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Abstract

Background: The Entity Linking (EL) task links entity mentions from an unstructured document to entities in a
knowledge base. Although this problem is well-studied in news and social media, this problem has not received
much attention in the life science domain. One outcome of tackling the EL problem in the life sciences domain is
to enable scientists to build computational models of biological processes with more efficiency. However, simply
applying a news-trained entity linker produces inadequate results.

Methods: Since existing supervised approaches require a large amount of manually-labeled training data, which is
currently unavailable for the life science domain, we propose a novel unsupervised collective inference approach
to link entities from unstructured full texts of biomedical literature to 300 ontologies. The approach leverages the
rich semantic information and structures in ontologies for similarity computation and entity ranking.

Results: Without using any manual annotation, our approach significantly outperforms state-of-the-art supervised
EL method (9% absolute gain in linking accuracy). Furthermore, the state-of-the-art supervised EL method requires
15,000 manually annotated entity mentions for training. These promising results establish a benchmark for the EL
task in the life science domain. We also provide in depth analysis and discussion on both challenges and
opportunities on automatic knowledge enrichment for scientific literature.

Conclusions: In this paper, we propose a novel unsupervised collective inference approach to address the EL
problem in a new domain. We show that our unsupervised approach is able to outperform a current state-of-the-
art supervised approach that has been trained with a large amount of manually labeled data. Life science presents
an underrepresented domain for applying EL techniques. By providing a small benchmark data set and identifying
opportunities, we hope to stimulate discussions across natural language processing and bioinformatics and
motivate others to develop techniques for this largely untapped domain.

Background
Mining and linking important information from scienti-
fic literature can have a tremendous impact on scientific
discovery as it is extremely challenging even for domain
experts to keep up with the large number of papers
published [1]. For example, models of signaling and
metabolic pathways are useful tools that aim to con-
cisely represent the known information about a given
pathway and accurately predict the effects of different
stimuli on cellular processes. Modeling these pathways

can aid scientists’ understanding of diseases, such as
cancer. However, these pathways are very time-intensive
to model, usually requiring the human modeler to read
numerous papers to obtain the necessary information.
A major bottleneck in understanding scientific litera-

ture lies in the enormous amount of unexplained abbre-
viations and terminologies [2]. For example, the
transcription factor “C/EBP-b” is also known as “NF-IL6”;
the protein “Arnt” is sometimes referred to as “HIF1-b”.
Being able to identify the key proteins, and their beha-
viors and interactions, would be extremely helpful for
supporting the modeling task. In this paper we focus on
the task of Entity Linking (EL) for biomedical literature -
automatically identifying prominent entity mentions
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from unstructured full texts and linking them to (or
“grounding them in”) terms described in a Knowledge
Base (KB) and/or defined in an ontology in order to
enrich text documents. These knowledge base or ontol-
ogy terms are sometimes referred to as reference entities.
For example, from the following sentence from Lipniacki
et al. [3]:

“In resting cells, p50-65 heterodimers (referred
herein as NF-�B) are sequestered in the cytoplasm
by association with members of another family of
proteins called I�B.”

an EL system will identify three prominent mentions
“p50-65 heterodimers”, “NF�B” and “I�B”, and link the
first two to “nuclear factor kappa-light-chain-enhancer
of activated B cells” and the third to “nuclear factor of
kappa light polypeptide gene enhancer in B-cells inhibi-
tor” in some knowledge base. EL can help human end-
users navigate biomedical literature, and improve many
other Natural Language Processing (NLP) tasks such as
protein-protein interaction event extraction [4,5]. EL is a
well-studied problem in news and social media. When
we apply state-of-the-art EL techniques to the biomedi-
cal domain, we face new challenges. In this paper we
will focus on two unique challenges and our solutions
to address each of them.
The first challenge lies in the lack of sufficient context

for understanding the entity mentions. This requires us
to move from non-collective approaches which link each
individual mention at a time to collective inference by
leveraging the global topical coherence and linking a set
of relevant mentions simultaneously. The basic idea is
that if we know multiple entity mentions are semanti-
cally related in the unstructured source texts (i.e., they
co-occur in the same sentence, are linked through
dependency paths, or play certain semantic roles in the
same event, etc.), we can assume they are semantically
related and thus their reference entities should also be
connected via semantic links in the ontologies. Collec-
tive inference is particularly effective to link entities in
scientific literature because the authors often assume
that the readers are also domain experts with enough
background knowledge about these entities.
The second challenge is the lack and the expense of

generating labeled EL data for the biomedical domain.
Manual EL annotation for a new domain is challenging
and time-consuming. Previous EL work mainly exploited
Wikipedia as the target knowledge base. Fortunately,
there exist many publicly accessible ontologies in this
domain such as those in BioPortal [6]. These ontologies
contain rich structures with declaratively defined seman-
tic relations, along with comprehensive text descriptions

written by domain experts. In this paper, we describe an
unsupervised EL algorithm by leveraging well-structured
ontologies (e.g., hierarchical and relational structure)
and well-defined semantic relations among entities in
the ontologies (e.g., subClassOf). Such rich knowledge
also enables us to move away from labor-intensive
supervised approaches and gear toward a completely
unsupervised approach using novel similarity and coher-
ence measures based on graph structures.
There have been extensive studies on extracting entity

mentions from biomedical literature (e.g., [2,7-9]). The
previous task that is the closest to our study is gene
name normalization [10] which focused on linking entity
mentions to a list of gene entities [11,12]. Compared to
such a list of flat structures, we instead target a broader
range of entity types from full texts (rather than only
abstracts), and leverage the deeper structures contained
in the ontologies.
Although entity mention extraction from biomedical

literature has received attention, most of the previous
EL work focused on general news and social media
domains (e.g., [13,14]). These EL algorithms can be
divided into two categories: non-collective and collective
inference approaches. Non-collective methods usually
rely on prior popularity and context similarity with
supervised models [15-17]. Ranking scores for each con-
cept mention are computed individually. Collective
approaches further leverage the global coherence
between concept mentions normally through supervised
or graph-based re-ranking models [18-24]. Collective
inference methods address the linking problem through
maximizing the agreement between the text of the men-
tion document and the context of the entities of the
knowledge base. Graph-base re-ranking models typically
collects linking agreement information from training
data and propagates the agreement information to other
nodes. Both existing non-collective and collective algo-
rithms require large amounts of manually-labeled entity
mentions in order to achieve about 85% linking accuracy
for the news domain [13,14]. Finally, previous work
mainly focused on discovering knowledge from source
texts, while limited efforts have been made on exploiting
the rich structures of other knowledge bases beyond
Wikipedia. DBpedia Spotlight [25] is the only system
that leverages Semantic Web data to link entities to
DBpedia, a generic dataset derived from Wikipedia.
In this paper, we demonstrate that entropy based col-

lective inference is crucial to acquire and organize deeper
knowledge with a higher coverage from the source.
Together with our novel utilization of the declaratively
defined rich structures in the merged ontologies with
comprehensive text descriptions, the whole framework
carries rich enough evidence for effective entity linking,
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without the needs of any labeled data. Specifically, the
main contributions of this paper are as follows.

• We propose a new task to link prominent entity
mentions in full texts of biomedical literature to rich
ontologies.
• We design a novel collective inference approach
and build a benchmark for this new task.
• We exploit the rich structures in ontologies to per-
form EL in a completely unsupervised fashion with-
out any annotation cost, which even significantly
outperforms state-of-the-art supervised approaches.
• We provide thorough analysis about the effective-
ness of our approach and the remaining challenges,
and shed a light on the general research direction of
automatic “reading” scientific literature via knowl-
edge enrichment.

Methods
In this section we will present our EL approach to the
biomedical domain. A more detailed description of
this system with applications to other domains is
found in [26].

Overview
In the discussion that follows, we first define some basic
concepts, notations, and preliminary background and
then give an overview of the EL system. The entity men-
tions m ∈ M are the prominent phrases in the full text
of a scientific paper. We consider all classes, properties,
and individuals as described in the ontologies e ∈ E to
be the reference entities, which are used to ground the
entity mentions. Each entity is described by a surface
form dictionary that contains all phrases matching its
string. For example, the entity “IKK” is an entry in E,
whereas an occurrence of “IKK” in a scientific paper is
an entity mention. Furthermore, an occurrence of “I�B
kinase” is one surface form of “IKK” because it’s a syno-
nym of “IKK“.
The overall approach is depicted in Figure 1. We first

construct a knowledge base (described in the following
section ). Next, given a textual document d, we extract
the entity mentions M : {m1, m2, ...mn} as described in
section 3.2. We then construct a graph representation
Gd = 〈V, R〉 for d, where V = {v1, v2, ...vn} is the set of
vertices, each vertex v represents an entity mention in d,
and R = {r1, r2, ...rn} is the set of edges. (Note: Gd refers
to the graph of document d whereas Gk refers to the
graph of the knowledge base.) The vertices v1 and v2 are
connected by an edge denoted as ε(v1, v2, r) if and only
if the entity mentions for v1 and v2 are related to each
other. Here, such a relation is obtained by analyzing the
document d. For this work, we extract relations based
on sentence-level or paragraph-level co-occurrence.

Then, for each entity mention m, we use the surface
form dictionary to locate a list of candidate entities c ∈
C for entity mentions in graph Gd and compute an
importance score by the non-collective approach
detailed in section 3.5. Finally we compute similarity
scores for each entity mention/candidate entity pair
〈m, c〉 and select the candidate with the highest score as
the appropriate entity for linking.

Knowledge Base graph construction
We utilize a very broad definition of a Knowledge Base
(KB). A Knowledge Base is a data set that contains
some, potentially limited, structured content along with
unstructured content.
Using this broad definition, Wikipedia is a popular

knowledge base that is often used for entity linking
because it contains structured information such as titles,
hyperlinks, infoboxes as well as unstructured texts. How-
ever, in order to take advantage of richer structures and
domain knowledge which are not offered by Wikipedia,
we constructed a knowledge base from 300 biology-
related ontologies from BioPortal [6]. Based on the rich
structure contained in these ontologies, we created a web
of data (WOD). In the WOD, each entity e is described

Figure 1 Approach Overview. An illustration of the approach
described for analysis of a document.
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as a set of triples t ∈ T . For example, a triple (_:Nucleus,
_:PartOf, _:CellComponent ) indicates that the entity
“nucleus” is “part of” the entity “cell”.
Our expanded knowledge base E was constructed

using a graph-based approach. E consists of classes,
individuals, and properties in the aggregated ontologies.
Each entity e is regarded as a vertex in the knowledge
graph Gk . Using our WOD, each entity is connected to
other entities via a set of triples T . These connections
are regarded as the edges of Gk . For example, the enti-
ties “phosphorylating“, “IKK“, and “I�B kinase activity”
contained in the GeneOntology [27] are treated as the
vertices of our graph. The triples (_:I�B kinase activity,
_:subClassOf, _:phosphorylating ) and (_:I�B kinase
activity, _:relatedTo, _:IKK ) are treated as edges
between the vertex “I�B kinase activity” and other ver-
tices in our graph.

Mention extraction
The focus of the paper is to link identified mentions to
the concepts in the knowledge base. Therefore, for iden-
tifying prominent mentions from unstructured texts, we
apply various publicly available natural language proces-
sing tools. First a name tagger [28] is used to extract
entity mentions. Regular expressions are used to join
named entities that might have been considered separate
by looking for intervening prepositions, articles, and
punctuation marks. Then, a shallow parser [29] is used to
add noun phrase chunks to the list of mentions. A para-
meter controls the minimum and maximum number of
chunks per mention (one and five by default), and
whether overlapping mentions are allowed. Although
domain-specific named entity recognition could
improve the overall performance of the system, this
was not investigated since our focus was on the entity
linking problem in this work.

Entity candidate retrieval
By analyzing the triples describing the entities, we also
construct a surface form dictionary (f, {e1 , e2...ek })
where {e1, e2...ek } is the set of entities with surface form
f. We analyzed the following main properties: labels and
names (e.g. rdfs:label), synonyms (e.g. exact synonym
from gene ontology), aliases, and symbols (e.g. from
Orphanet ontology), providing us with more than 150
properties to construct the surface form dictionary. Dur-
ing the candidate retrieval process, we retrieve all enti-
ties with surface forms that are similar to the mentions’
surface form, and considered them as candidates for the
mentions.

Non-collective entropy rank
The candidate entities retrieved from the knowledge
base are pre-ranked using an entropy-based non-

collective approach. The main idea of the algorithm is
to assign the entities with higher popularity a higher
score. While entities in Wikipedia are universally con-
nected with the same type of link, entities in the ontolo-
gies are potentially connected with many kinds of links
that may have semantically rich definitions. We can
leverage this greater degree of specificity and assign dif-
ferent weights to edges described by different properties.
For example, consider the triples (_: IKK, _:isCapableOf,
_:phosphorylation) and (_:IKK, _:locatedIn, _:cytoplasm).
Since “phosphorylation” and “cytoplasm” are connected
to “IKK” by different relations, we consider their influ-
ence on the importance of “IKK” to be different.
To capture such differences in influence, we compute

the entropy of relations H(p) [30] as

H(p) = −
∑

op∈Op

�(op) log(�(op)) (1)

where p ∈ P is a property or relation that has a value
op ∈ Op or links to an object op ∈ Op and Ψ(op) is the
probability of obtaining o given the property p. The
entropy measure has been used in many ranking algo-
rithms to capture the salience of information [31,32],
therefore, in our task, we used it to capture the saliency
of a property. In the previous example, p indicates “is
capable of” and “located in” while o indicates “IKK” and
“cytoplasm” respectively. Then H(”iscapableof“) and H
(”locatedin“) are the influence factors between “IKK”
and “phosphorylation“, and “IKK” and “cytoplasm”
respectively.
We then compute the salience score of candidate enti-

ties using the following non-collective EntropyRank:

ER(c) =
∑

pc∈Pc
H(pc)

∑

ocp∈Oc
p

ER(ocp)

L(ocp)
(2)

where Pc is the set of properties describing a candidate
entity c and L(ocp) is number of entities linked to ocp. The
EntropyRank for each entity starts at 1 and is recursively
updated until convergence. This equation is similar to
PageRank [33], which gives higher ranks to the popular
entities, but we also take the difference of influence of
neighbor nodes into consideration.
As described previously, the candidate entities are

retrieved from the surface form dictionary based on the
above salience measure. Most often, the exact surface
form match between an entity mention and a candidate
entity cannot be found. However, our rank model allows
partial surface form matches with a penalty. Currently
we use Jaccard Similarity to compute partial match
scores. For example, Jaccard Similarity will be computed
for mention “nucleus” and entity “neural nucleus”. In
the equation below, JS(m, e) is the Jaccard Similarity
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score between the surface form of entity mention m and
the surface form of candidate entity c.

ER∗ (m, c) = JS (m, c) · ER (c) (3)

Collective inference
In the non-collective inference approach, each entity
mention is analyzed, retrieved, and ranked individually.
Although this approach performs well in many cases,
sometimes incorrect entity mention/entity links are
formed due to the lack of context information. There-
fore, we adopt a collective inference approach, which
analyzes relations among multiple entity mentions and
ranks the candidates simultaneously. For example, given
the sentence that contains the entity mentions “phos-
phorylating” and “IKK“, the collective approach will ana-
lyze the two mentions simultaneously to determine the
best reference entities.
In Section 3.1, we presented how we construct the

document graph Gd. Using the connected Gd and candi-
date entities retrieved from the non-collective approach,
we can compute the similarity between each entity men-
tion m from Gd and a candidate entity c from Gk . Both
m and c are connected to sets of neighbor nodes, which
provide important contextual descriptions for both m
and candidate entity c, respectively. We then use the fol-
lowing equation to compute the similarity score:

SimF(m, c) = α · ER∗(m, c) + β ·
∑

pc∈Pc
H(pc)

∑

n∈Oc
p∩Om

ER(n) (4)

Here, Oc
p ∩ Om is the set of neighbors with equivalent

surface form between the Gk subgraph for candidate c
and Gd subgraph for mention m. The parameters a and
b are used to adjust the effects of the candidate pre-
ranking score and the context information score on the
overall similarity score. Based on the optimization
results reported by Zheng et al. [26], we empirically set
a = 15 and b = 8 for all experiments. The equation cap-
tures two important ranking intuitions: 1. the more pop-
ular a c is, the higher rank it will be, as captured by ER,
2. the more similar between the Gk subgraph for c and
Gd subgraph for mention m, then higher rank will be
given to c, which is captured by latter part of the
equation.
To better describe the use of this system for the life

science domain, we provide an illustrative example in
Figure 2. For the example sentence provided, the docu-
ment graph Gd has vertices V that correspond to entity
mentions M . For this sentence-level collective inference
approach, there exist edges between all vertices since these
mentions co-occur in the sentence. We then retrieve our
knowledge graph Gk from our knowledge base. Focusing
our attention on reference entity “STAT3”, a term-level

search returns candidate “STAT3”. However, because
“Activated STAT3” is connected to more vertices of Gk , it
is intuitive that this candidate’s rank increases with collec-
tive inference. Furthermore, although candidate “Neural
Nucleus” is indirectly linked to “Nerve Impulse” which is in
turn linked to candidate “Nervous Tissue”, the isolation of
“Neural Nucleus” from candidates of other entities enables
candidate entity “Cell Nucleus” to obtain the highest rank.

Results
In this section we present the results of our EL method
and detailed analysis done by biomedical domain
experts.

Data and scoring metric
To illustrate the use of this approach in the life sciences
domain, we analyzed the signal transduction pathway
model developed in Lipniack et al. [3]. This paper is
extensively cited and backed by a relatively complete set
of experimental observations, making it a good candi-
date for testing our approach. We frequently refer to
this reference with the descriptor “Lipniacki” throughout
the rest of this paper to avoid ambiguity. Although this
data set is rather limited, there is no known bench-
mark data for the biomedical domain and one of the
advantages of our apporach is that large data sets are
not needed for training. From “Lipniacki”, the domain
experts in our research team identified 318 mentions of
97 unique prominent entities from 77 sentences and
link these mentions to the knowledge base constructed
from 300 biology-related ontologies (as described in sec-
tion ). Among all of the ontologies, there are more than
2 million entities and more than 50 million factual state-
ments. These ontologies were generated and maintained
by a combination of domain and knowledge representa-
tion experts.
Human annotation focused on nouns and relationships

between nouns (e.g. verbs). Nouns were fairly easy to
identify for domain-literate persons. Many biological
terms have very specific definitions, therefore all entity
mentions will have equivalent meanings. For example,
“NF-�B” is a proper noun referring to a specific protein
in a cell. Another example is the term “transcription”,
which refers to the specific process of synthesizing
mRNA from a DNA transcript. These situations occur
quite often in the nouns annotated. Since the Lipniacki
paper is in the primary literature, there were a few terms
that were defined explicitly in the paper that are not
commonplace in the literature. For example, Lipniacki
defines the proper noun IKKa, the activated form of IKK.
This author-defined word is easy for a domain-literate
person to annotate because the definition is given.
Whereas important nouns were fairly easy to identify,

verbs remained a challenge. Some of the verbs have
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specific definitions. For example, “phosphorylates”
describes the process of adding a phosphate group to a
protein. However, distilling the definition of other verbs
was more challenging. For example, the term “trans-
formed” as used in the fourth sentence of the Lipniacki
abstract refers to a vague process by which IKKn
becomes IKKa. This verb is important because it
describes a relationship between two terms in the
model, but an explicit definition is quite vague due to
either incomplete biological knowledge of the process or
an attempt by the author to only present the most rele-
vant information for model building.
The mention extraction component associated with

both the UIUC Wikifier and our system achieved 63% Pre-
cision, 65% Recall and 64% F-Measure. In this paper we
focus on developing linking techniques. We use the linking
accuracy [13,14] to evaluate the linking performance. For
each correctly extracted mention, we check whether or
not it is linked to the correct entries in the KB.

Impact of collective inference
To better understand the performance of our wikifica-
tion system on this new domain, we studied the perfor-
mance for different inference levels:

1 Mention level: mentions are queried individually
and no context information is provided (without col-
lective inference).

2 Sentence level: mentions from the same sentence
are analyzed simultaneously (collective inference
utilized).
3 Paragraph level: mentions from the same para-
graph are analyzed simultaneously (collective infer-
ence utilized).

Table 1 presents the results. The improvement from
mention level to sentence level illustrates that leveraging
the relations among entities presented in the KB via col-
lective inference is beneficial. However, we observe a per-
formance drop from sentence level to paragraph level. By
including more mentions, we may potentially introduce
unrelated information and noise when compared to the
sentence level. For example “phosphorylating” was identi-
fied correctly at the sentence level, but misidentified at
the paragraph level in one example. The broader para-
graph level search included terms such as “NF-�B, “sig-
naling pathway”, and “A20” which are not connected to
“phosphorylating” in the aggregated ontologies. There are
other examples which were correctly identified at the
paragraph level but not at the sentence level, however,
these were fewer than those where the sentence level
produced an adequate link and the paragraph level did
not.
When we are given a single term for disambiguation,

we lack context information. The simple popularity-
based non collective disambiguation algorithm will

Figure 2 Illustrative Example. In the document graph, entity mentions are circled. In the knowledge graph, reference entities are bolded, the
candidate entities with the highest ranks are circled with solid lines, and candidates with lower ranks are circled with dashed lines. Boxes
indicate intermediates.
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always return the most popular referent entity regard-
less of the context. However, in the biomedical domain,
the same mention can refer to different entities in dif-
ferent contexts. On the other hand, collective inference
takes advantage of the provided context information
during the disambiguation process, which is aligned
with the way domain experts disambiguate the terms.
For example, the entity “phosphorylating” is misidenti-
fied at the term level, but is properly identified at the
paragraph level. At the mention level, “phosphorylating”
is identified as “glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH)”, a specific protein that carries out a well-
studied enzymatic process in cellular metabolism.
Furthermore, this protein is responsible for adding a
phosphate to a small molecule rather than a protein.
However, at the paragraph level, “phosphorylating” is
correctly assigned to the general process of adding a
phosphate group to a protein. In the context of an
intracellular signaling cascade, phosphorylating a protein
typically alters the protein from an inactive to an active
form. Misidentifying “phosphorylating” as a specific
enzyme (proper noun) rather than a cellular process
(verb) may incorrectly state that “GADPH” is involved
in this signaling cascade and/or miss an important
event in the signal cascade, thereby confusing the
reader.

At the sentence level, some mentions of “phosphory-
lating” are identified correctly, whereas other men-
tions are misidentified. For example, in section 2.0 of
Lipniacki, “In this form it is capable of phosphorylat-
ing I�Ba, which in turn leads to its degradation.”

the system misidentified “phosphorylating“. In this
sentence, since I�Ba is the object of phosphorylation
and GADPH does not perform this phosphorylation, a
domain-literate person can readily tell that the defini-
tion provided by the algorithm is inaccurate. Further-
more, because 1.) I�Ba is a protein, 2.) the sentence
discusses the actions of phosphorylation or degradation
of this protein, and 3.) the queried ontologies do not
contain specific entries related to this specific phosphor-
ylation process, it is intuitive to a domain-literate per-
son that the collective inference should help the correct
linking of “phosphorylating”. In the same paragraph of
Lipniacki,

“The newly synthesized I�Ba again inhibits NF-�B,
while A20 inhibits IKK by catalysing its transformation
into another inactive form, in which it is no longer cap-
able of phosphorylating I�Ba.”

the system correctly identified “phosphorylating”. In
this sentence, since 1.) IKK is a kinase (a protein capable
of phosphorylating a specific entity or group of entities),
and 2.) I�Ba, NF-�B, A20, and IKK are all proteins, it is
intuitive to a domain-literate person that collective
inference would return a correct match.
This relation between “phosphorylating” and “IKK” is

captured and modeled in GeneOntology[3] by biology
ontologists. The ontology states that “phosphorylating” is
related to an activity that involves “I�B kinase”, a syno-
nym for “IKK”. Our collective inference algorithm
leverages this knowledge during the ranking computa-
tion and promotes the initially under-ranked description
from GeneOntology to the highest rank when the con-
cept “IKK” is presented in the sentence level.

Comparison with state-of-the-art
To evaluate the performance of our approach, we com-
pare the ontology-based system with [34], one of the
current state-of-the-art EL systems trained from news-
related data. We compare the linking accuracy scores in
Table 2.
From the table, we can see that our system signifi-

cantly outperforms [34] by a wide margin. One way to
solve this domain-mismatch problem is to train a Wiki-
fier using a biology-related training dataset. However
such a dataset would be expensive and time consuming
to generate. For example, the news training dataset used
by [34] took a significant amount of time to create and
it would be unlikely that this effort would be repeated
for a new domain. Furthermore, datasets for a biomedi-
cal domain, unlike news-related datasets, require a
domain expert with specialized knowledge, which
further complicates the task of developing large training
sets.
In contrast to this approach, we used biomedical

ontologies and a novel unsupervised algorithm for this
domain. The advantage of the proposed work is that
there are many related ontologies published on the
Web by the domain communities such as BioPortal
[6]. Since the system relies heavily on the related
ontologies, the system performance improves with the
quality of the ontologies. Even though generating high
quality ontologies is expensive, there are many ongoing
efforts to capture and model biology-related knowledge
such as the continued work on the Gene Ontology
[27]. We can easily leverage these works to improve
the system.

Table 1. Result of Collective Inference

Inference Level Linking Accuracy

Mention 73.08%

Sentence 83.17%

Paragraph 65.87%
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Remaining challenges
Our approach significantly outperforms state-of-the-art
without using any labeled data. However, there are sev-
eral remaining challenges, including:

1 As previously mentioned, our EL system is not able
to decide whether or not it returns a link. It is a chal-
lenging research question to optimize the threshold to
determine whether a mention is linkable or not [35].
2 Failure to detect biomedical concept mentions for
linking to the knowledge base constitute about 22% of
errors of [34]. Since the biomedical ontologies contain a
relatively complete taxonomy dictionary for the domain
concepts including synonyms, alias names, and abbre-
viations, we can leverage this information and apply a
dictionary based approach to detect relevant concepts.
3 Although we utilize a large amount of ontologies
which capture biomedical knowledge, some facts and
relations among concepts are not clearly defined.
For example, the fact that “eukaryotic transcription”
takes place only within the “cell nucleus” is not
clearly presented. Instead, a vague “related to” rela-
tion between “eukaryotic transcription” and “cell
nucleus” is presented in the ontologies.
4 Many of the processes taking place in signaling path-
ways are dependent upon another. For example, it is
very common that a protein is phosphorylated which
turns it into its active form, which is needed to activate
another protein and so forth. As such, there is often a
cascade of events that all depend upon each other.
While it is known that these types of relationships
exist, we currently do not make use of this knowledge.
5 The current disambiguation algorithm assumes that
phrases from the same sentence or same paragraph
are related to each other, however such assumptions
can potentially undermine the EL performance. For
example, we observe that including mentions from the
same paragraph as context information, our perfor-
mance drops when compared to only including men-
tions from the same sentence. Better collaborators for
a target entity may be obtained by deep semantic par-
sing techniques such as Dependency Parsing and
Semantic Role Labeling.

Conclusions
We have developed an effective Entity Linking system to
automatically identify and link prominent mentions in

unstructured biomedical literature to ontologies. As
more and richer ontologies are being constructed and
accessible in many scientific domains, we feel the time
is now ripe to explore some novel methods to adapt
mature text mining techniques to automatically enrich
knowledge for scientific papers. By a thorough pilot
study, we have demonstrated that it’s possible to skip
the tedious manual annotation by incorporating rich
structures in ontologies in an unsupervised collective
inference framework. The proposed approach would
save scientists concerned with staying informed about
research development an enormous amount of time. In
the future, we plan to apply semantic parsing to better
select mention collaborators for collective inference, and
leverage other existing Semantic Web technologies such
as semantic reasoning to improve the linking quality.
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