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Abstract

Background: Approximately 30% of intubated preterm infants with respiratory distress syndrome (RDS) will fail
attempted extubation, requiring reintubation and mechanical ventilation. Although ventilator technology and
monitoring of premature infants have improved over time, optimal extubation remains challenging. Furthermore,
extubation decisions for premature infants require complex informational processing, techniques implicitly
learned through clinical practice. Computer-aided decision-support tools would benefit inexperienced clinicians,
especially during peak neonatal intensive care unit (NICU) census.

Methods: A five-step procedure was developed to identify predictive variables. Clinical expert (CE) thought
processes comprised one model. Variables from that model were used to develop two mathematical models for
the decision-support tool: an artificial neural network (ANN) and a multivariate logistic regression model (MLR).
The ranking of the variables in the three models was compared using the Wilcoxon Signed Rank Test. The best
performing model was used in a web-based decision-support tool with a user interface implemented in Hypertext
Markup Language (HTML) and the mathematical model employing the ANN.

Results: CEs identified 51 potentially predictive variables for extubation decisions for an infant on mechanical
ventilation. Comparisons of the three models showed a significant difference between the ANN and the CE (p =
0.0006). Of the original 51 potentially predictive variables, the |13 most predictive variables were used to develop
an ANN as a web-based decision-tool. The ANN processes user-provided data and returns the prediction 0—I
score and a novelty index. The user then selects the most appropriate threshold for categorizing the prediction
as a success or failure. Furthermore, the novelty index, indicating the similarity of the test case to the training
case, allows the user to assess the confidence level of the prediction with regard to how much the new data differ
from the data originally used for the development of the prediction tool.

Conclusion: State-of-the-art, machine-learning methods can be employed for the development of sophisticated
tools to aid clinicians' decisions. We identified numerous variables considered relevant for extubation decisions
for mechanically ventilated premature infants with RDS. We then developed a web-based decision-support tool
for clinicians which can be made widely available and potentially improve patient care world wide.
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Background

Approximately 470,000 infants (~12%) are born prema-
turely in the US each year. Virtually all infants born at <27
weeks gestation, ~80% of those delivered between 27 and
30 weeks' gestation, and approximately 30% of the
infants born between 30 and 32 weeks' of gestation [1]
will develop respiratory distress syndrome (RDS) requir-
ing endotracheal intubation and intermittent positive
pressure ventilation starting soon after birth. Nearly 30%
of intubated preterm infants will fail attempted extuba-
tion, requiring reintubation and resumption of mechani-
cal ventilation [2]. Over the past years, several attempts
have been made to identify variables that are predictors
for extubation outcome in premature infants with RDS.
Although some studies [2-6] reported significant differ-
ences for certain variables between infant groups with
either failed or successful extubations, to date no univer-
sally applicable model has been developed to predict
extubation outcomes. Sample sizes used in these studies
were usually small (range: 18-36). Some of the studies
focused mainly on a small selected number of variables.
Additionally, statistical analyses included t-tests, ANOVA,
Mann-Whitney, and y2 tests, but no predictive models
were developed. The problem of determining the optimal
extubation time point for premature infants on artificial
ventilation, however, is extremely complex. It is based not
only on apparent relationships, e.g. blood gases and ven-
tilator settings, but also on a large amount of information
that is, in part, processed implicitly as the result of learn-
ing through clinical experience. Additionally, the decision
whether or not to extubate depends on a large amount of
information considered and weighed by the clinician.

Therefore, predicting the ideal time point for extubation
in this population requires excellent diagnostic skills but
remains a difficult task despite many technological
advances over the past decade. Determining the optimal
time point for extubation is crucial to minimize the
infants' times on artificial ventilation, thus minimizing
their risk of developing volutrauma (caused by large vol-
umes in the lung) and barotrauma (caused by high pres-
sures in the lung), retinopathy (caused by high arterial
oxygen), infection and subsequent bronchopulmonary
dysplasia (BPD) or chronic lung disease (CLD) [7]. The
decision to extubate, however, is complicated by the
smaller risk associated with too early extubation, having
to reintubate, therefore subjecting the infants to subse-
quent increases of ventilatory support due to alveolar col-
lapse or atelectasis that has occurred in the ensuing hours
after extubation [8]. These risks could be reduced if an
automated prediction system was available to assist the
neonatal intensive care unit (NICU) staff with extubation
decisions. Artificial neural networks (ANN) have been
found to be effective in the prediction of extubation out-
comes in adults [9,10]; however, only recently has the first

http://www.biomedcentral.com/1472-6947/6/11

use of an ANN been published for the prediction of extu-
bation outcomes in premature infants by the authors [11].

In recent years, more medical tools have been developed
and made available through the World Wide Web (Inter-
net). Many of those tools were created for educational and
research purposes, such as databases for evidence-based
medicine, drug information databases, or learning tools,
however, additional decision-support tools that aid clini-
cians in their decision-making are needed. Such tools
would greatly benefit from similar widespread availability
and maintenance-free, user-friendly interfaces.

Specifically, such decision-support tools would be partic-
ularly valuable during the care and treatment of prema-
ture infants in the NICU for the purpose of informing
inexperienced clinicians about infants potentially ready
for extubation during times when the NICU is over-
crowded and extremely busy and these infants may only
receive sporadic attention. Better infant intubation man-
agement would lower the infant's risk for re-intubation,
prolonged ventilation, and associated risks, especially
CLD, which in turn can reduce the number of days spent
in the NICU for the infants, leading to substantial reduc-
tions in health care costs. Rogowski et al. [12] reported
median treatment cost per infant in the NICU in 1994 of
$85,959-$91,969 for infants with birth weights of 501~
1,000 g and gestational age <34 weeks. In 1999, charges
associated with specific perinatal diagnoses were reported
to be the highest in health care; respiratory distress syn-
drome being the most expensive with a mean charge of
$82,648 and a mean length of stay in the NICU of 27.8
days (Healthcare Utilization Project Nationwide Inpatient
Sample, 1999, prepared by March of Dimes Perinatal Data
Center, 2002). Similarly, health care savings have been
demonstrated by improving extubation outcomes in
mechanically ventilated adults by Ely et al. [13].

An artificial intelligence machine-learning approach for
predicting extubation outcomes to support clinicians in
their decision-making has been developed with data from
183 preterm newborns with RDS on mechanical ventila-
tion [11]. Because clinicians using a decision-support tool
would need to access the reliability of the individual pre-
dictions, measures of error such as receiver operating char-
acteristic (ROC) curves and relevance such as a novelty
index are provided. Consequently, the decision-support
tool specifically can decrease the number of false-positive
(i.e. infants who were extubated too early) and false-neg-
ative (infants who could have been extubated earlier)
cases, potentially reducing the risks to intubated infants
and the dollar costs accompanying higher acuity and
extended lengths of hospitalization associated with these
risks.
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Example of an Algorithm for Ventilator Management
(adapted from Carlo and Martin, 1986).

To capture all variables relevant to the decision-making, a
paradigm was developed for environmental problems to
delineate the use of uncertainties in risk assessment [14].
In these guidelines Haimes et al. suggested working
closely with the decision-makers to convey important
issues and further recommended the use of guiding ques-
tions as an important strategy.

In this report, we describe the modeling of the thought
processes underlying infant extubation decisions and the
multiple variable associated with these thought processes.
Furthermore, we describe the development of a web-
based tool to predict extubation outcome using the previ-
ously identified variables. This tool will provide clinicians
with easy-to-use and widely accessible decision-support in
the care of premature infants with RDS on mechanical
ventilators.

Methods

Variable identification

Although risk assessment is mostly used for environmen-
tal problems, some of the guidelines proved useful in the
identification of relevant variables for the prediction
problem examined in this study [14]. Working closely
with the decision-makers was translated into working
closely with the clinicians to extract important informa-
tion (i.e. which variables were used in their decision). In
this work to identify potentially predictive parameters, the
authors included 2 clinicians (CW, DA) for their expert
opinion to establish a framework for the selection of the
variables. Different experts, i.e. different neonatologists,
may reach different conclusions, which may result from
different levels of knowledge and expertise and different
underlying assumptions. These different approaches are
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applied to patients with a variable amount of informa-
tion, starting from background information about the
infant, the pregnancy and delivery, and maternal health to
the most current information about the status of the
infant.

The development of guiding questions for this study as
suggested by Haimes et al. [14] resulted in a 5-step proce-
dure consisting of: 1) literature research and variable
selection; 2) discussion resulting in discarding of varia-
bles; 3) panel discussion and adding of variables; 4) bed-
side visits and adding of variables; and 5) discussion
about discarding of variables and inclusion of new varia-
bles.

1) Literature research and variable selection

As a first step, a literature review (Medline) was carried out
to identify variables that had been examined previously
for their predictive capabilities. Six studies [2-5,15,16]
reporting prediction capabilities for some variables were
used to compile a list of potentially predictive parameters.
A panel of experienced clinicians (CW, DA) then reviewed
the list and discarded variables that were not available at
the bedside at all times or that required additional exam-
inations of the infant. This decision was made for two rea-
sons. First, the study was based on retrospective chart
review, and therefore, could only retrieve routine parame-
ters of the infant's care in sufficiently large numbers. Sec-
ond, to ensure the future use of the model, it could not
require non-routine examinations that would incur addi-
tional expenses.

2) Discussion resulting in discarding of variables

During additional rounds of discussion with the experi-
enced clinicians (CW, DA), supplemented by several
nurses and respiratory therapists (n = 8), the list of the
remaining variables was re-evaluated.

3) Panel discussion and adding of variables

Variables not currently on the list but considered by the
expert panel (CW, DA) to be clinically important in deci-
sion-making were added. The roles of all the variables
were further discussed and relationships among variables
were established.

To visualize the relationships among some of the varia-
bles, we adapted a flow chart of the algorithm for ventila-
tor management created by Carlo and Martin [17]. This
flow-chart, shown in Figure 1, depicts the complexity of
the relationships by illustrating potential actions
(depicted as squares) that needed to be taken at a given
blood gas analysis result (middle of graph). The goal of
this chart is to reach the square labeled "extubate" in the
middle bottom part that can be achieved through adjust-
ments in the ventilator settings according to the results of
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the blood gas analysis. This graph is highly simplified,
showing only the relationships between ventilator set-
tings and blood gases. Furthermore, only binary (high ver-
sus low) situations for each decision node (diamonds)
were considered. Inclusion of a third possibility, such as
"adequate" would require a third dimension, and any
inclusion of more than 3 possibilities would render it
impossible to visualize the relationships.

4) Bedside visits and adding of variables

In this step, two expert clinicians (CW, DA) were followed
regularly during bedside visits in the NICU. The clinicians
were encouraged to "think out loud" as suggested by Eric-
sson and Simon [18] while determining the status of a
given infant and assessing the possibility for extubation.
These authors stated that "an explanation of thoughts,
ideas, or hypotheses or their motives is not simply a
recoding of information already present in STM [short
term memory]|, but requires linking this information to
earlier thoughts and information attended to previously".
Through this process, we were able to develop a chart list-
ing the variables that were considered during the assess-
ment of a given infant. Any variable that was mentioned
during the bedside visit was included in the chart regard-
less of perceived subjective importance for extubation. All
variables were grouped into one of nine categories: base-
line assessments, demographics, vital signs, weight, venti-
lator settings, age, medication, "baby looks comfortable",
and blood gases.

5) Discussion about discarding of variables and inclusion of new
variables

In further discussions with the clinicians (CW, DA), qual-
itative variables, such as "baby looks comfortable" or
"work of breathing" were translated into new variables
composed of quantitative parameters previously identi-
fied. Further, combinations of several parameters were
used to create new variables such as "over ventilated" or
"balanced pattern", which looks at a balanced pattern of
ventilator settings. (For example, the infant may have
weaned to room air (i.e. FiO, = 21%) but is still requiring
a high peak inspiratory pressure to maintain oxygena-
tion.) After data collection, variables were discarded if
their values were zero for at least 90% of the infants
included in the study.

The two clinical experts (CW, DA) and two additional
neonatologists (MS, JC) were provided with the complete
list of variables and were asked to rate each variable on a
scale from O (not important) to 10 (very important) for its
relevance in their decision-making whether or not to extu-
bate a given infant. The resulting ratings were used to
determine the mean score for each variable and its relative
importance compared to the other parameters.
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In the final phase, we used the complete set of variables to
develop an ANN and a multivariate logistic regression
(MLR) model (see below) to determine the best perform-
ing model of each category. Extensive modeling was car-
ried out to determine the best performing ANN with the
optimal set of predictive variables. In parallel, multiple
MLR models were developed to determine the optimal
variable set for this method. The best performing models
of the two methods were then compared using sensitivity
analysis and ROC curves (for details see [11]).

To explore further the diverse approaches - the two com-
putational models and clinical expertise — we compared
the ranking of each variable, i.e. their relative importance
in the full set across the three methods (ANN, MLR, CE)
using Wilcoxon Signed Rank Test.

Artificial neural network

ANNs are a machine-learning technique modeled after
natural nervous systems. In accordance with the structure
of the nervous system, the units in an ANN discriminant
function called neurons or nodes are arranged in layers:
the outer layers containing the input and output nodes
and at least one inner layer of hidden nodes where the
processing takes places. Nodes are fully interconnected
between layers but, typically, not within them. All connec-
tions between nodes carry weights, thus increasing or
decreasing the relative importance of certain nodes. The
regression process of repeatedly adjusting these weights is
designated as learning, which is stopped when the result-
ing error function is minimized, that is, the difference
between the observed outcome and the calculated output
[19]. Cross-validation, i.e. using subsamples of the data
for training while retaining other subsamples for valida-
tion with unseen data, was used for early stopping of the
ANN regression. Combined with bootstrapping, which
resamples with replacement from the original sample of
the number of hidden nodes, this method enables ANN
predictors to identify signals from noisy and unbalanced
sampled data [20,21]. Almeida provides a recent review of
ANN for the analysis of complex biomedical data [22].

MLR, a well-established statistical modeling tool [23],
uses sigmoidal functions for multiple parameters to dis-
criminate among categories. ANN identification is analo-
gous to two consecutive logistic regressions; therefore, the
multi-layered ANN topology in this study uses sigmoid
transfer functions. The fact that ANNs generalize MLR to
accommodate non-linear dependencies makes the expec-
tation of better performance of ANN over MLR mostly an
issue of proper implementation. Nevertheless, the relative
novelty of neural computing argues for a comparative
study of ANN and MLR.
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For the comparison of the ANN approach with MLR and
clinical expertise, a series of 10 ANNs using 51 input vari-
ables was developed. Because random values are assigned
to the weights of the nodes at the start of the training of a
given ANN, the results for these 10 ANN's were expected to
differ. For each of the 10 ANNSs, we performed a sensitivity
analysis that determines the influence of each input varia-
ble on the output of the ANN, the prediction score. Varia-
bles with high sensitivities are considered most important
in the model for the prediction. The mean sensitivity for
each variable across all 10 ANNs was calculated and
ranked from largest to smallest.

Multivariate logistic regression

This method models a dichotomous or ordinal outcome
such as extubation success or failure as a function of a set
of independent (predictor) variables. All 51 variables,
developed as part of the initial list of potential variables,
also were considered in the multivariate logistic regression
analysis. In the development of the first MLR model (MLR
model 1), the 51 variables were entered along with the
first order interaction terms among all 51 variables and
the second order interaction terms for variables known a
priori (clinically) to interact. In a second model (MLR
model 2), first order interaction terms of variables with
correlations below an arbitrarily chosen cut-off point (p =
|0.6|) were entered into the model along with the 51 var-
iables and known clinical interactions. In a third model
(MLR model 3), interaction terms of variables with corre-
lations above |0.6]|) were entered into the model along
with the 51 variables and known clinical interactions (see
additional file 1). These models were subjected to forward
selection procedures. The resulting regression models
were compared for their goodness-of-fit as determined by
Akaike information criterion and Hosmer and Lemeshow
goodness of fit test and then evaluated for their predictive
capabilities by determining the receiver operating charac-
teristic (ROC) curves and area under the curve (AUC) for
the predictions using the validation data. The model with
the largest AUC for the validation set was used for com-
parison with the ANN and clinical experts.

To determine the relative importance of the variables of
the MLR model, we used the %2 values for both sets of var-
iables: the wvariables included in and the variables
excluded from the final model. The variable with the larg-
est chi-square value (and the most significant p-value)
received the highest score; the variable with the smallest
chi-square value (and the least significant p-value)
received the lowest score for relative importance.

To further compare the ANN and the MLR computational
models to the clinical experts (CE), we used the sensitivity
values for the individual variables returned by the ANN,
the chi-square values for the MLR and the mean rank for
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the CE (CW, DA, MS, JC) as importance scores. Relative
importance determined from these importance scores was
used to compute Wilcoxon Signed Rank Test statistics for
comparison of the three methods. P-values were Bonfer-
roni-adjusted for multiple comparisons.

Receiver operating characteristic curves

ROC curves examine the performance of a given compu-
tational model [25]. True-positive and false-positive pre-
dictions are compared against a range of decision
thresholds. A true-positive prediction classifies an infant
who remains extubated as an extubation success. A false-
positive prediction classifies an infant who has failed extu-
bation as having success. The probability of a true-positive
result refers to the sensitivity of the prediction model. The
probability of a false-positive result is designated as 1-spe-
cificity, where specificity is the proportion of times the
model will classify an infant as failure when he has failed
extubation. In a coordinate system, the ROC curve graph-
ically shows the performance of the network with sensitiv-
ity representing the y-axis and 1-specificity on the x-axis
(i.e. the true-positive rate is plotted versus the false-posi-
tive rate for the prediction model). The area under the
curve (AUC) is equivalent to the probability that a suc-
cessfully extubated infant will be considered to be more
likely an extubation success than a failure, or an infant
who failed extubation will be considered to be more likely
an extubation failure than a success [26]. The results of the
sensitivity analysis and the ROC curves for the ANN were
compared to those obtained using logistic regression.

Sensitivity analysis

This methodology assesses the effect of change in input
variables on the output [22]. The sensitivity to a given
input variable is quantified by the ratio between the
change (1stderivatives) in output value over the change in
input value that causes it (equation 2) multiplied by 100.

Novelty index

The training of ANN is implemented with cross-validation
for early stopping to avoid over-fitting [22]. However,
there are no guarantees that predictions for new data will
be valid if those data are not within the original domain
of values. The purpose of the novelty index is to quantify
the degree of novelty of a new submission for ANN pre-
diction. Predictions generated for submissions classified
as "novel" should be considered cautiously or ignored
altogether.

Rationale

The novelty measure developed below combines the
Euclidean distance, ED, between a newly submitted set of
parameters and the reference data set (equation 1) with
the predictive sensitivity to the individual parameters
(equation 2). By use of the weighted Euclidean distance
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Schematic representation of the prediction tool. Data
entered by the user are delivered through the Internet to the
ANN housed on an Apache server. The ANN that was pro-
grammed in MATLAB calculates the prediction, which is
again returned through the Internet to the user and displayed
in the Internet browser.

(WED), the novel index obtained (equation 3) will
account for the importance of a given parameter in the
context of the values of the other parameters - e.g., an out-
lying value of a parameter to which the prediction has low
sensitivity should count less than that of a parameter with
high sensitivity.

Method development

The novelty of a new submission, y, could conceivably be
obtained simply by comparing the new values with the
reference values, x, (the ones used to train the ANN). A
straightforward approach would be to measure Euclidean
distance (equation 1) between the new submission, y, and
the reference set, x, and compare them with the distances
within the reference set.

# parameters 2
ED(xy)=[ X (vi-x) (1)
i=1

However, this approach would not take into considera-
tion that the difference in parameter values accounting for
the distance corresponds to parameters with variable pre-
dictive sensitivity (equation 2).

_%i O
O«y; 40 . Vi

(2)
O value of output parameter, calculated as an ANN(y)

y; value of ith input parameter

So«y, sensitivity of predicting O from y;
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Consequently, we have used a novelty index that com-
pares distances weighted for the corresponding sensitivi-
ties (3):

# parameters

WED(x,y) = \/ Y

i=1

2
Socy, Vi —Socx, 'xi) (3)

The comparison between WED's and the most similar ref-
erence entry (min(WED(x,y))) is performed to determine
the novelty index (NI):

min(WED(x,y))
* median(min(WED(x, x)))

(4)

x is the reference dataset. Distances between x and x will
result in the cross-tabulation of distances

y is the vector of new values. Distance between x and y is
a vector with as many elements as rows in the reference
dataset.

min(WED) is the closest reference input

The novelty index ranges from 0 to infinity; values mark-
edly above one indicate the degree of novelty of the new
set of input parameters.

Web-interface

Using the above results, a decision-support tool was
developed consisting of two components: the web-based
user interface and the mathematical model used to deter-
mine the prediction and reliability measures. Application
deployment is entirely on the server side, housed on a
dual-processor computer, configured as a webserver, at
the Medical University of South Carolina (Figure 2). The
interface is generated as Hypertext Markup Language
(HTML), which is OS-independent and can be accessed
through any web browser. Data entered through the inter-
face are submitted to the ANN (see below).

The ANN was implemented in the MATLAB scientific
computing programming environment (27); secure access
is configured through an Apache Linux server running
Secure Socket Layer (SSL) with 128-bit encryption. The
ANN processes the new input provided from the user to
calculate the predicted outcome for a given infant. This
calculation is based on data used for the development,
training and validation of the ANN. Simultaneously, the
input data are compared to the training data to determine
how similar or different the new data are and the novelty
index is computed (see below). Furthermore, a sensitivity
analysis is carried out to determine the importance of each
input variable for the output. The prediction score and the
novelty index are delivered back to the HTML script and
displayed in the user interface along with the ROC curve
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Table I: Guidelines for an Extubation Trial

http://www.biomedcentral.com/1472-6947/6/11

Infant

Ventilator rate
FiO, requirement
Blood gas parameters in the normal range

Saturation (SaO,)

with spontaneous respiratory effort above set ventilator rate
without evidence of respiratory failure (such as intercostals retractions,
poor chest wall movement) and respiratory rate <80 breaths/minute
with apneic or bradycardic events that decreased in severity and
frequency following initiation of methylxanthine therapy

<20 breaths/minute

<40%

for arterial blood gas determinations:

pH>7.25

pCO, <60-64

for capillary blood gas determinations:

pH >7.2

pCO, <70

consistently >90%

and a table of sensitivity/specificity pairs (see below) gen-
erated after training and validation of the ANN. The devel-
opment and training of the ANN model were presented in
detail in a previous report by the authors [11].

Study population

Data collection was based on an Institutional Review
Board-approved retrospective chart review of medical
records of infants born between January 1999 and Octo-
ber 2002. These data have been published previously in a
detailed report describing the development and compari-
son of the ANN, MLR, and CE models [11]. To ensure a
satisfactory sample size, we included very low birth weight
(VLBW) infants (1,000-1,500 g) and extremely low birth
weight infants who weighed between 900-1,000 g.
Because birth weight may vary greatly for infants at a com-
parable gestational age, selecting a sample based on gesta-
tional age could result in a wide spread of birth weights.
Conversely, infants with birth weights less than 900 g are
extremely immature and, therefore, clinically distinct
from infants with larger weights [28]. Similarly, infants
with birth weights larger than 1,500 g are generally less
premature, and therefore, less likely to develop RDS.
Thus, to be included in the study, infants had to have a
birth weight between 900 and 1,500 g and a diagnosis of
RDS. The infants were intubated and managed on
mechanical ventilation within 6 hours after birth. Data
were collected from time of intubation to the first attempt
of extubation. An extubation attempt was decided by the
medical team under the supervision of a board-certified
attending neonatologist. Table 1 gives an overview of the
parameters that needed to be in place prior to an extuba-
tion attempt. Those infants who had an unintentional
extubation, that is became extubated without a medical
decision for extubation, were followed if they remained
extubated beyond the immediate extubation. Infants who
had evidence of respiratory failure after extubation despite
nasal continuous positive air pressure (CPAP) within 48
hours after extubation were reintubated and considered
an extubation failure. Because it is well known that infants

who are extubated to nasal CPAP are less likely to have
respiratory deterioration, it is the usual practice of this
NICU to extubate to CPAP, although this was not a rigidly
defined practice during the study period. Reintubation
was based on clinical criteria set forth by the clinical team
that included increased work of breathing and respiratory
failure based on rising pCO, and pH below 7.25 and
repeated apneic and bradycardic events unresponsive to
methylxanthine therapy or nasal CPAP.

Results

A total of 183 infants who fulfilled the eligibility criteria
were randomly assigned to two independent data sets,
one set using ~70% of the total sample for development
and training of the neural network (n = 130) and the sec-
ond set using ~30% of the total sample for testing (valida-
tion) purposes (n = 53).

Twenty-seven infants were excluded from the study for the
following reasons: pulmonary hypertension (n = 1); time
between delivery and intubation >6 hours (n = 12); extu-
bation from ventilators other than assist-control or syn-
chronized intermittent mandatory ventilation (SIMV) (n
= 5); life-support withdrawn without any previous
attempt to extubate (n = 4); or no respiratory data retriev-
able from medical records (n = 6).

A total of 53 variables in nine categories were identified to
play some role in the decision whether or not to extubate
a premature infant who is mechanically ventilated (Figure
3). These included demographic variables (such as gesta-
tional age, gender, race, and birth weight), APGAR scores,
ventilator settings, blood gas analysis results, and vital
signs (for complete list of variables, see appendix, Tables
2 and 3). Several indices assessing different physiological
functions that had been examined in previous studies
were considered for their potential to predict extubation
outcome [2,6,29,30]. However, because the data were col-
lected retrospectively, variables were required to be part of
routine evaluation of the infant to be included. Conse-
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Table 2: Range for total sample and explanations of variables used
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Variable Minimum Maximum Explanation

Age D | 31 Age in days (~ = time on ventilator)

APGAR | 0 9 APGAR Score at | minute

APGARS5_| -2 7 Difference between APGAR at | and 5 minutes
BE -7.5 6 Base excess content in blood

BP 285 67 Blood pressure

CurrWeight 808 1600 Current weight

dBE -4.5 1.7 Change in base excess since last measurement
dBP -13.7 27.0 Change in blood pressure since last measurement
dFIO, -30.0 21.8 Change in FiO, since last measurement

dHCO, -3.0 4.0 Change in HCOj since last measurement

dIErat -3.5 2.8 Change in |:E ratio since last measurement

dINSP 0.0 1.0 Change in INSP since last measurement

dMAP -24 1.1 Change in MAP since last measurement

dPaCO, -6.4 22.0 Change in PaCO, since last measurement

dPaO, -63.3 50.0 Change in PaO, since last measurement

dPEEP -3.0 1.3 Change in PEEP since last measurement

dPH -0.2 0.1 Change in pH since last measurement

dPIP -3.0 24 Change in PIP since last measurement

dPulse -27.0 42.0 Change in heart rate since last measurement
dRATE -15.0 10.6 Change in ventilatory breathing rate since last m.
dRRatio -3.3 34 Change in rate ratio (spont. vs. vent.) since last m.
dSaO, -4.0 15.0 Change in SaO, since last measurement

dTIME 0.3 51.6 Time between last two blood gases analyses

dv; -1.8 25 Change in V7

FiO, 20 60 Oxygen content in air delivered by ventilator
Gst_age 25 35 Gestational age

HCO; 16 35 Bicarbonate content in blood

IEratio | 17.2 | : E ratio (inspiratory to expiratory time)

INSP 0.23 0.5 Inspiratory time

Lag 0.25 17.5 Lag time between last blood gas result and extubation
MAP 4.2 10.9 Mean airway pressure

PaCO, 23 65 Partial pressure of carbon dioxide in blood

PaO, 23 228 Partial pressure of oxygen in blood

PEEP 3 5 Positive end-expiratory pressure

pH 724 7.58 Acidity or alkalinity of blood

PIP 10 21 Peak inspiratory pressure

Pulse 112 187 Heart rate

R_ratio 0.4 6.0 Ratio: spontaneous breathing rate/ventilatory rate
Rate 10 60 Ventilatory breathing rate

Saline 0 26 Saline bolus within 24 hours prior to extubation
Sa0O, 79 100 Oxygen saturation in blood

Theoph 0 83 Theophilline bolus within 24 hours prior to extubation
Vr 3 15.7 Tidal volume

TXBETAME 0 | Maternal betamethasone

quently, only variables easily available at the bedside were
considered. For variables recorded at routine evaluations,
such as ventilator settings, blood gas analysis results, and
vital signs, data from the two time points immediately
prior to extubation were included. Two variables
(dopamine use, >20% weight change) were discarded
after data collection because more than 90% of all values
for the two variables were zero. Almost half (45%) of the
infants were extubated within 24 hours of their birth, and
therefore, their current weight equaled their birth weight.
Approximately 19% of the infants were extubated after 5

days of life and had current weights markedly different
from their birth weights. Therefore, birth weight was
dropped and only current weight was used further. For
modeling purposes, the variable race was coded as two
dummy variables: Caucasian 0/1 and African-American 0/
1. The remaining 51 variables were all considered poten-
tially predictive and included in further analyses using
ANN and MLR models.

Descriptive characteristics were similar in the two data sets

(Table 4). Mean (+ standard deviation) gestational age for
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the training set was 29.3 weeks (+ 2.0) compared to 29.1
weeks (+ 2.0) for the validation set. The mean birth weight
was 1,170 grams (+ 168) for the training set and 1,145
grams (+ 182) for the validation set. Median time on ven-
tilator was 2 days for both the training and the validation
sets.

Missing data were found only in the ventilator setting
recordings. Deleting all cases with missing data would not
only significantly reduce the sample size but also lead to a
potentially biased data set and result in the loss of poten-
tially valuable information [31]. A total of 74 infants had
missing values for at least one of the following variables:
mean airway pressure (MAP), inspiratory time (INSP),
ratio of inspiratory to expiratory time (I:E ratio), and tidal
volume (Vy). For those infants (n = 72) for whom the
MAP value closest to extubation was missing, we esti-
mated the MAP from previously measured values using
the equation described by Carlo and Martin [17]. In 52
cases for which INSP, LE ratio and V. values were missing
closest to extubation, last observation carried forward
(LOCF) was used to impute the missing values. For two
infants no previous values were available for any of the 4
variables; therefore, overall means were used to impute
missing values. Potential bias resulting from imputation
was considered less severe than the loss of data due to the
exclusion of infants with missing data.

The two data sets (training and validation) containing the
51 variables were used to develop and compare the math-
ematical models (described in detail in [11]). After exten-
sive modeling for the ANN as well as the MLR methods,
the best performing median ANN model, corresponding
to the topology with the best median ANN consisted of 3
layers with 13 input nodes in the first layer, 7 hidden
nodes in the second layer, and a single output node, cor-

Table 3: Frequency for total sample and explanation of variables
used

Variable Frequency (n = 183) Proportion
AB (Arterial blood gas) 125 68.3%
AB (Cap. blood gas) 58 31.7%
Balanced Pattern (no) 115 62.8%
Balanced Pattern (yes) 68 37.2%
Extubation Failure 35 19.1%
Extubation Success 148 80.9%
Mode (AC) 38 20.8%
Mode (SIMV) 145 79.2%
Overventilated (no) 88 48.1%
Overventilated (yes) 95 51.9%
Race (Black) 67 36.6%
Race (Other) 6 3.3%
Race (White) 110 60.1%
Sex (Female) 87 47.5%
Sex (Male) 96 52.5%

http://www.biomedcentral.com/1472-6947/6/11

responding to the prediction of extubation outcome. The
final ANN included 13 variables in 4 categories: pH, SaO,,
PaO,, peak inspiratory pressure (PIP), positive end-expir-
atory pressure (PEEP), MAP, V,, INSP, L:E ratio, ventilator
mode (mode), pulse, blood pressure (BP), and gestational
age. In contrast, the best MLR model contained 4 variables
in 3 categories, 3 of the 13 variables also were used by the
ANN model (V, PaCO,, ventilator mode) and one varia-
ble was new (race: 1 = African-American). The equation
for the best MLR model can be written as follows: logit(0)
= 3.38 + 0.364X, -0.114X, + 0.542X; - 0.659X, with X, =
tidal volume (Vy), X2 = PaCO,, X5 = (1 if African-Ameri-
can; 0 otherwise), X4 = ventilator mode. The area under
the ROC curve for the ANN was 0.87 and 0.81 for valida-
tion and training sets respectively, compared to 0.75 (val-
idation) and 0.81 (training) of the MLR model. For the
four clinical experts (CE) sensitivity/1-specificity pairs
were obtained (corresponding to the validation of ANN/
MLR), ranging from 0.68/0.29 to 0.98/0.83. No single
parameter was as predictive of outcome as the combined
13 variables in the final ANN.

Comparison of the ranking of all 51 variables for the 3
models using the Wilcoxon Signed Rank Test showed that
whereas the relative importance of the 51 variables in the
MLR was not significantly different from that of either the
ANN (p = 0.726) or the CE (p = 0.306), the ranking of the
variables in the ANN was found to be significantly differ-
ent (p = 0.0018) from the ranking of the variables per-
formed by the CE. While pH was considered the single
most important variable in the ANN model and among
several variables with higher scores for importance by the
clinicians, it was found among the least important varia-
bles of the MLR. PaCO, was considered the most impor-
tant variable in the MLR; in the ANN and the CE model it
was ranked among the more important variables. Tidal
volume and ventilation mode, also considered very
important for the MLR, were considered of similar impor-
tance by the CE and ANN models, but much lower than
the MLR.

The ANN, which was considered the most predictive
model, was further used in the implementation of a deci-
sion-support tool on the Internet. Upon accessing the
decision-support tool called "The Premies Project” [32]
and following the link for the prediction, the web-page for
data entry is displayed (Figure 4).

The ANN currently employed in the prediction system
uses 13 input variables identified as most predictive to
determine the prediction score, including gestational age,
several ventilator parameters, blood gas analysis results,
and vital signs. Several additional reference variables that
are not used to compute the predictions are requested
from the clinician: 1) the ID variable is required for future
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Vital signs:
* heart rate {120-160)
* blood pressure {mean

Weight:

* hirth weight
*+ current weight

Ventilator settings:

* Mode

~ gestational age) * change over last * Fio,
(few) days (high * ventilatory rate
loss >= 20%/week) * PIP / PEEP
Vi / MAP

* I:E ratio / insp. time
Baseline Assessment
* APGAR score @ 1 min
* APGAR score @ 5 min
+ Maternal steroids

* change since last recorded
(slope; rapid change - hours,
slow change - days; positive
vs. hegative)

* balanced / unbalanced
pattern

* over ventilated

Demographics

* Race
* Sex

Extubation
Baby looks comfortable: Blood gases:

* work of breathing > *pH

venli:alnry rate vs. * Pa0,
spontaneous [Tt (Rt * PaCo.
breathing rate A Med_lcat'on‘ *+ Sa0, ; Sp0o,
=V (5 ml/ ky) 2e + saline

* actual age - dopamine

- gestational age + theophilline

Figure 3
Variables Relevant for Outcome Prediction.

storage and retrieval purposes and ensures that the actual
extubation outcome reported by the clinician can be
matched to the appropriate input variables; and 2) the
demographic variables (actual age of the infant, sex, race,
and current weight) as well as two additional ventilator
variables (FiO, and breathing rate), two blood gas varia-
bles (bicarbonate and base excess), and spontaneous
breathing rate are not required for the prediction. These
variables are needed solely for statistical purposes, such as
the comparison of the infant population used for the
development of the ANN with the population for which
predictions were calculated. However, the additional var-
iables may be needed for future improvement of the pre-
diction tool, namely as it applies to extending the domain
of ANN training.

Once the information for a given infant has been entered
into the website by e.g. the clinicians, nurse, or respiratory
therapist, it can be submitted by clicking on the button in
the bottom part of the screen. The data are sent to the
ANN, which calculates the prediction along with the sen-
sitivities and the novelty index. The results are returned to
the user and displayed using the HTML interface (Figure
5).

To enable the clinician to make an informed decision, he/
she is provided with several pieces of information simul-
taneously. In the left part of the screen, information about
the performance of the ANN can be found in the form of
a ROC curve and a table of sensitivity and specificity for a
range of thresholds used to create the ROC curve. Expla-
nations for both are provided onscreen along with the
graph and table.
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.
Figure 4

Data Entry Page for Decision-Support Tool. Thirteen
variables are required for calculation of the prediction. Addi-
tional variables are requested for statistical purposes and
future fine-tuning of the prediction tool. Once all required
fields are completed, the information is submitted to the
ANN by clicking the appropriate button.

In the right part of the screen, the clinician finds the input
variables and values used to determine the prediction.
Underneath, the prediction score is shown along with an
explanation of how to interpret the score to determine
whether the score predicts extubation success or failure.
Since different clinicians may have different preferences
with respect to sensitivity and specificity, we provided the
clinician with the possibility to choose the most appropri-
ate threshold by providing the prediction score instead of
a dichotomous result (success/failure) using a pre-speci-
fied fixed threshold. Furthermore, the clinician is pro-
vided with the results of the sensitivity analysis, which
measures the importance of each input in the calculation
of the prediction. High sensitivities indicate variables of
high importance. Additionally, the novelty index is pro-
vided to inform the clinician about the reliability of the
prediction. The closer the new input data provided to the
ANN are to the data that were used for development of the
ANN, the higher the confidence in the prediction. Values
between 0 and 1 indicate high similarity between the new
and the reference data, while values markedly above one
indicate low similarity.

Discussion

When Wulff [33] describes how to make the best decision
in clinical decision theory, he states that clinicians base
their decisions on recorded observations and acquired
knowledge as well as evaluations of the consequences of
their previous actions. However, clinicians are rarely able
to explain the "algorithm" for their decisions, i.e. which
variables were considered and how the variables were
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weighted in comparison with others, because large parts
of the decision-making are subconscious processes. With
the use of an expert panel and the 5-step procedure
described in this report, a rather complex and time-con-
suming approach was used to distill 51 variables that
incorporated all available knowledge about how the deci-
sion is made based on sound scientific reasoning.

These 51 potential predictive variables were then used to
develop computational models for the prediction of extu-
bation outcome using MLR and ANN modeling tech-
niques. ANNs are advantageous because they can detect
and model correlations among variables inherent in data.
For possible inclusion of interactions between variables in
MLR models, specific interaction variables have to be cre-
ated, artificially increasing the number of variables and
thus increasing the required sample size, and therefore,
limiting the performance of a model developed using a
smaller sample. Restricting interaction terms in the MLR
to those with moderate to high multicollinearity could
have put the MLR model at a disadvantage compared to
the ANN due to a decrease in correct selections caused by
an overlap of variance that the variables and their interac-
tions account for in the model [34]. However, the model
using interaction terms for highly correlated variables was
found to be the best performing predictive MLR model.
The relative advantage of ANNs is being less constrained
by the shape of the interaction. The issue of parameteriza-
tion in the ANN was addressed by use of variable selection
to limit the number of interactions considered. The best
performing ANN had the largest AUC (0.87) of all models
developed. In comparison, the best MLR model achieved
an AUC of 0.75. By use of sensitivity analysis, the discrim-
inating dependency of ANNs can be explained and vali-
dated against the expertise of clinicians and traditional

http://www.biomedcentral.com/1472-6947/6/11

statistical methods, such as MLR. Sensitivity analysis
assesses the effect of change in input variables on the out-
put, and therefore, allows quantification of variables used
to develop ANN models.

In the comparison of the full set of 51 variables among the
three models, the ANN and the CE model seemed to agree
more often than the MLR and the CE. For 53% of all vari-
ables considered, the ratings of percent importance in the
models were closer for the ANN and CE model than for
MLR and CE. Looking at the models separately, the CE
considered approximately two-thirds (67%) of the varia-
bles as important for their decision, while the best ANN
included 13 (25%) variables and the MLR used only 4
(8%). These results suggest that the ANN methodology
was able to capture underlying thought processes of the
clinicians from the data used for its development and
training. However, the differences in ranking of some var-
iables that were found to be significant may account for
the better predictive performance of the ANN compared
to the clinicians and suggest the need for further study.

The best performing ANN was further used for implemen-
tation of the decision-support tool. Our web-based inter-
face in connection with the ANN prediction model can
provide decision-support to clinicians in any NICU with
the necessary hardware and Internet access. Internet-based
prediction tools are sound investments because of the
present ubiquity of computers with Internet connections
in hospitals throughout the world and the inherent plat-
form-independence afforded by Internet-based applica-
tions: no additional software is needed. Finally, the
mathematical tool requires no special or additional skills
other than handling the mouse and keyboard. Pull-down
menus were used when possible to minimize typing effort

Table 4: Demographic characteristics of subject population (mean t SD)

Total set (n = 183) Training set (n = 130) Validation set (n = 53) p-value
Gestational age (weeks) 293120 293120 29.1 £2.0 0.471
Birth weight (grams) 1164 + 172 1170 + 168 1145 + 182 0.391
Time on ventilator (~Age 2 2 2 -
in days) (median)
Sex
Male 52.5% (96/183) 52.3% (68/130) 52.8% (28/53) 0.953
Race
Caucasian 60.1% (110/183) 62.3% (81/130) 54.7% (29/531) 0.233
African-American 36.6% (67/183) 33.1% (43/130) 45.3% (24/53) 0
Hispanic 2.7% (5/183) 3.8% (5/130) 0 -
Asian 0.5% (1/183) 0.8% (1/130) 0 --
Outcome
Extubation Failure 19.1% (35/183 16.9% (22/130) 24.5% (13/53) 0.243

IPooled t-test; 2t-test for unequal variances; 3Chi-square test
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as well as to minimize typing errors. Default values are
displayed to clarify the format expected for data entry.
Additionally, the interface was designed to be intuitive
and easy to navigate. The interface is consistent with
standard graphical user interfaces used, for example, in
Windows- and Mac-based systems.

The decision-support tool was designed to grant a high
degree of reliability by providing a novelty index and a
sensitivity analysis along with the prediction score. The
novelty index measures how much the data provided for
the prediction differ from the data used for the develop-
ment of the neural network. The sensitivity analysis deter-
mines the effect of the individual input variables on the
output. These measures inform the clinician which varia-
ble had the largest impact on the prediction of extubation
outcome for a given infant. Additionally, the plot of the
ROC curve is displayed along with pairs of sensitivity and
specificity for different thresholds. This added informa-
tion allows the clinician to categorize the prediction score
as success or failure according to the pair of sensitivity/
specificity deemed most appropriate by the clinician. If a
clinician prefers to decrease the number of false-positive
decisions, sensitivity needs to be high, and a threshold of
0.5 or higher may be considered resulting in a sensitivity
of at least 0.95. However, if both sensitivity and specificity
are considered equally important and both numbers of
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Figure 5

Results page of decision-support tool. The ANN
returns the prediction score along with the novelty index.
For categorization of the prediction into success or failure, a
table with threshold values and the appropriate sensitivity/
specificity pairs is provided. The novelty index indicates the
level of confidence in the prediction.
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false-positive and false-negative decisions should be lim-
ited at the same time, a threshold of 0.7 would be prefer-
able with sensitivity of 0.8 and specificity of 0.85. While
the dataset used for the development of this model is lim-
ited to infants with a birth weight of 900-1,500 g, we are
currently investigating the model in an ongoing study of
infants <900 g.

The ability of ANN to successfully predict the optimal
extubation time for an infant, in this case, with RDS
becomes a powerful tool for the clinician, particularly
during high patient care census days and in teaching hos-
pitals. The identification of key variables that are associ-
ated with successful extubation gives feedback to the
clinician, with reinforcement of skills that recognize the
patterns to predict successful extubation.

The clinical utility of such a process extends beyond the
theoretical. The difficulty identifying criteria, which pre-
dict successful extubation in VLBW infants, may further be
defined utilizing this model. That is, this model may form
the basis for further research regarding successful extuba-
tion, perhaps extending the model's success rate. By iden-
tifying criteria which do not significantly change the
likelihood of success, analysis of the decision-making
process becomes easier. Additionally, education of clini-
cians also would benefit. Furthermore, the integration of
blood gas and ventilatory data into an infant's electronic
record creates a tool that can be applied in any NICU with
Internet access.

Conclusion

In summary, we were able to identify numerous variables
considered relevant for the decision whether or not to
extubate a mechanically ventilated premature infant with
respiratory distress syndrome. We further used these vari-
ables to develop a web-based decision-support tool to aid
clinicians in their decision. Through the use of the Inter-
net, this prediction tool is easy to use, platform-independ-
ent, and easily accessible to clinicians throughout the
world, and thus, adaptable to individual care centers and
their specific patients.
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