A generates n random strings and builds z reference
sets from them. Next, A reduces the number of reference
sets by the greedy resampling heuristic of SparseMap to
the best k < z reference sets. These k reference sets are used
to embed the names in a k-dimensional space. The coor-
dinates for a given name are approximations of the dis-
tances between the name to the closest random string in
each of the k reference sets in terms of the edit distance. As
a result, for each name A receives a k-dimensional vector.
After receiving the k reference sets from A, B embeds his
names in the same way. Finally, both data holders send
their vectors to a third party, C, who compares them using
the standard

Euclidean distance between them. Using SparseMap
allows the mapping of strings into the vector space avoid-
ing prohibitive computational costs. This is accomplished
by the reduction of dimensions using the greedy resam-
pling method and by the distance approximations. How-
ever, the experiments in [28] indicate that the linkage
quality is significantly affected by applying the greedy
resampling heuristic.

Pang and Hansen [31] suggested a protocol based on a set
of reference strings common to A and B. For a given iden-
tifier, both database holders compute the distances, d,
between each identifier string and all reference strings in
the set. If d is less than a threshold δ, the respective refer-
ence string is encrypted using a key previously agreed on
by A and B. For each identifier string, the resulting set of
encrypted reference strings along with their distances, d,
and an ID number form a tuple. Both database holders
send their tuples to a third party C. For every pair of ID
numbers where the encrypted reference strings agree, C
sums the distances, d, and finds the minimum of this sum.
If this minimum lies below a second threshold δsim, the
two original identifier strings are classified as a match. The
performance of the protocol depends crucially on the set
of reference strings. Unless this is a superset of the original
strings the performance is rather discouraging.

A different approach to solve the privacy-preserving
record linkage problem for numerical keys is taken by
[32]. They suggest using anonymized versions of the data

sets for a first linkage step that is capable of classifying a
large portion of record pairs correctly as matches or mis-
matches. Only those pairs which cannot be classified as
matches or mismatches will be used in a costly secure
multi-party protocol for computing similarities.

Two-party protocols
[33] suggested a protocol that allows two parties to com-
pute the distance between two strings without exchanging
them. Due to the large amount of necessary communica-
tion to compare two strings, such a protocol is unsuited
for tasks with large lists of strings as required by privacy-
preserving record linkage [28]. The protocol suggested by
[34] uses a secure set intersection protocol described in
[35]. However, this protocol requires extensive computa-
tions and is therefore also regarded as impractical for link-
ing large databases [4,28].

The protocol of Yakout et al. [36] assumes that the data
holders have already transformed their names into vectors
as described by Scannapieco et al. [28] and is designed to
compare them without resorting to a third party. In the
first phase, the two data holders reduce the number of
candidate string pairs by omitting pairs which are unlikely
to be similar. In the second phase of the protocol, the
standard

Euclidean distance between the remaining candidate vec-
tor pairs is computed using a secure scalar product proto-
col. Yakout et al. demonstrate that neither party must
reveal their vectors in the computations. Although more
parsimoneous, this protocol cannot outperform the pro-
tocol of Scannapieco et al. [28].

Results
Calculating string similarities using Bloom filters
The core problem of a privacy-preserving record linkage
protocol is the calculation of the similarity of two
encrypted strings. We suggest the use of Bloom filters for
solving this problem. A Bloom filter is a data structure
proposed by Bloom [37] for checking set membership
efficiently [38]. Bloom filters can also be used to deter-
mine whether two sets approximately match [39].

Outline of the method

Suppose the similarity of two surnames should be com-
puted. At first, both surnames are split into sets of consec-
utive letters (q-grams). Using 2-grams (usually called
bigrams), the 2-gram similarity between the input strings
_SMITH_ and _SMYTH_ (padded on both sides with
blanks) can be computed with the Dice coefficient as

, because each of these strings has 6

bigrams and the strings share 4 bigrams.

DA B,
.
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If we want to compute the similarity between those strings
without revealing the bigrams, we must use an encryp-
tion. Our protocol for privacy-preserving record linkage
uses a Bloom filter for this task. To accomplish this, we
store the q-grams of each name in a separate bit array (a
Bloom filter) using k multiple cryptographic mappings
(hash functions) respectively. Then we compare the
Bloom filters bit by bit and calculate a similarity coeffi-
cient.

Figure 1 illustrates the procedure for the two surnames
SMITH and SMYTH using 2-grams, Bloom filters with a
bit array of length 30, and two hash functions. The sur-
names are split into 2-grams and each of the resulting 2-
grams is stored in the Bloom filters A and B. For example,
the 2-gram _S (common to both names) yields the value
1 for the first hash function and the value 5 for the second
hash function: The bits on positions 1 and 5 are set to 1 in
both Bloom filters. In contrast, the 2-grams YT (hash val-
ues 2 and 3) and IT (hash values 27 and 29) occur in only
one string and consequently different bit positions are set
to 1. After mapping all bigrams to the Bloom filters, 8
identical bit positions are set to 1 in both Bloom filters. In
total, 11 bits in A and 10 bits in B are set to 1. Using the
Dice coefficient, the similarity of the two Bloom filters is

. Therefore, the similarity between two

strings can be approximated by using the Bloom filters
alone.

Since cryptographic (one-way) hash functions are used,
the initial input strings (names) can not be reconstructed

given only the resulting Bloom filters. Therefore, record
linkage by a third party or the research team is possible
despite the privacy of the initial identifiers.

Implementation details
Bloom filters
A Bloom filter is a bit array of length l with all bits initially
set to 0. Furthermore, k independent hash functions h1,...,
hk are defined, each mapping on the domain between 0
and l - 1. In order to store the set S = {x1, x2,..., xn} in the
Bloom filter, each element xi ∈ S is hash coded using the
k hash functions and all bits having indices hj (xi) for 1 ≤ j
≤ k are set to 1. If a bit was set to 1 before, no change is
made.

In general, set membership can be checked by hashing the
candidate element y using the same k hash functions. If all
bits having indices hi(y) in the Bloom filter are already set
to 1, y is presumably a member of the set S. There is a
probability f that the check indicates membership of y in
S when in fact it is not. It is obvious that the probability
of false positive cases depends on the bit array length l, the
number of hash functions k, and the number of elements
in S denoted by n (see [40]):

On the other hand, if at least one of the bits is found to be
0, y is definitely not a member of the set S.

Hash functions
To store the q-grams in the Bloom filters, the double hash-
ing scheme proposed by [41] was applied. They show that
only two independent hash functions are necessary to

2 8
10 11 762.

( ) .+ ≈

f e kn l k= − −( ) ./1 (1)

Example of the use of two Bloom filters for the privacy-preserving computation of string similaritiesFigure 1
Example of the use of two Bloom filters for the privacy-preserving computation of string similarities.
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implement a Bloom filter with k hash functions without
any increase in the asymptotic false positive probability
[41]. Therefore, k hash values are computed with the func-
tion

where i ranges from 0 to k - 1 and l is the length of the bit
array. For testing the algorithm, we used the well known
cryptographic hash functions SHA1 (h1) and MD5 (h2)
[42] in our implementation. In order to store surnames in
a Bloom filter, decisions on the length of the bit arrays l,
and the number of hash functions k must be made. The
choice of these parameters is discussed below.

Similarity measure
If two surnames have many q-grams in common, their
Bloom filters will have a large number of identical bit
positions set to 1. Since the proportion of zeros in a
Bloom filter for n q-grams is approximately [40]:

a long Bloom filter will contain mostly zeros. To assess the
similarity of Bloom filters, a coefficient insensitive to
many matching zeros is desirable. Therefore the Dice-
coefficient [43] was chosen. For comparing bit strings, the
Dice-coefficient can be defined as

where h is the number of bit positions set to 1 in both bit
strings, a is the number of bit positions set to 1 in A and b
the number of bit positions set to 1 in B.

Testing
The performance of the new method was compared with
the performance of the q-gram similarity between unen-
crypted surnames using simulated and actual databases.

Comparison methods and criteria
As is the norm in the information retrieval literature, the
criteria outlined by [44,45] were used to determine the
recall and precision of the new methods. For a given level
of similarity φ, a pair of records is considered as a match if
the pair is actually a true pair, all other pairs are called
non-matches [46]. Based on the common classification
for true positive (TP), false positive (FP), false negative
(FN) and true negative (TN) pairs, the comparison criteria
are defined as

Plotting precision and recall for different similarity values
f as a curve in a precision-recall-plot shows the perform-
ance of a string comparison method. A procedure with a
better performance will have a curve in the upper right of
the plot.

Tests on simulated databases
In order to test the effect of different numbers (k = 5, 10,
25, 50) of hash functions on the performance of Bloom
filters, similarities based on Bloom filters with a fixed fil-
ter length of 1,000 bits were compared with similarities
based on unencrypted 3-grams (trigrams) of simulated
data.

Additionally, we compared the proposed method to exist-
ing ones using a simulated database with a large number
of records. We tested various string comparison methods
within the same probabilistic record linkage procedure
and compared the linkage quality of each setting. As string
comparison methods we, used the Bloom filter method
with a filter length of 1,000 bits and 30 hash functions,
exact string comparisons and the Soundex phonetic
encoding method [47].

Procedures and data sets
For the first simulation study, 1,000 surnames were sam-
pled from the electronic German phone book. Lines con-
taining just a single character were removed, umlauts and
the German "β" converted and blanks, non alphabetic
characters and most common surname components like
"von" were deleted. A second list of names to be matched
with the original surnames was generated in a copy of the
file by changing exactly one character per name with prob-
ability p = .2 at a randomly chosen position in the name.
Therefore two files with 1,000 surnames 20% of which
differ at one position were used for computing string sim-
ilarities. For the second simulation study, we created a
large test database containing more realistic types of string
errors. We used the test data generator implemented in
Febrl [48] with its default settings since we regard them as
quite realistic. First, we generated 500,000 artificial
records containing identifiers such as given name, sur-
name, title, address, sex, suburb, postcode, and age. Then
we created a second database of the same size, resembling
the first but containing 125,000 modified records.
Amongst other error types, the test data generator allows
one to insert and delete character values, to transpose two
adjacent characters, to swap record fields and words, and
to introduce common misspellings of the strings found in
the records. We used given name, surname, address, street
number, sex and suburb as comparison variables for

g x h x ih x mod li( ) ( ( ) ( ))= +1 2   (2)
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matching. The same parameters for probabilistic record
linkage were used when testing the different string com-
parison methods.

Results for simulated databases
Figure 2 shows the results for the first simulation study.
The precision versus recall curves in figure 2A are very sim-
ilar. This is due to the fact that the probability of different
trigrams being mapped to the same bit is very low (this
probability is given by equation 1), since just five hash
functions map the trigrams of a name onto 1,000 bits.
When 10 hash functions are being used, the performance
of the Bloom filter method is still very similar to the unen-
crypted trigrams (figure 2B). A small difference between
the methods can be seen with 25 hash functions (figure

2C). However, even for 50 hash functions, the difference
is not large (figure 2D).

To summarize: Inspection of the precision versus recall
plots in figure 2 shows that if the number of hash func-
tions is increased, the difference between the curve of the
Bloom filter method and the curve of unencrypted tri-
grams also increases. However, at least up to 25 hash func-
tions the Bloom filter method performs quite well
compared with the unencrypted trigrams.

The results of our second simulation study (this time
using probabilistic record linkage) are shown in figures 3
and 4. Figure 3 shows the precision recall curves of the
Bloom filter method and the exact string comparison. The

Comparison of precision and recall for Bloom filters with unencrypted trigrams using simulated dataFigure 2
Comparison of precision and recall for Bloom filters with unencrypted trigrams using simulated data.
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Bloom filter method clearly outperforms the exact string
comparison. Figure 4 depicts the precision recall curves of
the Bloom filter method and Soundex. Again, the Bloom
filter method is superior, although the difference is not as
striking as before.

Comparison of the Bloom filter method, unencrypted 
bigrams and a phonetic encoding using actual databases
In a second test, the performance of the proposed method
was compared with the performances of unencrypted
bigrams and a German phonetic encoding. This encoding
(the so called "Kölner Phonetik") has been designed for
matching German names and is widely used (for example,
by the German cancer registries [20]).

Procedures and data sets
In the context of an evaluation of different probabilistic
record linkage procedures for research purposes, we con-
ducted a test of the proposed procedure on two German
private administration databases. Each database contains
identifiers of about 15,000 people. The task consisted of
finding the intersection of the data sets. For this applica-
tion we used bigrams with 15 hash functions on Bloom
filters with 500 bits. The performances of the unencrypted
bigrams, the phonetic encoding, and the Bloom filters was
assessed by comparing the results of three complete
record linkage runs with exactly the same parameters. The
"Merge Toolbox" [49] was used for the record linkage.

Results for actual databases
Figure 5 shows the precision recall plots of the Bloom fil-
ter method and the unencrypted trigrams. The perform-
ance of the Bloom filter method is quite comparable to
the performance of the unencrypted trigrams. Figure 6
shows the precision recall plots of the Bloom filter

method and the German phonetic encoding. The Bloom
filter method outperforms the phonetic encoding, espe-
cially at recall levels above .75 (figure 7 shows a cutout of
figure 6 to highlight recall levels above .75). This is mainly
due to the large number of false positives produced by the
phonetic encoding.

A Protocol for privacy-preserving record linkage
The previously described successful tests suggest the use of
the method within a protocol for privacy-preserving
record linkage. To add a layer of security, for an actual
implementation of the Bloom filter method the hash
functions SHA1 and MD5 should be replaced by a keyed
hash message authentication code (HMAC) HMAC-MD5
and HMAC-SHA1 [50] with a secret key K. Based on this

Comparison of precision and recall for Bloom filters with exact string comparison using simulated dataFigure 3
Comparison of precision and recall for Bloom filters 
with exact string comparison using simulated data.

Comparison of precision and recall for Bloom filters with Soundex using simulated dataFigure 4
Comparison of precision and recall for Bloom filters 
with Soundex using simulated data.

Comparison of precision and recall for Bloom filters with unencrypted bigrams using actual dataFigure 5
Comparison of precision and recall for Bloom filters 
with unencrypted bigrams using actual data.
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enhanced Bloom filter method, the implementation of a
record linkage method is quite simple. Our protocol
requires a third party, since each of the two database hold-
ers A and B could attempt a dictionary attack on the
Bloom filters of the other party because they know the
number of hash functions k, the secret key K and the
length of the Bloom filters l.

Two database holders A and B with data sets DBa and DBb,
a semi-trusted third party C and the recipient D of the
merged data set participate in the protocol. A holds a list
Sa of na strings, B holds a list Sb of nb strings.

1. Data holders A and B agree on a bit array length l,
on k hash functions, and a common secret key K.

2. For every string i in Sa, A performs the following
steps:

(a) A converts string i into the set of its q-grams.

(b) A stores the resulting q-gram set in a Bloom fil-
ter bfi of length l using the k keyed hash functions
with the key K.

3. A stores the resulting na Bloom filters and a ran-
domly generated unique ID number ida in a list BFa.

4. A removes any identifier in DBa, replacing them by
ida.

5. A sends DBa to D.

6. For every string j in Sb, B performs the following
steps:

(a) B converts string j into the set of its q-grams.

(b) B stores the resulting q-gram set in a Bloom fil-
ter bfj of length l using the k keyed hash functions
with the key K.

7. B stores the resulting nb Bloom filters and a ran-
domly generated unique ID number idb in a list BFb.

8. B removes any identifier in DBb, replacing them by
idb.

9. B sends DBb to D.

10. A and B transfer the lists BFa and BFb to C.

11. C compares all possible pairs of Bloom filters in
BFa × BFb counting the number of matching bits set to
1. The Dice similarity of the Bloom filters is used for
finding the best matching pairs.

12. C sends the list of best matching pairs BM consist-
ing of the tupels (ida, idb) to D.

13. D merges the files DBa and DBb using BM.

Our protocol is intended to match string attributes only.
However, as outlined above, there are various protocols
for matching attributes exactly in a privacy preserving
manner. These protocols can be used for the comparison
of numerical attributes in combination.

Discussion
With respect to the data holders A and B the protocol is
secure since neither holders have access to each others'

Comparison of precision and recall for Bloom filters with a phonetic encoding using actual dataFigure 6
Comparison of precision and recall for Bloom filters 
with a phonetic encoding using actual data.

Rescaled cutout of figure 6 highlighting recall levels above .75Figure 7
Rescaled cutout of figure 6 highlighting recall levels 
above .75.
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Bloom filters. The third party C observes the Bloom filters
of the data holders, but the encoding of the names is irre-
versible since the data holders use one-way hash functions
to store the q-gram sets in the Bloom filters. Providing the
data holders do not collude with the third party, a diction-
ary attack by C is impossible since the data holders use
keyed one-way hash functions.

However, C could mount a frequency attack on the Bloom
filters since the frequencies of the bit positions set to 1 will
reproduce the frequencies of q-grams in the original
strings. Padding the strings before splitting them into q-
grams will worsen the situation since the q-grams contain-
ing pads will be more frequent. Obviously, the success of
a frequency attack depends on the ratio of the number of
hash functions used to the number of bits the Bloom fil-
ters are initialized with. Given the Bloom filter length, the
more hash functions the data holders use, the more q-
grams will share some bits set to 1 in the Bloom filter and
the more difficult a frequency attack on the Bloom filters
will be. Adding dummy strings and thereby additional
Bloom filters using Rivest's "chaffing and winnowing"
technique [24] in a manner that masks the original fre-
quency distribution of bit positions set to 1 will provide
additional security.

Bloom filters of short strings might be especially problem-
atic since only a few bits are set to 1. Adding random q-
grams or adding random bits to the Bloom filters could
mitigate this problem.

Of course, the recipient D has a greater chance of re-iden-
tifying individuals from the merged data file as compared
to the individual files DBa and DBb. However, this pertains
to any kind of data linkage and is not an intrinsic problem
of the proposed method. Any real world application of
record linkage protocols has to guarantee factual anonym-
ity of the resulting micro data sets. This can be achieved in
many different ways. A technical option would be the use
of micro data disclosure control algorithms [51].

Another problem might be if the recipient D transfers the
merged data file to one of the data holders. The latter
would then be able to re-identify individuals in the other
holder's data base. However, this threat is common to any
linked data file. If such a transfer cannot be prevented by
legal means, the only remedy for this problem is a second
trusted party E. E supersedes the recipient D in the proto-
col, merges the files DBa and DBb in his place, and pertu-
bates the merged data file using disclosure control
algorithms. Afterwards, E transfers the pertubated file to
the recipient D.

Conclusion
We proposed a protocol for privacy-preserving record
linkage with encrypted identifiers allowing for errors in

identifiers. The protocol is based on similarity computa-
tions of Bloom filters with HMACs on q-grams. This
method has been tested successfully on simulated and
actual databases. The linkage results are comparable to
non-encrypted identifiers and superior to phonetic encod-
ings. Since the protocol can be easily enhanced and has a
low computational burden, the protocol might be useful
for many applications requiring privacy-preserving record
linkage.
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