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Abstract

In response to the growing interest in genome-wide association study (GWAS) data privacy, the Integrating Data
for Analysis, Anonymization and SHaring (iDASH) center organized the iDASH Healthcare Privacy Protection
Challenge, with the aim of investigating the effectiveness of applying privacy-preserving methodologies to human
genetic data. This paper is based on a submission to the iDASH Healthcare Privacy Protection Challenge. We apply
privacy-preserving methods that are adapted from Uhler et al. 2013 and Yu et al. 2014 to the challenge’s data and
analyze the data utility after the data are perturbed by the privacy-preserving methods. Major contributions of this
paper include new interpretation of the c2 statistic in a GWAS setting and new results about the Hamming
distance score, a key component for one of the privacy-preserving methods.

Introduction
Rapid developments in whole-genome sequencing tech-
nologies in recent years have made the collection of
high quality genetic data faster and more economically
feasible. Many types of genetic research can benefit
from having a large amount of genetic data. For exam-
ple, in genome-wide association studies (GWAS), which
are a type of genetic research that examine a large num-
ber of single-nucleotide polymorphisms (SNPs) to iden-
tify genetic factors associated with a phenotype, which is
typically a common disease, increasing the number of
DNA samples available for analysis allows researchers to
make more accurate statistical inference and improve
the overall quality of the analysis.
Encouraging data sharing among researchers is the first

step towards taking advantage of the benefits brought
about by the rapid growth in genetic data collection.
However, being able to share genetic data without

compromising the study participants’ privacy remains
one of the biggest challenges in genetic research. While it
is clear that individual level genetic data deserve a high
level of protection, for many years it was widely consid-
ered safe to release to the public aggregate genetic data
pooled from thousands of individuals without compro-
mising genetic study participants’ privacy. However,
Homer et al. [1] in 2008 demonstrated that one can use
publicly available aggregate genetic data, such as SNP
data from the International HapMap Project http://hap-
map.ncbi.nlm.nih.gov/, to infer whether an individual has
participated in a study. Cautious about the potential
breach of genetic study participants’ privacy, the National
Institute of Health (NIH) quickly responded to the
Homer et al. [1] attack by mandating an elaborate
approval process that every researcher has to go through
in order to gain access to aggregate genetic data. This
NIH policy remains in effect today.
Homer et al. [1]’s attack and NIH’s subsequent reaction

spurred research interest in privacy-preserving methodolo-
gies for GWAS data. A recent concept of differential priv-
acy (e.g. [2]), introduced by the cryptographic community,
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has shown great promise as a basis for privacy-preserving
methodologies, as it provides a rigorous definition of priv-
acy with meaningful privacy guarantees in the presence of
arbitrary external information. We have seen privacy-pre-
serving methods based on differential privacy applied to
real human GWAS data in recent studies (e.g., [3-5]).
The iDASH Healthcare Privacy Protection Challenge,

organized by Integrating Data for Analysis, Anonymization
and SHaring (iDASH), aims to investigate the effectiveness
of applying privacy-preserving methodologies to human
genetic data [6]. This paper is based on a submission to
the iDASH Healthcare Privacy Protection Challenge using
privacy-preserving methods adapted from [3] and [5].
A major contribution of this paper is a new interpreta-

tion of the c2 statistic in a GWAS setting and new
results about the Hamming distance score, which plays
an important role in the differentially private mechan-
isms proposed by [4] and [5]. In particular, we present a
graphical interpretation of the allelic test c2 statistic that
will help us conceptualize the Hamming distance score.
We also device an efficient algorithm for finding the
Hamming distance score and prove that the sensitivity
of the score function is 1; we hence address concerns
raised in [5] about speed and sensitivity of alternative
methods for finding the Hamming distance score.
We start by introducing background information on

the iDASH Healthcare Privacy Protection Challenge. We
briefly describe the characteristics of the data and define
the allelic test c2 statistic, which is used for evaluating
the performance of submissions in the challenge. Then
we summarize differentially private mechanisms applied
to the challenge’s data, which include a mechanism based
on the Laplace mechanism and c2 statistic, a mechanism
based on the exponential mechanism and c2 statistic, and
a mechanism based on the exponential mechanism and
Hamming distance score. We present a graphical inter-
pretation of the allelic test c2 statistic and an efficient
algorithm for finding the Hamming distance score. We
prove that our algorithm finds the shortest Hamming
distance and therefore the Hamming distance score has
sensitivity 1. We incorporate our improvements into the
differentially private mechanisms and apply them to
the challenge’s data. We compare the performance of the
mechanisms using risk-utility plots.

Background information on iDASH challenge
The challenge has two tasks, both of which are con-
cerned with the dissemination of aggregate GWAS data:
(1) limiting the re-identification risks when releasing all
aggregate data in a GWAS dataset, and (2) being com-
pliant with differential privacy (Definition 2) when
releasing the most significant SNPs. This paper focuses
on the second task of releasing the most significant
SNPs differentially privately.

The data used for the second task consist of 201 parti-
cipants from the Personal Genome Project (http://www.
personalgenomes.org/) and 174 participants from Hap-
Map. Individuals from PGP are treated as cases and
those from HapMap are treated as controls in the chal-
lenge. 106,129 SNPs are typed in all participants. [6] has
more details on how the data are processed.
A subset containing 5,000 SNPs is selected by organizers

of the challenge to form a representative sample of the
entire set of SNPs. This paper uses the subset of SNPs to
evaluate the performance of the privacy-preserving meth-
ods, as is recommended by organizers of the challenge.
In GWAS with R cases and S controls, we usually sum-

marize the data for a single SNP using a 2 × 3 genotype
contingency table shown in Table 1 or a 2 × 2 allelic con-
tingency table shown in Table 2. In this challenge, we are
given genotypes of individuals in the case group and allele
frequencies of individuals in the control group. Therefore,
the row pertaining to the case group in the allelic table
can be easily derived from the genotypes of the case
group. Furthermore, we will assume that the Hardy-Wein-
berg equilibrium holds so that we can derive the row per-
taining to the control group in the genotype table from
the allele frequencies of the control group.
In this challenge, the statistical significance of a SNP’s

association with the phenotype is assessed by the the
allelic test statistic (Definition 1). For the rest of the
paper, we will simply refer to the allelic test statistic as
c2 statistic. Assuming that the control group’s data are
public, we will use the differentially private mechanisms
discussed in the next section to release the top K SNPs
while preserving the privacy of the case group.
Definition 1 The allelic test is also known as the

Cochran-Armitage trend test for the additive model. The
allelic test statistic based on a genotype contingency
table (Table 1) is equivalent to the c2-statistic based on
the corresponding allelic contingency table (Table 2). The
allelic test statistic can be written as

YA =
2N[(2r0 + r1)S − (2s0 + s1)R]

2

RS(2n0 + n1)(n1 + 2n2)

Differential privacy: definitions and methods
The concept of differential privacy, recently introduced
by the cryptographic community (e.g., [2]), provides a

Table 1 Genotype table

# of minor alleles Total

0 1 2

Case r0 r1 r2 R

Control s0 s1 s2 S

Total n0 n1 n2 N
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notion of privacy guarantees that protect GWAS data-
bases against arbitrary external information.
Definition 2 (differential privacy) Let

D = {(X1, . . . ,Xn) : Xi ∼ P} denote the set of all data-
bases consisting of n individuals sampled independently
from the same population P . For D,D′ ∈ D , write D ~ D’
if D and D’ differ in one individual. A randomized
mechanism K is ∈-differentially private if, for all D ~ D’
and for any measurable set S ⊂ R ,

Pr(K(D) ∈ S)
Pr(K(D′) ∈ S)

≤ eε.

Two methods are often used as building blocks for con-
structing more complex differentially private algorithms.
One of the methods, due to [2], is called the Laplace
mechanism (Definition 4), and the other method, due to
[7], is called the exponential mechanism (Definition 5).
Both methods require knowledge of the sensitivity of the
score function, where sensitivity is defined as the smallest
upper bound of how much the function can vary when one
record in the input database changes (see Definition 3).
Definition 3 The sensitivity of a function

f : D × R
d → R is the smallest number S(f) such that

sup
x∈Rd

||f (D, x) − f (D′, x)|| ≤ S(f ),

for all databases D,D′ ∈ D such that D ~ D’.
Definition 4 (Laplace mechanism) Releasing f (D)+b,

where b ~ Laplace
(
0, S(f )

ε

)
, satisfies the definition of

∈-differential privacy.
Definition 5 (exponential mechanism) Let

q : D × R
d → R be a function that outputs the score of

an event or a value given a database. Define the random
variable εε

q

Pr(εε
q(D) = x) =

exp
(

εq(D,x)
2S(q)

)
∫
Rd exp

(
εq(D,s)
2S(q)

)
ds

.

Then releasing εε
q satisfies the definition of ∈-differen-

tial privacy.

Methods for releasing the K most relevant SNPs
Algorithm 1 The E-differentially private mechanism for
releasing the K most relevant SNPs using the Laplace
mechanism [3,5,8].

Input: The score of all M candidate SNPs, the num-
ber of SNPs, K, that we want to release, the sensitivity,
s, of the score function, and the privacy budget E.
Output: K SNPs.
1: Add independent Laplace noise with mean zero and

scale 2K s
ε

to each of the M SNPs scores.
2: Choose the top K SNPs based on the perturbed

scores.
Algorithm 2 The ∈-differentially private mechanism

for releasing the K most relevant SNPs using the expo-
nential mechanism [4,5].
Input: The scores (e.g. c2 statistic or Hamming dis-

tance) of all M candidate SNPs, the number of SNPs, K,
that we want to release, the sensitivity, s, of the score
function, and the privacy budget ∈.
Output: K SNPs.
1: Initialize {qi}Mi=1 score of SNPi.
2: Set wi = exp

( εqi
2Ks

)
. Define

Pr(T (D) = i) = wi

/
M∑
j=1

wj.

3: Sample j ∼ T (D) . Record SNPj . Set qj = −∞.
4: Repeat Step 2 and 3 until K SNPs have been

recorded.
Algorithm 1 and Algorithm 2 extend the Laplace

mechanism and the exponential mechanism, respec-
tively, to release more than a single SNP differentially
privately. In this paper, we consider three mechanisms
for releasing the top K SNPs: a mechanism that is based
on Algorithm 1 and uses c2 statistic as score function, a
mechanism that is based on Algorithm 2 and uses c2

statistic as score function, and a mechanism that is
based on Algorithm 2 and uses the Hamming distance
score ([4]) as score function. In loose terms, the Ham-
ming distance score is the smallest number of changes
made to a genotype table until the significance of the
table changes, where a change, counted as 1-Hamming
distance in the space of genotype tables, is defined as
changing the genotype of one individual and significance
refers to whether the p-value of the c2 statistic of the
table is smaller than a pre-specified threshold value or
not. See [5] for more details on the three mechanisms
and applications of them to a real human GWAS
dataset.
For mechanisms that use the c2 statistic as score, we

need to know the sensitivity of the c2 statistic. An upper
bound for the sensitivity is shown in [5], but [5] requires
that the margins of the genotype contingency tables to be
positive. Indeed, such requirement can be satisfied in the
challenge’s setting when we assume that Hardy-Weinberg
equilibrium holds: because a typical GWAS dataset con-
sists of only common SNPs, whose minor allele frequen-
cies are greater than 1%, the control group’s three
genotypes derived from the allele frequency at each SNPs

Table 2 Allelic table

Allele type Total

Minor Major

Case r1 + 2r2 2r0 + r1 2R

Control s1 + 2s2 2s0 + s1 2S

Total n1 + 2n2 2n0 + n1 2N
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will be nonnegative, which ensures that the derived geno-
type tables have positive margins.
For the mechanism that uses the Hamming distance

score as score, we already know that, by construction, the
sensitivity of the score function is 1 if the Hamming dis-
tance is the shortest Hamming distance [4]. However, as is
pointed out in [4] and [5], it is a computationally onerous
task to actually calculate the shortest Hamming distance,
which, in the most naïve setting, involves examining all
possible sequential changes made to the original genotype
table that alter the significance status of the table. To
make the calculations more computationally feasible, [4]
and [5] use approximations of the shortest Hamming dis-
tance in their implementations of the mechanism, noting
the caveat that the sensitivity of the approximated Ham-
ming distance score may no longer be 1.
In the next section, we propose a new method of find-

ing the Hamming distance score that is much more
computationally efficient than those in [4] and [5]. We
also prove that our method indeed produces the short-
est Hamming distance, and therefore the sensitivity of
the resulting Hamming distance score function is 1.

Finding the Hamming distance score
Let’s refer to the case group’s data and the control group’s
data collectively as a database and call the data for an indi-
vidual a record. We can think of the number of cases, R,
and the number of controls, S as fixed. Recall that we
assume the control group’s data are known to the public.
Therefore, for a given genotype table, we assume that s0,
s1, and s2 are fixed. Then the c2 statistic can be written as
a function of r0 and r1. How the value of the c2 statistic
changes when we change one record in the database is
illustrated in Figure 1. In Figure 1, each dot represent a
value of the c2 statistic given r0 and r1. When we change
one record in the case group, there are 6 possible changes
to the genotype table: (r0 ® r0 + 1, r1 ® r1), (r0 ® r0 + 1,
r1 ® r1 − 1), (r0 ® r0, r1 ® r1 − 1), (r0 ® r0 − 1, r1 ® r1),
(r0 ® r0 − 1, r1 ® r1 + 1), and (r0 ® r0, r1 ® r1 + 1); that
is, r0 and r1 cannot increase or decrease by 1 simulta-
neously. The possible changes are shown as arrows in
Figure 1. A change in the genotype table results in a
change in the allelic table, and we get a new value for the
c2 statistic based on the new allelic table.
Let p* denote a pre-specified threshold p-value and let c

denote the c2 statistic corresponding to p*, the p-value of
the c2 distribution with 1 degree of freedom. Then for a
given SNP in the pool of candidate SNPs, the genotype
table of which we denote by D, the shortest Hamming dis-
tance is the smallest number of sequential changes made
to D such that the resulting genotype table, D’, satisfies YA
(D’) ≥ c if YA(D) < c and YA(D’) < c if YA(D) ≥ c; that is, if
we call c the significance threshold, then the goal is to
make changes to the “insignificant” (“significant”) table D

so that the c2 statistic of D’ goes above (below) the signifi-
cance threshold c, and D’ becomes a “significant” ("insig-
nificant”) table. The Hamming distance score is defined as
h = (shortest Hamming distance) − 1 if YA(D) ≥ c and h =
−(shortest Hamming distance) if YA(D) < c.
Let’s consider the space of genotype tables, BD ,

defined by a genotype table D: for all D′ ∈ BD , D’
shares the same values of s0, s1, s2, R, S, and N with D,
but D’ does not necessarily have the same values of r0,
r1, and r2 as D. Let n10 = 2s0 + s1 denote the number of
major alleles in the control group, and let x = 2r0 + r1
denote the number of major alleles in the control group,
then we can write the c2 statistic of a genotype table
D′ ∈ BD as a function of x:

YA(D;BD) = Y(r0, r1 : D) = YA(x;D)

=
2N(xS − n10R)

2

RS(x + n10)(2N − x − n10)
,

where r0, r1 and x are derived from D’, and n10, R, S
and N are the same for D and Dl. For notational conve-
nience, when r0 and r1 are also derived from D, we will
simply write the c2 statistic as YA(D).
Lemma 1 YA is an increasing function of × when xS −

n10R > 0, and it is a decreasing function of × when xS −
n10R < 0.
Proof. [see Additional file 1].
To understand the implication of Lemma 1, let’s con-

sider Figure 2. In Figure 2, each dashed line has slope =
−2, representing a value of x, which is defined as x = 2r0
+ r1. Because we can consider each dot in Figure 2 to be

Figure 1 Legal moves in the space of genotype tables with
fixed R, S, s0, s1, and s2.
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a unique genotype table in the space of genotype tables
with fixed control data and a fixed number of cases,
those tables that lie on the same dashed line will have
the same value of c2 statistic. Furthermore, because 0 ≤
r0 + r1 ≤ R, r0 ≥ 0 and r1 ≥ 0, the space of genotype
tables, represented as dots, fall within a triangle in
Figure 2.
For the moment, let’s treat r0 and r1 as continuous

values. In Figure 2, the red solid line represents the line
2r0 + r1 = x = n10R/S and the two solid black lines
represent lines 2r0 + r1 = x such that YA(D;BD) = c .
There are two black lines because by Lemma 1 YA(x) is
an increasing function when x > n10R/S and it is a
decreasing function when x < n10R/S; that is, there
could be two values of x, say x1 and x2, such that
YA(x1;BD) = YA(x2;BD) and x1 < n10R/S < x2. Because
it is possible that

max
x

YA(x;D)

≤ max{YA(0,BD),YA(2R,BD)}

= max
{

2NRn10
S(2N − n10)

,
2NR(2S − n10)
S(2R + n10)

}
< c,

there could be genotype tables for which only one
black line exists or no black line exists at all; in such

cases, we will use the lines 0 = 2r0 + r1 or 2R = 2r0 + r1
wherever appropriate.
In Figure 2, the genotype table D is insignificant and

its c2 statistic is below the threhold value. By Lemma 1,
we know that the c2 statistics of genotype tables, as
represented by the dots on Figure 2, are greater than c
when they are in the shaded area, outside of the area
between the two black lines and they are smaller than
YA(D

*) when they are inside the area between the two
black lines. Therefore, finding the Hamming distance
score for D is to find the shortest Hamming distance
from the genotype table D to genotype tables in
the shaded areas.
For genotype tables that are significant, they will fall

into the shaded areas in Figure 2. Then finding the
Hamming distance score for a significant genotype table
is to find the shortest Hamming distance from the geno-
type table in one of the shaded areas to genotype tables
in the non-shaded area.
Proposition 2 Given a significance threshold value c

and an insignificant genotype table D (i.e., YA(D) < c), if
there exists D′ ∈ BD such that YA(D′;BD) ≥ c , then the
shortest Hamming distance is min{H1, H2}, where H1

and H2 are defined as follows:

(i) H1 is the number of changes made to D in the fol-
lowing manner: (1) keep decreasing r0 until the new
genotype table, D’, becomes significant (i.
e.,YA(D′;D) > c ); (2) when r0 is minimized but the
new table is still insignificant, keep decreasing r1
until the new table becomes significant.
(ii) H2 is the number of changes made to D in the
following manner: (1) keep increasing r0 until the
new genotype table becomes significant; (2) if r0 can
no longer be increased without decreasing r1 and the
new table is still insignificant, increase r0 and
decrease r1 in each change until the new table
becomes significant.

If for all D′ ∈ BD , YA(D′;BD) < c , then we define the
shortest Hamming distance as min {H′

1,H
′
2} , where H′

1

and H′
2 are defined as follows:

(i) When r0 and r1 are both minimized but the new
table is still insignificant, set H′

1 to 1 + d1, where d1
is smallest the number of changes needed to mini-
mize r0 and r1.
(ii) When r0 and r1 are both maximized but the new
table is still insignificant, set H′

2 to 1 + d2, where d2
is smallest the number of changes needed to maxi-
mize r0 and r1.

Proof. [see Additional file 1].

Figure 2 An example of a genotype table, D, in the space of
genotype tables with fixed R, S, s0, s1, and s2. Each dot
represent a genotype table. Each dashed line has slope = fl2,
representing the lines x = 2r0 + r1. The red line is x = (2s0 + s1)R/S =
2r0 + r1, and the two black lines correspond to values of (2r0 + r1)
such that YA(r0, r1; BD ) = c, where c is a pre-specified significance
threshold value.
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Proposition 3 Given a significance threshold value c
and a significant genotype table D (that is, YA(D) ≥ c),
the shortest Hamming distance is min{H1, H2}, where H1

and H2 are defined as follows:

(i) If 2r0 + r1 > (2s0 + s1)R/S, set H1 = ∞; otherwise,
H1 is the number of changes made to D in the fol-
lowing manner: keep decreasing r0 until the new
genotype table, D’, becomes insignificant (i.e., YA(D’,
D) < c).
(ii) If 2r0 + r1 < (2s0 + s1)R/S, set H2 = ∞; otherwise,
H2 is the number of changes made to D in the follow-
ing manner: keep decreasing r0 until the new geno-
type table becomes insignificant.

Proof The proof is similar to that of Proposition 2.
Definition 6 (The Hamming distance score) Given a

threshold c2 statistic value c and a genotye table D, the
Hamming distance score of D is

h
{−d−, if YA(D) < c,
d+ − 1 if YA(D) ≥ c,

where d− is found using Proposition 2 and d+ is found
using Proposition 3.
Corollary 4 The sensitivity of the Hamming distance

score as defined in Definition 6 is 1.

Application to the challenge’s data
In this section we apply all three differentially private
mechanisms to the challenge’s data and evaluate the
performace of the mechanims by examining the data
utility at several levels of privacy risk. Data utility is
defined as follows: let S0 denote the set of top K SNPs
ranked according to their true c2 statistics and let S be
the set of top K SNPs chosen after perturbation (either
by Algorithm 1 or Algorithm 2). Then the data utility as
a function of the privacy budget, ∈, is

u(ε) =
|S0 ∩ S|

|S0| .

In Figure 3 we compare the performace of the mechan-
isms given different privacy budget E and different num-
ber of top SNPs to release, K. For the mechanism based

Figure 3 Risk-utility plots. Performance comparison of Algorithm 1 and Algorithm 2 with c2 statistic or Hamming distance score as score
function. Each row corresponds to a fixed K, the number of top SNPs to release. Each column corresponds to a fixed threshold p-value, which is
relevant to the mechanism based on Hamming distance score only. The threshold p-values 0.1 and 0.01 divided by the number of SNPs.
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on the Hamming distance score, we also consider differ-
ent significance threshold values. We can see that the
mechanism based on Algorithm 2 (a generalization of the
exponential mechanism) and the Hamming distance
score outperforms the other mechanisms when ∈ is
small (∈ = 1); on the other hand, unlike the other
mechanisms, the data utilities of which continue to
increase as E increases, the data utility of the mechanism
based on Algorithm 2 and the Hamming distance score
may plateau before it reaches 1 even if we keep increasing
E. This phenomenon is also observed in the analysis of a
different GWAS dataset in [5]. The abnormality of the
mechanism based on the Hamming distance score is due
to the inconsistency in ranking: because the set of top K
SNPs based on the Hamming distance score is not always
the same as the set of top K SNPs based on the c2 statis-
tic, which is used to evaluate utility, therefore, as E
increases, the amount of noise decreases, and the set of K
SNPs resulting from the mechanism based on the Ham-
ming distance score becomes more similar to the set of
top K SNPs based on the Hammming distance score,
which may depart from the set of SNPS based on the c2

statistic. [5] has a more detailed discussion of the charac-
teristics of all three differentially private mechanisms.
It is also worth noting that even though the perfor-

mance of the mechanism based on the Hamming dis-
tance score does not seem to be affected by the choice
of threshold p-value, the analysis of the mechanism in
[5] shows that whether the choice of threshold p-value
has any effect on data utility also depends on the choice
of K, the number of top SNPs to release. Therefore, the
choice of threshold p-value should be justified before we
use this mechanism.

Conclusions
In our submission to the iDASH Healthcare Privacy
Protection Challenge, we apply differentially-private
methods proposed by [3] and [5] to the challenge’s data.
Our results show that the performance of the method
based on Algorithm 2 and Hamming distance score is
superior to that of other methods when the privacy bud-
get, ∈, is small. But we also point out problems with the
Hamming distance score, such as the data utility pla-
teauing at a level lower than other methods.
We devise an efficient algorithms for finding the

Hamming distance score and prove that the sensitivity
of the score function is 1. This addresses concerns
raised in [5] regarding speed and sensitivity of alterna-
tive methods for finding the Hamming distance score.
The graphical interpretation of the c2 statistic that we
present in the paper is instrumental in our discovery of
the efficient algorithm for finding the Hamming distance
score. We expect that the graphical interpretation can

be extrapolated to other settings, such as the Pearson’s
c2 statistic for 2 × 3 contingency tables and the setting
in which data for the controls are not assumed to be
public, and help with designing efficient algorithms for
fining the Hamming distance score in those settings.
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