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Abstract

Background: Cough is an essential symptom in respiratory diseases. In the measurement of cough severity, an
accurate and objective cough monitor is expected by respiratory disease society. This paper aims to introduce a
better performed algorithm, pretrained deep neural network (DNN), to the cough classification problem, which is a
key step in the cough monitor.

Method: The deep neural network models are built from two steps, pretrain and fine-tuning, followed by a Hidden
Markov Model (HMM) decoder to capture tamporal information of the audio signals. By unsupervised pretraining a
deep belief network, a good initialization for a deep neural network is learned. Then the fine-tuning step is a back
propogation tuning the neural network so that it can predict the observation probability associated with each
HMM states, where the HMM states are originally achieved by force-alignment with a Gaussian Mixture Model
Hidden Markov Model (GMM-HMM) on the training samples. Three cough HMMs and one noncough HMM are
employed to model coughs and noncoughs respectively. The final decision is made based on viterbi decoding
algorihtm that generates the most likely HMM sequence for each sample. A sample is labeled as cough if a cough
HMM is found in the sequence.

Results: The experiments were conducted on a dataset that was collected from 22 patients with respiratory
diseases. Patient dependent (PD) and patient independent (Pl) experimental settings were used to evaluate the
models. Five criteria, sensitivity, specificity, F1, macro average and micro average are shown to depict different
aspects of the models. From overall evaluation criteria, the DNN based methods are superior to traditional GMM-
HMM based method on F1 and micro average with maximal 14% and 11% error reduction in PD and 7% and 10%
in Pl, meanwhile keep similar performances on macro average. They also surpass GMM-HMM model on specificity
with maximal 14% error reduction on both PD and PI.

Conclusions: In this paper, we tried pretrained deep neural network in cough classification problem. Our results
showed that comparing with the conventional GMM-HMM framework, the HMM-DNN could get better overall
performance on cough classification task.

Background airways. In the treatment of cough related diseases,
Cough is a common symptom in respiratory diseases.  cough severity is an essential factor in monitoring the
It’s a protective reflex that helps the human body to  progression of diseases. In modern clinical practice, the
exhale secretion from the airways, protecting the lower = measurement of cough severity is mainly based on self
report scales such as cough scores, visual analogue
scales (VAS) and quality-of-life questionnaires [1].
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placebo effect. The solution for objectively measuring
cough severity can be an accurate cough monitor device,
which can record the information of cough objectively.
Beside evaluating cough severity and therapeutic effi-
cacy, such devices could also guide clinical practice and
research in chronic cough [2,3].

Cough detection system is an essential component of
such cough monitor devices. The early attempt of cough
detection system is to hire a human expert to manually
record patients’ cough from their audio and video moni-
tor [4]. The cost is so high as to make it barely useful.
In recent years, automatic cough detection methods has
been developed to cut the cost for detecting cough.

Researchers have tested different pattern recognition
techniques for the cough detection problem. S. Barry et.
al. [5] proposed a framework for cough counter with
probability neural network as classifier. In their work,
mel frequency cepstral coefficients and linear predictive
cepstral coefficients were extracted on frame level.
Before feeding the features into probability neural net-
work, principle component analysis was employed to
reduce the feature dimension. They also used an energy
threshold based audio segment algorithm to segment
continuous audios into samples. After getting the pre-
dicted label for each frame, a final decision for each
sample would be made by calculate the domestic label
in that segmentation. They tested this farmework in a 1
hour audio dataset, and achieved 80% sensitivity and
96% specificity. S. Matos et. al. [6] presented an HMM
based cough event detection algorithm. 39D MFCC
(MFCC+A+A) was used as feature representation for
each frame. This work uses three HMMs with different
state number to fit cough samples and 128 HMMs with
3 states each to fit non cough parts, where the 128
HMMs was called “filler models”. After all the HMMs
being trained, a decoding process was followed to find
the most likely path, from which the cough parts could
be located. They also employed an energy threshold based
filtering strategy to discard low energy samples. In the
high energy audio parts, the whole algorithm achieved an
average 85% sensitivity and almost 100% specificity. They
further extended the previous work by adding a classifica-
tion step after the event detection step, build a 24-h cough
monitor, LCM [7]. E. Larson et. al. [8] used random forest
classifier to recognise the explosive sounds in cough sig-
nals. Their features come from PCA decomposed raw
spectrogram. When getting the PCA projection, only the
spectrograms from explosive sounds were used. With this
configuration, the overall system achieved 92% precision
and false positive rate of 0.5% in a 72 h dataset. S. Larson
et. al. [9] employed support vector machine to detect
cough. Continuous audio streams were first segmented by
an energy threshold based event detection algorithm. In
each segmented event, each frame was then classified by
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SVM, and the output of the frames were counted. The
label of the event was labeled as cough if more than 1/3 of
the frames were classified as cough. They collected 25.5
hours of audio data and 75.5% of the cough episodes were
detected with 99.6% specificity.

Though there are many systems have been developed,
there are still no golden standard in cough detection task.
The main problem is the unsatisfactory detection preci-
sion. Meanwhile, most of the works have not been vali-
dated in large scale, leading to unconvincing results. The
most prevalent system, LCM [7], finds a tradeoff between
performance and human labor. In their classification step,
they employ human experts to label all the detected cough
events from a detection step, the labeled coughs and non-
coughs are fed into an HMM-GMM model for further
classification. The performance of this work reached basic
requirement for real world application. However, the per-
formance of HMM-GMM models could be further
improved from the recent years breakthrough in the field
of automatic speech recognition [10,11] by replacing
GMM with a newly developed model, deep neural net-
work (DNN), to model observational probability of
HMMs. By training the discriminative neural network
models for the posterior probability, information from
each frame could be better learned. The benefit of using a
neural network has been known for a long time, but it’s
not feasible to train a deep neural network until the recent
introduction of pretrain strategy. As for cough classifica-
tion problem, it is natural to transfer the classification
models into deep neural networks. DNN is a model with
more powerful learning ability that could replace GMM
when modeling cough classifiers. Raw signals for cough
classification are audio recordings, which is naturally mod-
elled by deep neural networks. Moreover, the cough pat-
terns and non-cough patterns are also varied in a large
range, which requires a more capable model to learn the
variances. In this paper, we proposed a pertrained deep
neural network based framework for cough classification.

Methods

Pretrained deep neural networks

Previously, the obstacles from training a deep neural net-
work mainly consisted in two aspects. One is the low com-
putational resource at that time. The other is the vanishing
gradient problem that being prevent the lower level weights
from being properly trained. The first obstacle is solved by
the development of computational equipment. The second
is partly solved by the introduction of pretrain strategy with
Deep Belief Network (DBN), which is composed with mul-
tilayer stacked Restricted Boltzmann Machines.

Restricted Boltzmann Machine
Restricted Boltzmann Machine (RBM) is a stochastic
neural network. The basic presumption of RBM is that
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the features we observed are controlled by many high
level factors, so that the high level factors could be used
as features with higher level abstraction. It’s also a kind
of log-linear Markov Random Field. The visible units v
represent the raw feature vector, where v; is the value of
ith feature. The higher level factors are encoded in vec-
tor h, where /; is the ith factor. Entries of RBMs are
connected via weights. Intuitively, weights identify the
correlation of the nodes. Larger weight means larger
possibility that the connected nodes would cooccur. In
RBM, connections are only allowed between visible uni-
tes and hidden units, which is the reason why it’s called
“restricted”. A simple example of RBM is displayed in
Figure 1.

. _ 1 —E(v,h;0)
pVR0) = e (1)

Z(0) = Z Z ¢ Fuwh) )
u h

The nodes of RBMs are associated with different
assumptions to fit different problems. As Markov Random
Fields, there are different potential energy functions that
based on different assumptions. For each configuration of
all the nodes, the possibility of that configuration is further
determined by the potential energy function by dividing
the partition function as Equ. 1 and Equ. 2, where u and h
represents all the possible configurations of both viable
and hidden units. In binary RBMs, both the visual nodes
and the hidden nodes are with binary values. The potential
energy function is defined as Equ. 3. The joint probability
could be easily derived from Equ. 1 and Equ. 2.

V H \4 H
E(v,h;0) == > > Wynlhy— > bwi— > aihy (3)
i=1 j=1

i=1 j=1
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With the joint probability, we could further derive
marginal probability distribution assigned to a visible
vector v by marginalise h. The marginal distribution is
shown in Equ. 4. The parameters of the RBM could
then be trained by mini-batch gradient descent. The
derivatives of the log likelihood function with respect to
the parameters W, v and h is shown in Equ.5, 6 and 7.

1 —E(vh)
p(vl9) = 2(0) Zh:e (4)
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- 6(a )- D e Erem[h] = Eppyp[h])  (©)
alogI;(li\A; 7 > (Evaw [V = Epgh [V]) @

veM

where M is the mini-batch data set. Ep means the expec-
tation w.r.t. the distribution P. P(h|v) is the distribution of
the hidden units given the observed visible vector, and P
(h, v) is the joint distribution of the hidden and visible
units. The conditional probability P(h|v), and P(h|v), are
depicted as Equ. 8 and Equ. 9, where Ber(x). From the dis-
tributions we could find the expectations of conditional
probabilities are easy to compute. However, in order to
calculate the expectation of the joint probability P(h, v),
we need to use Gibbs sampling starting from a random
vector and sample hidden units and visible units repeat-
edly for a long time. To boost the calculation of the gradi-
ents, an process named “contrastive divergence (CD)”[12]
could be used to estimate the gradients by replace joint
expectation by the “reconstruction” of the hidden and

Hidden Units

Visible Units

Figure 1 A simple example of RBM with 3 visible units and 4 hidden units.
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visible units. The general process of CD is to set a data
vector v as the initial point of a sampler before recursively
sampling hidden units and visible units based on the con-
ditional distribution. Usually, the v and h after sampling
once are good enough to update parameters, and this set-
ting is named as CD;. This method is much more efficient
than a naive Gibbs sampler.

p(hiv;0) = [ [ P(hjv) = [ | Ber(10(>_ Wigvi + a)) ()
j j i

p(vih; 0) = [ T P(jih) = [T Ber(mlo(D_ Wighi + 1)) (o)
j j i

The units of the RBMs could associate with different
type of values. For real value data, Gaussian-Bernoulli
RBM is the model that always employed.

The potential energy function of a Gaussian-Bernoulli
RBM is shown in Equ.10. We could easily get the prob-
ability distributions for a Gaussian-Bernoulli RBM with
the energy function follow the same steps as binary
RBM. P(h|v) is in a different form from binary RBM,
which is shown in Equ.10.

D

D F 2 F

v; v — b;
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i=1 j=1 i=1 t j=1

p(vih;0) = [ [N (vile D Wihj + by, 0) 11
i j
The update rule can be easily derived follow the exact
same steps for binary RBMs. CD; is also an efficient
method for training a Gaussian-Bernoulli RBM.

Deep Neural Network

In the Deep Neural Network (DNN) prototype, RBMs
are used to learn the initialisation of the DNN. A multi-
layer RBM, which is also named Deep Belief Network
(DBN), could be trained by a greedy approach. In the
first layer, the data vectors are used to train the first
layer RBM. After well trained, the expectations of the
hidden units are used as the data vectors for the second

Table 1 Algorithm description of train deep belief network.
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layer RBM. The upper layers of the RBMs are all trained
with this process. After all, the stacked RBMs form a
DBN. The training steps for DBN are also shown in
Table 1 where N refers to the depth of the DBN.

After training the DBN, the parameters of it are copied
to a neural network the same structure. The output layer
of the DNN is a softmax layer which stacked on the top
of the network. The process that trains the DBN and
copies its parameter is called “pretrain”. The initialised
neural network is further trained by conventional Back
Propagation algorithm. This further training step is called
“fine-tuning”. The pretrain step helps DNN in several
ways. It’s force the DNN to map the raw feature space to
higher abstraction level, not just to learn a scalar response
to the output space, which actually acts like a data-induced
regularizer. It also helps BP to learn a better local minima
which has better generalisation properties [13,14].

Though the DNN could be well trained with previous
process, DNN could not deal with temporal data well by
itself. When dealing with audio data, we combine DNN
and HMM to generate a better decoder. Raw features
from a frame and its consecutive frames are sent to DNN
together, in which way the dependence of consecutive
frames can be learnt by the DNN. Each output unit
represents a HMM state, which is to say the DNN pre-
dicts the observation probabilities that current frame
belongs to each state. Three cough HMMs and one non-
cough HMM are trained from the training set. After the
observation probabilities are calculated, a viterbi decoding
algorithm would be applied with all of the HMMs. For
each sample, a transcription, which contains the most
likely HMM decoding sequence, could be generated from
the decoding process. A sample is labeled as cough if a
cough HMM is found in the transciption sequence.

The “ground truth” for states is generated by employ-
ing a GMM-HMM baseline system to transcript the
training data beforehand. The raw features are conven-
tional 39-D MFCC. In the prototype of combining DNN
and HMM, DNN is used to calculate observation probe-
bility, and HMM is used to decode the temporal struc-
ture. The training process for a DNN-HMM system is
shown in Figure 2.

Input: Data D = {x}, desired layers K and nodes number for each layer N;
Output: The structure and learned initialization parameters of the DNN.

1. Learn parameters 6, for the 17" layer RBM from data.
For k = 2K

2. Initialize the k-th layer RBM by unroll the k-Tth layer RBM to the kth layer, of which parameters W}, = WkT_1
3. Refine the parameters of kth layer RBM from data vectors generated from k-1th layer.

Return: Structure and parameters of the stacked RBMs.

Greedy training process for deep belief network
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Figure 2 The training process of combination of DNN and HMM.
A

Feature representation

The raw feature extracted in this work was 39D Mel
Frequency Cpestral Coefficients (MFCC). MFCC is a
wildly used feature set in audio analysis works. Firstly,
after pre-emphasis, Fourier Transform was applied on
windowed signal to compute the power spectrum. Then,
the power spectrum was mapped on mel scale with Mel
filter banks. We got the logarithm of the power output
of each Mel filter. Discrete cosine transform (DCT) was
then applied on the log powers. A further normalization
process named lifting was usually employed. The lifting
process is given as Eq. 12. We set L = 22 and N = 40.
In this paper, first 13 MFCC and their first and second-
order derivatives were included in experiments. The
parameters for window was as the conventional config-
uration for audio signal analysis. Here 25 ms Hamming
window was employed with a 15 ms frame overlap.

d(n)=(1+ 2 sin(”L” )e(n) (12)

Data collecion

The raw audio recordings are collected from 22 patients
in China who were suffering various respiratory diseases,
12 community-acquired pneumonia(CAP) patients, 2
bronchial asthma(BA) patients and 8 chronic obstructive
pulmonary disease(COPD) patients. This study was
approved by the Ethics Committee of Tongji Hospital
and registered with Chinese Clinical Trials Register
(http://www.chictr.org.cn/index.aspx) number ChiCTR-
ONC-08000152. and all patients gave informed consent.
The recording system was constituted by a portable

digital audio recorder (SONY ICD-LX30) and a micro-
phone (ECM-CS10), and attached on patients’ collar.
Recording lasted for about 24 hour on each patient.
Recording quality was configured at 44.1 kHz sampling
frequency and 192 kbps bit rate. All patients were
encouraged to ignore the recording system and perform
their daily activities, so that we could record sounds in
natural hospital environment which is the environment
this system will be deployed.

The raw data were segmented into 10-min clips, and
labeled by two annotators. The annotation process was
based on Pratt platform[15]. The starting and ending of
each individual cough was marked. The definition of
“cough” here is “cough sounds” by[16]. After labelling,
each 10-min clips were further segmented into 10-s clips.

Data preparation with a event detection system

In this step, we employed a conventional keyword spot-
ting method for cough detection[6]. This algorithm
employs few HMMs to model cough signal, and lot of
HMMs to model the other audio signals. In this paper,
we used 3 cough models and 128 filler models as the
authors recommanded.

Our main concern in this step is to find most of the
coughs. Thus we randomly reduce the non-cough data
to underfit the filler models. The number of non-cough
segments was set as twice as the segments that contain
cough. With this setting, the confidence of non-cough
signals are manually suppressed, making many low
confidential cough signals detected. Meanwhile, redu-
cing the amount of data significantly reduced the train-
ing time.
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After well trained, the detection model was applied to
decode on training set. All the segments that label as
cough by the model were further cut to isolated sounds
for classification step. All the detected cough intervals
was segmented into individual samples. After that, each
sample was examined by an annotator, getting its label
as cough or noncough. All the isolated samples were fed
into the DNN-HMM classification model. The samples
are considered positive if there are cough labels in the
transcription after classification, and negative is the sam-
ples that there are no cough labels or no valid labels in
the transcription.

Results

Evaluation setup

For training the DBN model, the mini-batch size of
mini-batch stochastic gradient decent was set to 256.
The Gaussian-Bernoulli RBMs was trained with maxi-
mum of 200 training epochs. And the maximum num-
ber of epochs for other binary RBMs was set to 100. We
used fixed learning rate which was 0.01. In fine-tuning
step, the mini-batch size was also 256, and the learning
rate was 0.008.

The detection system was developed on the basis of
HTK toolkit [17]. The classification step was implemen-
ted on Kaldi toolkit [18]. We run the experiments on a
computational server which contains 33 GB Memory,
Intel(R) Xeon(R) CPU E5-2603 (1.8 GHz/8-core) and a
NVIDIA Tesla K20 GPU with 5 GB of GDDR5 RAM
and 2496 processing cores.

For results evaluation, we used five criteria, sensitivity,
specificity, F1 measure, macro average and micro aver-
age. When evaluating classification performance, the
core test sets came from two sources, a patient depen-
dent test set and a patient independent test set. In the
patient dependent test set, 16 patients out of the whole
patient set were selected. From which 2/3 of the 10-s
audio segmentations were selected as training set, the
rest were test set. In the patient independent setting, all
the 10-s clips in the other 6 patients would be used as
test set. The number of the samples in each source is
listed in Table 2.

Experiment results

The results that earned from patient dependent test set
is shwon in Figure 3, Table 3 and Table 4. In Figure 3,
the above pictures showed the results from pretrained
deep neural networks and the below pictures from

Table 2 Number of data in each set.
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neural networks that were randomly initialized. The
bold numbers in the tables are the best results in all of
the DNN models. Overall, without pretrain step, the
neural network can only surpass the baseline on F1 and
micro average. After the pretrain step added, the DNN
based models reached the same level of macro average
as baseline, and they are also superior than baseline on
F1 and micro average. The best results for F1, macro
average and micro average achieved by DNNs are 0.705,
0,863, and 0.905 respectively, the baseline counterparts
are 0.563, 0.856, 0.792 respectively. In sensitivity, the
baseline outperforms all of the DNN models. At the
same time, all of the DNN models outperform the base-
line by a large extend. We get 14% error reduction on
F1 and 11% error reduction on micro average on this
test set.

Similar results could be found in patient independent
experiments in Figure 4, Table 5 and Table 6. The per-
formance of the baseline method is also given in Table
3 and 5. The randomly initialized neural networks still
could outperform baseline on macro average. Pretrained
deep neural network models outperform baseline on
specificity, F1 and micro average, meanwhile achieve the
similar level on macro average. The value of these
metrics form baseline are 0.632, 0.868, 0.801 respectively
on this test set, and that from best DNNs are 0.705,
0.863 and 0.905. The error reduction is 7% and 10% on
F1 and micro average respectively.

Discussion

In independent test set, the test patients don’t appear in
the training set, and the models achieved similar results
as in patient dependent test set. That shows the models
have certain generalization ability in cough classification
task. The models that trained on some patients could
also capture the general characteristics of cough and
noncough, not just overlearn certain parterns from the
training patients’s data.

In order to examine the effieciency of the pretrain
step, the performances of pretrained and randomly initi-
alized conventional neural networks are compared in
the same setting. In all of the structures, pretrained
Deep Neural Networks always perform better than the
counterpart. In macro average, the worst cases from
pretrained Deep Neural Network are 0.852 and 0.857
for patient dependent and independent test set, while
the best cases for conventional neural network are 0.843
and 0.847. Even the worst cases from pretrained Deep

Training set Patient dependent test set Patient independent test set
Cough Samples 3873 3119 1742
Noncough Samples 2347 18862 8161
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Neural Network are better than the best cases of a con-
ventional neural network. In other metrics, though it
doesn’t show such gap, it could also show the advantage

of the pretrain step.

Table 3 Result table with pretrained neural network on

In Figure 3 and 4, the specificity of most of pretrained
DNNs increase when the second hidden layer is added,
and decrease after the third layer is added. When training
the forth layer however, the specificity grow again.
The trend of sensitivity is almost the reverse of specificity.

PD. Table 4 Result table with randomly initialized neural
# # hidden Sens. Spec. F1 Mac. Mic. network on PD.
layers units Ave. Ave. # # hidden Sens. Spec. F1 Macro Mic.

1 512 0804 0906 0678 0855 0.892 layers units Ave. Ave.
1 1024 0793 0917 0691 0855 0.899 1 512 0768 0909 0.663 0.838 0.889
1 1536 0799 0915 0692 0857 0.899 1 1024 0769 0908 0661 0.839 0.888
1 2048 0.794 0917 0693 0856 09 1 1536 0783 0903 0661 0843 0.886
2 512 0793 0914 0685 0853 0.896 1 2048 0.784 0902 066 0.843 0.885
2 1024 0.794 0919 0695 0857 0.901 2 512 0746 0.914 0659 083 0.89
2 1536 0803 0916 0695 0859 09 2 1024 0759 0913 0664 0836 0.891
2 2048 0.804 0.921 0.705 0.863 0.905 2 1536 0744 0912 0653 0828 0.888
3 512 0792 0912 0682 0852 0.895 2 2048 0745 0912 0654 0828 0.888
3 1024 0793 0914 0686 0853 0.897 3 512 0.755 0905 0648 083 0.884
3 1536 0.811 0911 0691 0861 0.897 3 1024 0745 0912 0654 0829 0.888
3 2048 0.8 0915 0691 0857 0.898 3 1536 0.735 0908 0641 0.821 0.883
4 512 0791 0916 0688 0853 0.898 3 2048 0746 0909 065 0828 0.886
4 1024 0803 0914 0691 0858 0.898 4 512 0.759 0.897 0637 0828 0877
4 1536 0801 0916 0694 0859 09 4 1024 0736 0905 0637 082 0.881
4 2048 0.782 0921 0693 0852 0.902 4 1536 0.744 0901 0636 0823 0.879

Baseline Method 0945 0767 0563 0856 0.792 4 2048 0693 088 0573 0787 0.853




Liu et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 4):S2 Page 8 of 10
http://www.biomedcentral.com/1472-6947/15/54/52
( N
0.85 0.918 0.745 0.88 0898
0.916 0.897
084 0.74 0875
o 0914 N 4 s . 088
TR > 2 073 g o087 g 08951
5 . g 0912 - 3 5
g 08 ? g < Z 0894
5 091 D e o
3 b & — 073 5 0.86 5
0.81 P s S 08% 4
oo 0.725 0.86 i
08 0.908 < 0.891
‘
0.79 0.9¢ 0.72 0.855 0.8!
2 3 4 4 1 2 3 4
—©— hidden-0.5k| Number of layers Number of layers Number of layers Number of layers Number of layers
==+ hidden-1k
—+— hidden-1.5k (@) (b) © (@ (e)
—E— hidden-2k
7 0.915 0.7 0.86 0.89
0.6] 0.91 0.6 0.85 0.885
4
0.78 0.905 0.68 2 084 o 0.
z 2 g g g %
3 5 8 2 2 2
Z 076 5 09 + S 067 Z 083 Z 0487
5 2 E ] 2
(7] (7] 1 E 2 £
0.74 0.895 y 0.66 2 o082 S o087
0.72 o,eé 0.65 0.81 0.865 .3
07 0.885 0.64 0.8 0.86 -
1 2 3 1 2 3 4 2 3 4 2 3 1 2 3 4
Number of layers Number of layers Number of layers Number of layers Number of layers
® (@) () (0] )
Figure 4 Performances on patient independent test set. The setting here is as same as Figure 3, except that these results are generated
from a patient independent test set.

In PD set, the sensitivity and specificity of a two layer pre-
trained DNN all outperform that of one layer with 2 k
nodes for each layer. This also lead to the peak value of all
of F1, macro average and micro average. In PD, all of the
overall evaluation criteria tend to increase with the

Table 5 Result table with pretrained neural network on PI.

number of nodes increasing. But the overall criteria in PI
set don’t share the same trend. In PI set, it’s the two layer
network with 0.5 k nodes that gives peaks in four criteria.
These findings may reflect that a two layer neural network
is enough to separate cough from noncough given the

Table 6 Result table with randomly initialized neural

# # hidden Sens. Spec. F1 Macro Mic. network on PI.

layers units Ave. Ave. # # hidden Sens. Spec. F1 Mac. Mic.
1 512 0.823 0904 0.724 03864 0.89 layers units Ave. Ave.
1 1024 083 0911 0738 087 0.896 1 512 0769 0903 0692 0836 0.879
1 1536 0828 0909 0.735 0869 0.895 1 1024 0.788 0.897 0.695 0.843 0.878
1 2048 0818 0913 0.735 0865 0.896 1 1536 0.805 0.889 0693 0.847 0.875
2 512 0.836 0909 0.739 0.872 0.896 1 2048 0803 0891 069 0.847 0.876
2 1024 0822 091 0.733  0.866 0.894 2 512 0.741 0.909 0684 0.825 0.88
2 1536 0824 0912 0736 0868 0.896 2 1024 0765 0902 0688 0833 0.878
2 2048 0816 0911 0731 0864 0.894 2 1536 0.747 0905 0682 0826 0877
3 512 0827 0907 0.731 0867 0.893 2 2048 077 0904 0693 0837 0.88
3 1024 0835 0904 073 0869 0.892 3 512 0763 0897 068 083 0.874
3 1536 0833 0904 073 0869 0.892 3 1024 0.755 0908 0691 0832 0.881
3 2048 0831 0906 0.732 0869 0.893 3 1536 0.757 0905 0688 0831 0.879
4 512 0813 091 0.727 0862 0.893 3 2048 0.753 0904 0683 0828 0.877
4 1024 083 0905 073 0867 0.892 4 512 0.765 0.886 0666 0826 0.865
4 1536 0829 0909 0.736 0869 0.895 4 1024 0.759 09 0681 0.829 0.875
4 2048 0799 0914 0.726 0857 0.894 4 1536 0771 0893 0679 0832 0.872
Baseline method 0971 0765 0632 0868 0.801 4 2048 0709 0.894 0642 0801 0.861




Liu et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 4):S2

http://www.biomedcentral.com/1472-6947/15/54/S2

amount of training data. The reason why the best per-
formed model came from the most complex model maybe
becaue of our insufficient training data. Considering the
number of free parameters in DNN models, it needs more
data to train a deeper model with good generalization abil-
ity. Without pretraining step, the performance of neural
networks even became worse when more layers were
added. This could be clearly found with 2 k nodes neural
networks in the below charts in Figure 3 and 4. Therefore,
in case of the data size is not so big, pretrain is a useful
technique that helps neural networks reaching better clas-
sification performance.

When compared with GMM-HMM model, the pre-
trained Deep Neural Networks could always get better
or similar overall performances, e.g. F1, macro average
and micro average. We could saftly say that this pre-
trained Deep Neural Network method is appealing to
those care about overall performance. We also find that
the pretrained DNN based model could achieve more
than 90% on specificity, meanwhile the GMM-HMM
model could only get about 77%. However, on sensitiv-
ity, none of the pretrained DNN based model reached
85%, meanwhile GMM-HMM model achieved 94% and
97% on PD and PI respectively. This phenomenon may
probabily caused by the variance of samples in the training
set. In general, coughs are more consistent than the non
coughs. Therefore, GMM could learn the cough models
better than the noncough models, making the likelihood
of noncoughs smaller than that of coughs. So even the
cough samples with low likelihood could be recognized.
As for neural networks, they learned more of non cough
samples and raise the likelihood of non cough samples. So
they made more balanced decisiones in the final.

From this aspect, we recommand the pretrain DNN
based model if there is not enough human resources to
correct prediciton label. Otherwise, a GMM-HMM
model could be used to classify coughs from noncoughs,
and the samples that are classified as cough should be
filtered by human annotator to eliminate the false posi-
tives. Considering the advantages of the two models are
different, the ensemble of them may gives us more
appealing classification accuracy.

Conclusions

In this paper, a novel machine learning model, deep
neural network and the pretrain step, is tested on cough
classification task. The experiments were conducted on
both patient dependent and patient independent test
sets. On both sets, sensitivity, specificity, F1 measure,
macro average and micro average were used as evalua-
tion criteria. According to these criteria, HMM-DNN
framework performs better than the conventional
GMM-HMM model.
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Our work here mainly forcuses on cough classification
task. The cough detection task is also very essential in
real world cough detection problem. In the furture, we
will focus on build more powerful tools for cough detec-
tion. Meanwhile, a more stable audio recording system
will be developed in order to gether clearner data. More
cough data need to be continuously collected, but the
considerable workload of labeling cough keeps too high
to keep the pace with data collection. Thus, an efficient
labeling workflow should be developed, or the lack of
labeled data impedes not only the detection model, but
also clinical validation.
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