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Abstract
Background: Syndromic surveillance (SS) can potentially contribute to outbreak detection
capability by providing timely, novel data sources. One SS challenge is that some syndrome counts
vary with season in a manner that is not identical from year to year.

Our goal is to evaluate the impact of inconsistent seasonal effects on performance assessments
(false and true positive rates) in the context of detecting anomalous counts in data that exhibit
seasonal variation.

Methods: To evaluate the impact of inconsistent seasonal effects, we injected synthetic outbreaks
into real data and into data simulated from each of two models fit to the same real data. Using real
respiratory syndrome counts collected in an emergency department from 2/1/94–5/31/03, we
varied the length of training data from one to eight years, applied a sequential test to the forecast
errors arising from each of eight forecasting methods, and evaluated their detection probabilities
(DP) on the basis of 1000 injected synthetic outbreaks. We did the same for each of two
corresponding simulated data sets. The less realistic, nonhierarchical model's simulated data set
assumed that "one season fits all," meaning that each year's seasonal peak has the same onset,
duration, and magnitude. The more realistic simulated data set used a hierarchical model to capture
violation of the "one season fits all" assumption.

Results: This experiment demonstrated optimistic bias in DP estimates for some of the methods
when data simulated from the nonhierarchical model was used for DP estimation, thus suggesting
that at least for some real data sets and methods, it is not adequate to assume that "one season fits
all."

Conclusion: For the data we analyze, the "one season fits all " assumption is violated, and DP
performance claims based on simulated data that assume "one season fits all," for the forecast
methods considered, except for moving average methods, tend to be optimistic. Moving average
methods based on relatively short amounts of training data are competitive on all three data sets,
but are particularly competitive on the real data and on data from the hierarchical model, which
are the two data sets that violate the "one season fits all" assumption.
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Background
This paper focuses on syndromic surveillance (SS), an
example of which is the frequent (usually daily) monitor-
ing of counts of patient visits categorized into syndromes.
The categorization arises upon mapping patient chief
complaint and/or diagnosis data to syndrome categories
such as respiratory, neurological, or gastrointestinal. The
definition of SS also includes non-clinical data sources
such as pharmacy sales, absenteeism, nurse hotline calls,
etc. Although we focus on syndrome counts, seasonal pat-
terns are sometimes present in these other SS data sources.

For overviews of SS, see reports from the 2004 National SS
Conference in the Morbidity and Mortality Weekly Report
[1] or publications available from [2].

SS can potentially contribute to outbreak detection capa-
bility by providing novel, timely data sources. However,
concerns remain regarding signal to noise ratios, costs,
maintainability, etc. [3]. One SS challenge is that some
syndrome counts (such as respiratory) vary with season in
a manner that is not consistent from year to year. Our goal
is to evaluate the impact of inconsistent seasonal effects
on performance assessments (false and true positive rates)
in the context of detecting anomalous counts in data that
exhibit seasonal variation.

To study the impact of inconsistent seasonal effects, we
injected synthetic outbreaks into real data and two types
of simulated data with attention to performance evalua-
tion issues that arise due to violation of the "one season
fits all" assumption. The informal term "one season fits
all" describes any model that assumes each year's seasonal
peak has the same onset, duration, and magnitude. For
the simulated data, we included (1) a nonhierarchical
model that assumes "one season fits all," and (2) a more
realistic hierarchical model that captures violation of this
assumption. We then evaluated the performance of sev-
eral forecasting methods, including a method not consid-
ered in earlier studies such as [4,5]. Each forecast method
has corresponding forecast errors defined as the difference
between the actual counts and the forecasted (predicted)
counts. Forecast errors are monitored to detect the
injected outbreaks. Performance is defined here as the
outbreak detection probability (DP) for a small false pos-
itive rate of one false alarm per year.

The following sections describe the data, the hierarchical
and nonhierarchical models, our study and its results, and
finally, provide conclusions.

Methods
Real rata: Emergency Center daily respiratory counts
We use data from the Emergency Center of the University
Hospital, Albuquerque NM (a tertiary-care county-univer-

sity health sciences center) collected from the BSafer sys-
tem [6]. The data is from the computerized patient
tracking system in place since 1994. We consider only
those daily counts for which the chief complaint was
mapped into the respiratory category.

Simulated data: nonhierarchical modeling with over-
dispersion
Let C(d) denote the number of counts recorded on day d
in a given syndrome. Several SS systems [6-8] have
reported models similar to the following:

where the notation

a)  captures the day-of-the-week effect, where,

Ii(d) equals 1 when day d is the i-th day of the week and

equals zero otherwise, and the seven coefficients {ci} are

constrained to sum to zero, resulting in six freely varying
day-of-week parameters,

b) [c8 + c9d] captures a long term linear effect,

c)  captures a seasonal

component, where the average number of days per year is
365.25, with the coefficients c10 and c11determining the

timing and amplitude of a seasonal effect.

Figure 1 (top) is a plot of the average daily count by week
from Jan 31, 1994 through May 31, 2003 for the respira-
tory syndrome from the Albuquerque University Hospital
BSafer system [6]. The smooth curve (in all three plots) is
the fit to Eq. (1) using all nine years of data.

If the model based on fitting Eq. (1) to the daily counts fit
the data well, then its predictions would also fit the aver-
age daily count by week very well, but notice that this is
not the case. First, a violation of Eq. (1) is that not all years
have the same seasonal peak onset, shape, or duration.
For example, there are small groups of large positive fore-
cast errors associated with several of the annual seasonal
peaks. Typically, this effect is neglected, and the resulting
forecast errors from fitting Eq. (1) exhibit serial correla-
tion arising from runs of positive (and negative) forecast
errors. Using the log transform improves the fit, but does
not eliminate the serial correlation. Second, even in the
absence of this violation, the variance-to-mean ratio is
typically considerably larger than one, so it is preferable to
use a model that is over-dispersed relative to the Poisson
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Average daily respiratory counts, by weekFigure 1
Average daily respiratory counts, by week (top) Real data; (middle) Data simulated from Eq. (1) (nonhierarchical model 
with larger-than-Poisson variance); (bottom) Data simulated from Eq. (2) (hierarchical model with larger-than-Poisson vari-
ance). In all 3 plots, the weekly averages begin on Jan 31, 1994 and end on May 31, 2003. The smooth curve is the Eq. (1) fit to 
all nine years of respiratory data.
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(having larger variance-to-mean ratio), such as the Nega-
tive Binomial [4].

The middle plot of Figure 1 displays data simulated with
a mean given by fitting Eq. (1), but using Negative Bino-
mial variation in order to have approximately the same
variance-to-mean ratio as in the real data. One of the con-
sequences of the "one season fits all" assumption
described above is that data simulated from the model are
likely to lead to optimistic performance claims regarding
outbreak DPs. We propose a hierarchical model that
largely overcomes this problem. The bottom plot of Figure
1 illustrates data from the hierarchical model (see the next
subsection for details of this model). Qualitatively, the
bottom plot is more similar to the real data than is the
middle plot.

Figure 2 shows real (top left) average daily counts by week
for 1993 and for 1994, beginning at week 20 so that the
peak will appear in the middle of the plot, data simulated
from the nonhierarchical (top middle) model with Nega-
tive Binomial variation to model the larger-than-Poisson
variance in the real data, and from the hierarchical (top
right) model, also with larger-than-Poisson variance. This
again shows that both the real data and the data simulated
from the hierarchical model illustrate lack of fit to the
"one season fits all" assumption that is implicit in Eq. (1).
For clarity, each bottom plot shows forecast errors (arising
in all three bottom plots from fitting the non-hierarchical
Eq. (1) to the corresponding data) for the same period,
weeks 20 through 123, without overlaying successive
years. These forecast errors and a smooth curve fit to the
errors illustrate serial correlation in the corresponding
bottom left and right plots. In contrast, the errors exhibit
much less (statistically negligible) serial correlation in the
bottom middle plot.

This lack of fit leads to undesirable behavior of sequential
tests that monitor for runs of successive positive forecast
errors, such as Page's test [9-11]. Page's test is based on
P(d) = max(P(d - 1) + e(d) - k, 0) and alarms (flags a count
or sequence of counts as being unusually high relative to
the forecasted value(s)) if P(d) exceeds a threshold h that
is set to achieve the desired false alarm probability. The
control parameter k is usually chosen to be one half of the
mean shift that is important to detect, and the forecast
errors e(d) are typically scaled to have unit variance.

Page's test is often an effective strategy for detecting multi-
day outbreaks [11], but Page's test does not perform well
in the presence of this type of serial correlation in the
errors. The runs of positive errors (such as can arise when
the high-count season starts earlier than its average start
date) inflate the value of Page's test and undesirably force

the use of a higher alarm threshold h, which reduces the
DP for true outbreaks.

Simulated data: hierarchical modeling with over-
dispersion
The nonhierarchical model in Eq. (1) is potentially useful
for some SS data, and perhaps also for our respiratory
counts in particular as a relatively simple, but rough
model for routine monitoring. It has the shortcoming,
however, of describing each season in a one-size-fits-all
fashion, which means that Eq. (1) incorrectly implies that
each year's seasonal effect has the same onset, duration,
and magnitude. As a consequence, forecast errors arising
from using Eq. (1) to forecast real data reflect modeling
imperfections (leading for example to serial correlation in
the errors) as well as purely random variability. In con-
trast, forecast errors arising from using Eq. (1) to forecast
data simulated from Eq. (1) (the nonhierarchical model)
tend to have unrealistically ideal behaviour (Figures 1 and
2) with negligible serial correlation. In order for simulated
data to lead to forecast errors that better represent those
resulting from real data we introduce a hierarchical
model.

Bayesian hierarchical modeling in our context is a gener-
alization of linear modeling in which model parameters
such as the seasonal and day-of-week coefficients and
other parameters follow a probability distribution whose
parameters may be estimated from the data [12]. For the
hierarchical model used here, the parameters characteriz-
ing the distribution of a given coefficient or a given
parameter in Eq. (2) below are not fixed, but instead are
assigned a prior distribution (the "hyperprior" in this con-
text) that can be estimated from other independent data.
This hyperprior is in the hierarchy of modeling assump-
tions relating data and parameters [12].

Our hierarchical model is similar to Eq. (1) except the sea-
sonal peak is modeled using a scalable Gaussian function,
in contrast with the fixed-width and fixed-location sine
and cosine harmonics [13]. Also, the underlying baseline
count rate changes linearly within a year, as opposed to
behaving linearly over a longer time period. In particular,
the expected number of counts on day d in year y is mod-
eled as

where
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a)  models the changing

baseline count rate by linearly interpolating between the
current (by) and the previous (by-1) off-peak baseline,

b) ay is the scaled peak amplitude for year y,

c) φ is the probability density for a standard normal ran-
dom variable,

d) Δy denotes the time of the peak for year y,

e) σy corresponds to the duration of the peak in year y, and

b d b
d

b by y y y( ) ( )= + −− −1 1365 φ
π

( ) ,/z e z= −1

2

2 2

Average daily average respiratory count, by week, for week 20 through week 71Figure 2
Average daily average respiratory count, by week, for week 20 through week 71. The same data as in Figure 1, but 
only for week 20 through week 71 in 1993 and for week 20 through week 71 in 1994. Note that the peak onset, shape, and 
duration varies each year in the real data (top left) and in data simulated from the hierarchical model (top right), but not in data 
simulated from the nonhierarchical model (top middle). The forecast errors arising from using Eq. (1) to forecast (Method 1) 
and a smooth curve fit to the errors illustrate strong serial correlation in the corresponding bottom left and right plots (and 
very mild or negligible serial correlation in the middle plot). Each bottom plot shows forecast errors for the same period, 
weeks 20 through 123, without overlaying successive years.
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f) the day-of-week effects are included using the indicator

function  as in Eq. (1). Other effects such as hol-

iday effects can easily be included in either Eq. (1) or Eq.
(2). In addition, the variance-to-mean ratio is not con-
strained to be one. Instead, we let vari-

ance , where as ψ → ∞, the

variance-to-mean ratio approaches 1. Graves and Picard
[13] provide additional mathematical details including
hyperprior specifications.

In our context, there is non-negligible year-to-year varia-
tion in each seasonal peak (Figs 1 and 2) and baseline,
and also in the day-of-week effects. On the basis of the
hierarchical model, we generate counts for a particular
Tuesday, say, as follows. First, we randomly choose an off-
peak baseline by for the given year (and for the year prior

so that linear interpolation of two baseline off-peak
means can be applied), then randomly choose parameters

ay, σy, and Δy so that the term , which

describes the seasonal increase, if any, can be computed
for the given time of year, then add the Tuesday effect, ci

with the value of i denoting Tuesday, and finally, simulate
a count from a distribution that is over-dispersed relative

to the Poisson to an extent determined by ψ, but has an
expected value corresponding to the randomly-chosen
effects. This approach assumes, as we empirically verified,
that the coefficients are approximately mutually inde-
pendent.

Clearly, this hierarchical, synthetic data generation
scheme differs from that given by Eq. (1), which assumes
each year's season is the same (with respect to onset, dura-
tion, and magnitude of the peak, except for the drifting
baseline). Hierarchical methods eliminate the "one sea-
son fits all" modeling assumption by allowing, for exam-
ple, each year to have its own linear baseline, its own
onset of peak activity, its own seasonal duration, and its
own peak magnitude.

Fitting the hierarchical model to the BSafer [6] respiratory
counts illustrates the year-specific nature of the seasonal
pattern. On average, the respiratory counts peak on Janu-
ary 22, with a season-to-season standard deviation of 12
days. The durations of individual seasons, defined in
terms of the standard deviations for the Gaussian-shaped
peaks, vary by a factor of two over the monitoring period.

And there is no apparent relation between the time that
the peak occurs and the magnitude of the season. Such
details provide insight into the data that are obscured by
"one season fits all" models.

YADAS was used to estimate the hierarchical model
parameters using Markov Chain Monte Carlo (MCMC)
[14]. The MCMC strategy is to simulate observations from
the joint posterior distribution for all model coefficients
and parameters (c1, ..., c7, and ψ, and by, ay, σy, Δy, for each
year). We did this using YADAS by randomly choosing
starting coefficient values from the parameters' prior dis-
tributions, proposing small changes to each coefficient,
and accepting the changed values with a probability deter-
mined by the ratio of the posterior probability of the data
given these candidate coefficient values to the posterior
probability of the data given the current coefficient values.
After sufficiently many iterations, this Markov Chain pro-
duces a sequence of observations from the posterior distri-
bution for the parameters, which can be summarized, for
example, by calculating the mean and standard deviation
of the generated sequence of each parameter's values [12].
Given the joint posterior probability distribution for the
coefficients, we generate data for a given Tuesday in a
given year, for example, as described above.

Hierarchical models for real time SS cshould be consid-
ered, but at a computational cost. To capture the peak
time and magnitude of an ongoing season, the model
must be updated frequently (e.g., weekly), involving
lengthy runs of specialized software, but perhaps such a
method could improve upon simpler methods for detect-
ing anomalous outbreaks. Currently, nonhierarchical
models such as Eq. (1) are among the typical approaches
for real time SS [6-8]. We introduce the hierarchical model
here because, compared to fitting to Eq. (1), it is a better
model-based summary of the real data, and data simu-
lated from the hierarchical model provides as realistic or
more realistic estimates of outbreak DPs as detailed in the
next section.

Study description
Hutwagner et al. [4,5] reported results from a compari-
son-of-forecasting-methods study applied to data simu-
lated from a model similar to Eq. (1), using Negative
Binomial variation to capture over-dispersion relative to
Poisson dispersion. One purpose for our work is to sug-
gest that conclusions from studies that rely exclusively on
simulated one-season-fits-all data may be vulnerable to
optimistic claims arising from unmodeled data features,
such as violation of the "one-season-fits-all" assumption.
As we have discussed, our outbreak-free training data con-
tains a yearly seasonal effect that is not considered to be
an outbreak that should be detected. In other contexts a
goal might be to determine whether SS data could more
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rapidly detect the onset of the influenza season than exist-
ing surveillance methods based on definitive influenza
test results [6].

Using real respiratory syndrome counts collected from the
BSafer system [6] from 2/1/94–5/31/03, we varied the
length of training data from one to eight years, applied a
sequential test to the forecast errors arising from each of
eight forecasting methods, and evaluated the DP on the
basis of injected synthetic outbreaks and the use of Page's
test to detect anomalous values. We did the same for each
of the two corresponding simulated data sets. The nonhi-
erarchical model's simulated data set assumed that "one
season fits all." The hierarchical model's simulated data
set did not assume that "one season fits all," as described
above. The following paragraphs provide more detail.

The forecasting methods in [4,5] included moving aver-
ages and historical averages using periods that bracket the
period being forecasted. This study includes the same
forecasting methods, plus adds a method that fits the
training data to Eq. (1), and adds an exponentially
weighted moving average (EWMA) method [15]. We
include results for the real data and for data simulated
from one realization each of the hierarchical and nonhier-
archical models.

Because the forecast errors from each method were ana-
lyzed using Page's test (see the Methods section), the
methods differ only on the basis of the forecasting
method. Also, because the log transform improves the fit
to Eq. (1), we computed forecast errors e(d) from a fit to
S(d) = log(C(d) + 1) rather than to C(d) for all forecast
methods. These forecast errors were scaled to have unit
variance prior to application of Page's test.

The eight forecast methods are as follows. Method 1 uses
the fit to Eq. (1) as the forecast. Method 2 is EWMA, where
the day d forecast for the series S is F(d) = αS(d-1) + (1 -
α)F(d - 1). The coefficient α was chosen to minimize the
forecast error variance in the training data, and was
approximately 0.2 in all training cases. Method 3 is a 7-
day moving average, using a gap of 1 day (so the forecast
for day 9 is the average of days 1 to 7, etc.). Method 4 is a
7-day moving average using a gap of 3 days. Method 5
uses the historical average (in the training data) of days d-
1, d, and d + 1 to predict day d. Method 6 uses the histor-
ical average of three 4-day windows: the 4-day window
containing day d and the 4-day windows before and after
this 4-day window containing day d. Method 7 is the same
as Method 5, except uses only day d in the training data to
predict day d in the test data. Method 8 is the same as
Method 6, except uses only the historical average of a 4-
day window that contains day d. Methods 3–8 or minor
variations thereof were evaluated in [4].

The data for our study exhibits a strong day-of-week effect.
Monday counts are higher than Friday counts by an aver-
age of approximately 7, but with substantial variation. For
example, in nearly 25% of the weeks, Monday counts are
lower than Friday counts. To accommodate day-of-week
effects, the moving average results reported in [4] used
averages of 7-day windows. We experimented with 1 to 10
day windows and various gaps (see below) and empiri-
cally confirmed that with BSafer [6] data, a 7-day window
is the most effective size. Using a 7-day window ensures
that each day of the week contributes to the average.

The training data sets include: (1) the real data [6] shown
in Figure 1, (2) simulated data from the non-hierarchical
model fit to the real data having Negative Binomial varia-
tion around expected counts arising from Eq. (1), and (3)
simulated data that follows the hierarchical model fit to
the real data allowing yearly variation in the seasonal
coefficients as described. For both the hierarchical and
non-hierarchical sets of simulated data, parameters were
chosen in order to approximately match the variance-to-
mean ratio of 1.8 observed in the real data.

For each of the 3 data sets, for each case, as defined by the
number of training years, 1000 outbreaks were simulated,
with each outbreak having random (uniform) duration of
1 to 20 days, beginning at a random (uniform) day (from
1 to the number of days (365 or 366) in the test year), and
shaped like a lognormal distribution with a rapid rise and
slow decline in counts. Each simulated outbreak was
inserted into the test year simply by adding the simulated
outbreak to the test data beginning at the random starting
day. Outbreaks lasting multiple days that began near day
365 were truncated to fit within the testing year. The total
number of injected counts over the duration of each out-
break also varied randomly (uniformly) from 5 to 50
times the standard deviation of the forecast errors arising
from using forecast method 1 (see below) in the training
data for all eight years. This outbreak size was chosen to
give reasonably large DP for a false alarm rate (a false
alarm is any alarm occurring in the training data, which
contains no outbreaks) of one per year. Because most out-
breaks were multiple days, this study reports results only
for a sequential test (Page's) applied to the forecast errors.
Other tests that scan for multiple-day outbreaks could be
considered [16].

Training data consisted of various training cases, defined
on the basis of whether the first year, the first two years,
the first three years, etc. were used for training. In each
training case, the test year for DP assessment and for com-
paring the nominal (anticipated false alarm rate on the
basis of the false alarm rate on the training data) to the
actual false alarm rate was the year immediately following
the end of the training period. The year for selecting Page's
Page 7 of 10
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threshold h to achieve one false alarm per year was the
final year of the training data. For example, in the case
with two years of training data, year two is used to choose
the threshold h for Page's test, and year three is used to
compare the actual to the nominal false alarm rate (prior
to outbreak insertion) and for assessing DPs (following
outbreak insertion).

Results
Study results
Table 1 lists 100 times the DP by method, length of train-
ing data, and data set. Traditionally, Methods 5–8 have
been used with at least 3 years of training data [4]; there-
fore the average DPs summarized below and in Table 1
refer to averages over the cases having 3–8 years of train-
ing data for Methods 5–8 and cases having 1–8 years of
training data for Methods 1–4.

Individual entries in Table 1 are each based on 1000 sim-
ulations, so their confidence limits are approximately ± 2
(on the basis of the normal approximation to the bino-
mial). Upon repeating the set of 1000 simulations and
making each comparison twice, we found that when com-
parisons among the eight methods or three data sets are
made using averages, the values of the paired differences
are repeatable to within approximately ± 1.

Study summary
Table 1 can be summarized as follows. The DPs tend to be
highest for data set 2 (nonhierarchical model), as
expected. The average DP is 0.83 for data set 1 (real data),
0.88 for data set 2 (nonhierarchical model), and 0.84 for
data set 3 (hierarchical model). The DPs from data set 3
are generally closer to those from the real data (average

DP difference of 0.01) than are the DPs from the nonhier-
archical model (average DP difference of 0.05). The aver-
age DPs by method are given in the last row, and indicate
that Methods 1 and 5–8 have large positive differences
(optimistic bias) between the DP for data set 2 and the DP
for data set 1. The moving average methods (Methods 2–
4) show negligible evidence of optimism and Methods 3
and 4 actually show evidence of pessimistic bias. There are
occasional bad test years (rows 3 and 6) that have low DP
even if there are multiple training years. The boldface
entries in the final row indicate instances in which DP
estimates based on data simulated from the non-hierar-
chical model are optimistic compared to the real data and
data simulated from the hierarchical data.

Discussion
Although sufficient real data was available, [4] and [5]
used simulated data to estimate DPs. Whether DPs on
simulated data will be close to those on real data is always
an important question, and significant differences in DPs
between simulated and real data as found here can lead to
improvements in the simulation model.

We do not suggest that forecast Methods 1 through 8
should in general be ranked according to their DPs
reported here. This study is based on one data set with one
type of simulated outbreak (approximately lognormal
with varying numbers of days), one type of sequential test
(Page's) and one nominal false alarm rate (one false alarm
per year). In fact, Brillman et al. [6] illustrated relatively
good performance of Method 1 when a higher false alarm
rate is allowed and smaller outbreaks were injected. We do
want to emphasize again, however, that Method 1 is
among the most prone of the methods considered here to

Table 1: Detection probabilities (multiplied by 100) by forecast method, length of training data, and data set.

Forecast Method

Years of 
Training Data

1 Eq. (1) 2 EWMA 3 Avg1 4 Avg2 5 HistAvg1 6 HistAvg2 7 HistAvg3 8 HistAvg4

1 year 88,86,100 93,92,88 92,72,86 89,78,84 81,74,84 84,75,100 71,61,92 79,74,100
2 years 69,79,49 94,91,90 92,73,89 90,78,89 74,61,62 77,65,68 70,53,55 73,63,64
3 years 70,99,95 89,93,93 87,92,91 81,88,89 66,90,65 69,94,82 61,89,69 68,90,66
4 years 83,94,99 89,90,91 89,89,89 81,89,71 79,89,97 78,90,97 76,88,95 66,92,94
5 years 92,90,68 91,95,85 88,92,72 84,91,75 76,83,73 77,86,75 73,80,70 76,83,75
6 years 75,91,96 90,95,86 90,88,82 86,72,66 68,84,93 68,90,93 66,84,93 68,89,90
7 years 96,92,66 93,86,91 92,80,92 90,88,87 97,90,72 97,92,74 96,90,70 96,91,73
8 years 82,93,96 95,96,91 94,91,84 92,89,81 87,90,94 88,92,94 88,88,94 89,87,93
Average 83,91,84 92,92,89 91,85,85 87,84,81 79,88,82 79,91,86 77,86,82 77,89,82

The (x,y,z) entry in each cell denotes 100 times the DP (with a false alarm rate of one per year) for the real data, data simulated from the 
nonhierarchical model, and data simulated from the hierarchical model, respectively. Individual entries are each based on 1000 simulated outbreaks, 
so their confidence limits are approximately ± 2. In the last row, boldface entries indicate optimistic DPs attributable to using data simulated from 
the nonhierarchical model. The eight methods are based on applying Page's test to forecast errors based on forecasts from: (1) a fit to Eq. (1), (2) 
EWMA, (3) moving average with a 1-day gap, (4) moving average with a 3-day gap, (5) historical average using day d, d-1, d+1 in the training data to 
predict day d in the testing data, (6) historical average using three 4-day windows, (7) historical average using day d, and the (8) historical average 
using one 4-day window.
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optimistic claims arising from using a nonhierarchical
model. On the other hand, if seasonal and/or day-of-week
effects were more consistent, then Method 1 should per-
form the best on the real data (and on data simulated
from the either the corresponding hierarchical or nonhi-
erarchical models) because Eq. (1) would be a better
description of the real data.

The moving average forecast methods (Methods 2–4) per-
formed relatively well on all data sets, showing relatively
high DP and less optimistic bias (no boldface entries in
the last row of Table 1) when comparing DPs from the real
data or from the hierarchical model to DPs from data sim-
ulated from the non-hierarchical model. Among Methods
2–4, the EWMA method is the best performer on the real
data, although there is no statistical difference among
Methods 2–4 for some cell entries in Table 1.

Recall that we selected alarm thresholds that corre-
sponded to one false alarm per year in the year prior to the
test year for which we reported the DP. This raises the
issue that alarm thresholds selected on the basis of limited
training and/or testing data might not have the desired
(nominal) false alarm rate in any given test year. All fore-
casting methods are vulnerable to having the actual false
alarm rates substantially different from the nominal alarm
rates. For example, the average (over all training cases and
methods) false alarm rates in the test year when thresh-
olds were selected on the basis of the previous test year
were 1.3, 1.1, and 3.1, respectively for data sets 1, 2, and
3, with Methods 1 to 8 having an average over all training
cases and data sets of 4.0, 0.9, 0.8, 0.8, 2.1, 2.5, 2.1, and
1.9 false alarms, respectively. Therefore, although these
are reasonably close to the nominal rate of 1 per year, this
effect is potentially of practical importance. Although we
focus on the respective DPs, this provides another sugges-
tion that Methods 1 and 5–8 do not perform well relative
to Methods 2–4, unless a "one season fits all" model ade-
quately describes the data.

Conclusion
For the data we analyze: (1) the "one season fits all "
assumption is violated, and DP performance claims based
on simulated data that assume "one season fits all," for
the forecast methods considered, except for moving aver-
age methods, tend to be optimistic, and (2) moving aver-
age methods based on relatively short amounts of training
data are competitive on all three data sets, but are particu-
larly competitive on the real data and on data from the
hierarchical model, which are the two data sets that vio-
late the "one season fits all" assumption.

More specifically, the DPs for all methods except for mov-
ing average methods on the real data are generally lower
than those for data simulated from the nonhierarchical

model, and closer to those for data simulated from the
hierarchical model. This suggests that when estimating
DPs, there are violations of the "one season fits all"
assumption that are important to model in the respiratory
counts from BSafer [6]. Moving average methods for this
data have high DPs, negligible observed tendency toward
optimistic DP claims, and achieved an actual false alarm
rate of slightly less than the nominal rate of one per year.

In some situations, only a few years of training data are
available. This is often a reason for using simulated data
for estimating DPs. This was also one reason for consider-
ing moving average predictions in [4]. In addition, mov-
ing average methods are known to be somewhat robust to
various modeling assumption violations [13], and to be
competitive, especially when training data is very limited,
or when there are relatively frequent changes in various
aspects of the data, such as in the off-peak baseline count
rate. On the other hand, moving average methods suffer
when forecast errors from later stages of multi-day out-
breaks are reduced once the early-stages of the outbreak
increase the moving average forecast, and if there are
strong day-of-week effects that are not accommodated.

One approach is to use several forecasting methods on
each particular data set. For example, BioSense [8] cur-
rently includes both moving average methods and a
method involving fitting a model similar to Eq. (1). How-
ever, the false alarm rate necessarily increases when mul-
tiple forecasting methods are used simultaneously.

We have not yet considered whether a hierarchical-model-
based forecasting method could be developed. It is possi-
ble that such a method could improve upon simpler
methods for detecting anomalous outbreaks such as those
considered here. For example, suppose elevated count
rates due to innocent seasonal effects occur somewhat ear-
lier in a given training year than predicted on the basis of
the Bayesian posterior distribution of peak season start
times. Such elevated counts could lead to a sequence of
large positive forecast errors if monitoring were based on
the non-hierarchical model, but only to moderately large
positive forecast errors if based on the hierarchical model.
Using such training data, the required decision thresholds
for any sequential test (such as Page's test) would tend to
be more elevated for the nonhierarchical model than for
the hierarchical model. This would lead to lower DPs for
the nonhierarchical model when true outbreaks occur.

Overall, for the data studied here, nonhierarchical models
tended to yield optimistic performance assessments com-
pared to assessments based on real data. Hierarchical
models aid our understanding of the data, and provide
more realistic model-based alarm thresholds and DP
assessments. Moving average methods tend to be more
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robust than model-based methods when those model-
based methods are based on simplistic (i.e., nonhierarchi-
cal) assumptions.
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