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Abstract

Background: Unstable Angina (UA) is widely accepted as a critical phase of coronary heart disease with patients
exhibiting widely varying risks. Early risk assessment of UA is at the center of the management program, which allows
physicians to categorize patients according to the clinical characteristics and stratification of risk and different
prognosis. Although many prognostic models have been widely used for UA risk assessment in clinical practice, a
number of studies have highlighted possible shortcomings. One serious drawback is that existing models lack the
ability to deal with the intrinsic uncertainty about the variables utilized.

Methods: In order to help physicians refine knowledge for the stratification of UA risk with respect to vagueness in
information, this paper develops an intelligent system combining genetic algorithm and fuzzy association rule
mining. In detail, it models the input information’s vagueness through fuzzy sets, and then applies a genetic fuzzy
system on the acquired fuzzy sets to extract the fuzzy rule set for the problem of UA risk assessment.

Results: The proposed system is evaluated using a real data-set collected from the cardiology department of a
Chinese hospital, which consists of 54 patient cases. 9 numerical patient features and 17 categorical patient features
that appear in the data-set are selected in the experiments. The proposed system made the same decisions as the
physician in 46 (out of a total of 54) tested cases (85.2%).

Conclusions: By comparing the results that are obtained through the proposed system with those resulting from the
physician’s decision, it has been found that the developed model is highly reflective of reality. The proposed system
could be used for educational purposes, and with further improvements, could assist and guide young physicians in
their daily work.
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Background
Unstable Angina (UA) is a kind of chest discomfort or
pain that occurs in a continuous and unpredictable way
[1,2]. The unstable pain can result from the disruption
of an atherosclerotic plaque in narrowed coronary vessels
with lessened flexibility, embolization and vasospasm. As
a major type of Cardiovascular Disease (CVD), UA lays its
symptoms between stable angina and acute myocardium
infarction and a further sudden death [2]. While the risk
of UA is high, the population of UA is huge, especially
for aged people and those with associated disease such as
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hypertension and diabetes [3]. To this end, reliable assess-
ment of risk levels for individual UA patients will be of
significant value and interest.
A number of models for UA risk assessment have been

proposed in literature. Most of these models are derived
from databases of clinical trials, e.g., the Thrombolysis
in Myocardial Infarction (TIMI) [4], platelet glycopro-
tein IIb/IIIa in unstable angina: Receptor Suppression
Using Integrilin (PURSUIT) [5], and theGlobal Registry of
Acute Coronary Events (GRACE) [6], etc. They use stan-
dard patient features that are part of the routine medical
evaluation of UA patients, and lead to a score to define
prognostic groups [2]. Although there are many benefits
related to the design and use of these prognostic models,
a number of studies have highlighted possible shortcom-
ings [2,4]. One serious drawback is that existing models
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lack the ability to deal with the intrinsic uncertainty about
patient features utilized in UA risk assessment. Note that
vagueness is fundamental and indispensable aspects of
knowledge, so as in many practical problems, the experts
face vagueness in feature vectors. According to Bellman
and Zadeh “much of the decision making in the real
world takes place in an environment in which the goals,
the constraints, and consequences of possible actions are
not known precisely” [7]. Regarding UA risk assessment,
many patient features are vague, and not easy to be han-
dled by existing models. It is, therefore, necessary to
develop a new UA risk assessment model to deal with
vague information.
In this paper, a novel UA risk assessment model has

been developed using fuzzy set theories. The proposed
model represents patient features with fuzzy sets and then
extracts useful information with a descriptive rule induc-
tion approach based on fuzzy systems. To derive fuzzy
rules from data, the proposed model employs genetic
algorithms (GAs) to learn rule base from the collected
data-set. GAs are search algorithms based on natural
genetics that provide robust search capabilities in com-
plex spaces [8]. The hybridization between fuzzy systems
and GAs, called genetic fuzzy system (GFS), has attracted
considerable attention in the computational intelligence
community [9-12]. Our main goal is to develop a novel
GFS such that we derive from clinical data-set a set of
assessment rules, which has good interpretability before
determining an efficient assessment model in order to
get high accuracy of UA risk stratification. Since the
accuracy of an assessment model can be largely affected
by processing vague patient features, this paper also
discusses a clustering-based method for patient feature
partitioning.
This paper is organized as follows. Section ‘Prelim-

inary’ presents preliminary knowledge used in this paper.
Section ‘Method’ describes the development of the
genetic-fuzzy system for UA risk assessment. Exper-
imental studies of the performance of the proposed
approach are presented in Section ‘Results and discus-
sion’. Section ‘Conclusion’ concludes the paper.

Preliminary
Let D = {σ1, · · · , σn} be a patient data-set consisting of a
finite set of UA patient cases. Let A = {a1, · · · , an} rep-
resent all patient features that appear in D and Class =
{low-risk,medium-risk, high-risk} be a set of UA risk lev-
els. Each feature a may have a categorical or numerical
underlying domain, denoted dom(a). Each patient case σ

(σ ∈ D) contains values of some patient features from A.
Let σ(a) (σ(a) ∈ dom(a)) be the target feature value for
the patient case σ for feature a.
For example, Table 1 shows an example patient data-set,

which consists of five patient cases. Each case contains

Table 1 An example patient data-set

Age (year) Sex Smoking Heart events Physician assessment
recently

σ1 74 Male No Yes Medium-risk

σ2 81 Female No Yes Medium-risk

σ3 74 Male Yes Yes High-risk

σ4 71 Male No Yes High-risk

σ5 76 Female No No Low-risk

σ6 67 Male Yes No Medium-risk

The cases are simplified information extraction from patient records of Chinese
PLA general hospital.

1 numerical patient features (i.e., age) and 3 categorical
patient features (i.e., sex, smoking, and has event recently).
For numerical patient feature a (a ∈ A), let

{l1a, l2a, · · · , lma } be a set of linguistic terms defined over a.
Let μa,j(σ (a)) be the membership degree on the value of
a feature a of the patient case σ to the fuzzy set corre-
sponding to the linguistic label lja for this feature a. Note
that the degree of membership of each value of a in any
of the fuzzy sets specified for a is directly based on the
evaluation of the membership function of the particular
fuzzy set with the value of a as input. The fuzzy parti-
tion of dom(a) is composed of {l1a, · · · , lma } that satisfies∑m

j=1 μa,j(x) = 1,∀x ∈ dom(a).
In this study, we employ fuzzy rules of the following

form [9,12]:

r : Cond → Class (1)

where Cond is the antecedent part of the rule, and Class is
the consequent part of the rule. For example, a fuzzy rule
can be expressed as:

R : IF a1 is (l1a or l3a ) and a5 is l4a THEN low-risk. (2)

It must be noted that any subset of the complete set of
patient features, with any combination of linguistic labels
related to the operators and and or, can take part in the
rule antecedent. For this kind of fuzzy rule, we say that a
patient case σ supports the antecedent part of a rule r if

APC(σ , r) = 1
n

n∑
i=1

max{μai ,1(σ (ai)), · · · ,μai ,m(σ (ai))} > 0

(3)

where μai,j(σ (ai)) is the membership degree of patient
feature ai for σ to the fuzzy set corresponding to the lin-
guistic label l jai for ai; and APC is the antecedent part
compatibility between a patient case and the antecedent
part of a fuzzy rule. For the categorical features, the
degrees of membership are zero or one.
For a patient case σ , the support degree of σ by a specific

rule r is calculated as follows:
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Supp(σ , r) =
{
APC(σ , r) the actual risk level of σ is equal to the class of r

0 otherwise
(4)

In general, a fuzzy rule can be considered to be a
classification rule if the antecedent contains fuzzy item
sets, and the consequent part contains only one class
label such as low-risk, medium-risk, or high-risk in this
study. A fuzzy rule r : Cond → Class could be mea-
sured directly in terms of support and confidence as
follows:

Support(r) =
∑

σ∈D Supp(σ , r)
|D| (5)

Confidence(r) =
∑

σ∈D Supp(σ , r)∑
σ∈D APC(σ , r)

(6)

Method
In this section, we describe the process of utilizing
GFS to develop an intelligent system for the problem
of UA risk assessment. As shown in Figure 1, the pro-
posed method consists of three steps. At first, all the
numerical patient features of the data-set are given as
input for the fuzzy clustering module for calculating the
membership functions. Then, calculated function val-
ues are given to the rule generation module for obtain-
ing UA risk assessment rules. Based on the derived
rules, a classification model for UA risk assessment is
generated.
The case study was performed in the Cardiology

Department at the Chinese PLA General hospital. Prior
approval was obtained from the data protection commit-
tee of the hospital to conduct the study. We state that
the patient data was anonymized in this study and in the
Method section of this paper.

Fuzzy clustering for numerical feature discretization
One of the most important steps in UA risk assessment is
to deal with the intrinsic uncertainty about the variables

utilized. As described in [13], fuzzy set is a common
tool for facilitating the interpretation of rules in linguistic
terms, and avoiding unnatural boundaries in the parti-
tioning of the variable domains. It is especially useful in
clinical settings where the boundaries of a piece of infor-
mation used may not be clearly defined. Regarding our
task of UA risk assessment, the quality of the results
produced relies quite crucially on the appropriateness of
fuzzy sets to the given patient features. So, fuzzy sets
must be consistent with the values of the corresponding
feature.
Fuzzy sets can be provided by physicians. However, the

provided fuzzy sets by physicians may not be suitable
for mining fuzzy association rules from data-set. Also, it
is extremely difficult for physicians to estimate the most
appropriate fuzzy sets. In order to cope with these prob-
lems, we first concentrate on how fuzzy sets of the given
features are determined automatically from the collected
data-set. Clustering techniques are usually employed as
a preprocessing step to partition numerical features [14].
In this study, we employed a hierarchical agglomera-
tive clustering [15-17] algorithm to partition numerical
features.
As shown in algorithm 1, hierarchical agglomerative

clustering begins with each value as a separate cluster and
merges them into successively larger clusters. The pro-
cess is repeated until the similarity between any pair of
clusters is less than a threshold value ε. Consequently, the
algorithm builds a structure called dendogram, i.e., a tree
illustrating themerging process and intermediate clusters.
Similarity between two clusters c1 and c2 can be measured
as follows:

sim(c1, c2) = 1
|c1||c2|

∑
x∈c1

∑
y∈c2

|x − y| (7)

where |c1| and |c2| are the number of clusters c1 and c2,
respectively.

Figure 1 The main steps of the proposed UA risk assessment model.
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Algorithm 1 Hierarchical Agglomerative Clustering
1: Input:
2: Da is a value set of a specific patient feature a
3: δ is a cluster similarity measure
4: ε is a merging threshold value
5: Output:
6: C is the set of clusters
7: Steps:
8: Let C = {initial clusters} where each value in Da

forms an initial cluster
9: Repeat

10: Let (c1, c2) be a pair of clusters which are most similar
in C

11: If sim(c1, c2) ≥ ε then
12: Let c3 ← c1

⋃
c2

13: Add c3 into C
14: Remove c1 and c2 from C
15: End If
16: Until cannot find c1 and c2 with sim(c1, c2) ≥ ε

17: End Procedure

This way, the values of each patient feature in the data-
set are distributed over a set of derived clusters using
Algorithm 1. For each patient feature, the centroids of
the clusters are the set of midpoints of the fuzzy sets.
To illustrate the process, suppose we want to find fuzzy
sets for a specific patient feature a, which is quantita-
tive with a range from min(dom(a)) to max(dom(a)). Let
{v1a, · · · , vma } be the set of mid-points of the fuzzy sets for
a. As a result, the derived fuzzy sets will have the following
ranges: [v0a, v1a] , [v0a, v2a] , · · · , [vm−1

a , vm+1
a ] and [vma , vm+1

a ],
where v0a = min(dom(a)), and vm+1

a = max(dom(a)).
After the fuzzy sets of each numerical feature are

obtained, the corresponding membership function can
be generated for each fuzzy set. In this study, we used
membership functions of both semi-trapezoidal shape
and triangular shape because they are in general the most
appropriate shapes and the most widely used in fuzzy sys-
tems. For example, for the fuzzy set with a range from v0a
to v1a, the membership function is given by

μa,0(x) =

⎧⎪⎨
⎪⎩

1 if x < v0a
v1a−x
v1a−v0a

if v0a ≤ x ≤ v1a
0 if x > v1a

(8)

For each fuzzy set with midpoint vja, where 1 ≤ j ≤ m, the
membership function is given by

μa,j(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−vj−1
a

vja−vj−1
a

if vj−1
a ≤ x ≤ vja

vj+1
a −x

vj+1
a −vja

if vja ≤ x ≤ vj+1
a

0 otherwise

(9)

And for the fuzzy set with a range from vma to vm+1
a , the

membership function is given by

μa,m+1(x) =

⎧⎪⎨
⎪⎩

1 if x > vm+1
a

x−vma
vm+1
a −vma

if vma < x ≤ vm+1
a

0 if x ≤ vma

(10)

For example, given a numerical feature, say age with three
different ranges, i.e., [30, 56], [56, 74], and [74, 87]. The
values of age range from 30 to 87, and can be classified
into four fuzzy sets, as shown in Figure 2.

Fuzzy association rule mining
This subsection presents a GFS for mining fuzzy associa-
tion rules from a data-set. The proposed system uses fuzzy
rule format defined in Equation (2), which offers a flexi-
ble structure to the rules, allowing each patient feature to
take more than one value and facilitating the extraction of
general UA risk assessment rules.

Chromosome representation
As mentioned above, a US risk assessment rule r consists
of an antecedent part Cond and a consequent part Class.
In this study, we code the antecedent part Cond of r as one
chromosome consisting of a set of segments. Each seg-
ment corresponds to a specific patient feature. The set of
possible values for the categorical features is that indicated
by the problem, and for numerical features, it is the set of
linguistic terms determined by the clustering method pre-
sented above. The consequent part Class of r is prefixed
to one of the possible values of risk levels, i.e., high-risk,
medium-risk, and low-risk.
Table 2 describes a representation for a rule with numer-

ical and categorical features for the values of a specific risk
level high-risk. Note that a bit for each one of the possible
values of each feature is stored. In this way, if the value of
the corresponding element is 0, it indicates that the value
is not used in the rule. Otherwise, if the value is 1, it indi-
cates that the corresponding value is included. If a rule
contains all the elements corresponding to a feature of the
value 1, or all of them contain the value 0, this indicates

Figure 2 The membership functions for patient feature, age.
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Table 2 Representation of a fuzzy rule with numerical and categorical features in UA risk assessment

Patient feature Age Sex Smoking Has heart events
recently

Linguistic label Young Middle-aged Old Very old Male Female Yes No Yes No

Rule 0 0 1 1 0 0 1 0 1 0 High-risk

that this feature has no relevance for the information con-
tributed in the rule, and so this feature is ignored. In these
cases, the feature does not take part in the rule. For exam-
ple, as shown in Table 2, the rule is represented by a binary
string 〈(0011)(00)(10)(10) : high-risk〉, where parenthe-
ses are to separate segments, and “:” is to separate the IF
part and the THEN part of the rule. In this example, a1
has four possible values and a2, a3, and a4 have two pos-
sible values. Note that a2 does not take part in the rule as
a2 takes none of its values, and thus a2 is irrelevant for the
rule. This binary string can be interpreted as the follow-
ing rule: “IF age is (old or very old) and smoking is true and
has heart events recently is true THEN UA risk is high”.

Fitness function and selection process
The objective of this step is to find the accurate and gen-
eral rules for UA risk assessment. Thus, given a specific
rule r, the GAmethod uses the composite fitness function
consisting of support and confidence in the following way:

Fitness(r) = Support(r) + Confidence(r)
2

(11)

The objective of the fitness function is defined as the com-
positemeasure of support and confidence. This composite
measurement provides an effective selection environment
which balances the accuracy and generality of the rules.
Three operators, i.e., selection, crossover, and mutation,

are applied in the proposed GA method to generate the
offspring population, which are illustrated as follows:

• The selection procedure is used for evolution where
two individuals are selected randomly from the
current population and used for crossover and
mutation operators. During each generation,
individuals with higher fitness values survive while
those with lower fitness values are destroyed.

• Two parents are selected and recombined according
to the predefined crossover probability during
crossover. In this work, one point crossover is applied
due to its simplicity, which can randomly select
different cutoff points for each parent to generate
offspring rule sets.

• Each element in the chromosome is applied to
mutation with a predefined mutation probability. The
value of a randomly selected element is converted to 0
if its value is 1, and vice versa. Elimination of existing
rules and addition of new rules can also be used as

mutation operations. As a result, the number of rules
in the rule sets string can be changed accordingly.

During GA operations, redundant rules might be pro-
duced. For example, we say a rule “If Age is (Young) and
ST is (Low) then Risk is (Low)” is redundant w.r.t the other
rule “If Age is (Young OR Meddle-ages) and ST is (Low)
then Risk is (Low)”, if both rules have the same support
degree on a data-set. Thus, the proposed algorithm must
check the rule sets and maintains single among all the
rules, to guarantee the consistency of fuzzy systems. The
stopping criterion of the proposed algorithm is the num-
ber of generations. The scheme of the proposed algorithm
is shown in Algorithm 2.

Algorithm 2The GA-based rule mining algorithm for UA
risk assessment.
1: Input:
2: UA data-set, algorithm parameters
3: Output:
4: 
 is the set of derived UA risk assessment rules
5: Steps:
6: For each target class c of UA risk levels, apply the

following steps
7: Step 1: Initialize Pc as a set of UA risk assessment

rules
8: Step 2: Fitness evaluation for each individual r ∈

Pc
9: Step 3: While not (termination condition) do

10: Step 3.1: Select rp1 and rp2 from Pc with high
fitness value

11: Step 3.2: Apply crossover to rp1 and rp2 for
obtaining rc1 and rc2

12: Step 3.3: Apply mutation to rc1 and rc2
13: Step 3.4: Check if rc1 and rc2 have been stored

in Pc, if not
14: Step 3.4.1: Update Pc by deleting the worst

solution and adding rc1 and rc2
15: Step 4: Add Pc to rule pool 

16: Output selected rule set from 

17: End Procedure

Taking the data set shown in Table 1 as an example, and
assuming the population size as 50, the number of gener-
ation as 1000, the crossover rate as 0.5, and the mutation
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Table 3 Rules derived from the example patient data-set shown in Table 1

# Rule Rule Support Confidence Fitness

1 IF Age ( Young ) AND Heart Events Recently is ( False ) THEN Risk is Low 0.083 0.5 0.291

2 IF Age ( Young ) AND Sex is ( Female ) AND Smoke is ( False ) THEN Risk is
Low

0.11 0.33 0.22

3 IF Age is ( YoungORMeddle-aged ) AND Smoke is ( False ) ANDHeart Events
Recently is ( True ) THEN Risk is Medium

0.244 0.514 0.378

4 IF Age is ( Old ) AND Smoke is ( False ) THEN Risk is Medium 0.339 0.465 0.402

5 IF Age is ( Old OR Very-Old ) AND Smoke is ( True ) THEN Risk is High 0.269 0.377 0.323

6 IF Age is ( Meddle-aged OR Old OR Very-Old ) AND Sex is ( Male ) AND Heart
Events Recently is ( True ) THEN Risk is High

0.324 0.455 0.390

rate as 0.2 in the proposed genetic algorithm, we can
obtain an example rule-set, as shown in Table 3.

UA risk assessment model
Based on the derived rule set, we can generate a clas-
sification model for UA risk assessment. Formally, let 

be the set of derived UA risk assessment rules. For each
r : Cond → Class (r ∈ 
), the score value of the target
class (class ∈ {low-risk,medium-risk, high-risk}) of r with
respect to a given patient case σ can be assessed, by using
the following equation:

vclass =
∑
r∈


Confidence(r)β(r, σ) (12)

where Confidence(r) is the confidence value of rule r, and
β(r, σ) is the firing strength of the input patient case σ on
the antecedent part of rule r.
The firing strength β(r, σ) is defined as

β(r, σ) =
∑

〈(a,l1a),··· ,(a,lma )〉 ∈Cond

max{μa,1(σ (a)), · · · ,μa,m(σ (ai))}

(13)

where μa,j represents the fuzzy membership function
for the pair of a and the linguistic term l ja in the
〈(a, l1a), · · · , (a, lma )〉(1 ≤ j ≤ m) in the antecedent part
Cond of rule r.
With respect to the target values of risk levels, i.e.,

low-risk, medium-risk, high-risk, the corresponding scores
vl, vm, vh can be generated based on Equation (12). And
the risk level with the top score in the scoring vector v will
be the predicted risk level for the patient case σ .

̂Classσ = argmax({vl, vm, vh}) (14)

Taking σ1 shown in Table 1 as an example, and using the
derived rule-set shown in Table 3, the score values for σ1
are calculated as vl = 0.4, vm = 2.088, and vh = 1.745,
by Equation (12). Thus, the predicted risk level for σ1 is
medium-risk.

Table 4 Patient features utilized in UA risk assessment

Numerical feature

Name Fuzzy sets

Age {Young, middle-aged, old,
very old}

Systolic Blood Pressure (SBP) {Low, medium, high}

Diastolic Blood Pressure (DBP) {Low, low-medium, high-
medium, high}

Creatinine {Low, medium, high}

AST {Low, medium, high}

LDH {Low, medium, high}

CK {Low, medium, high}

CK MB {Very low, low, medium, high}

CnT {Low, high}

Categorical feature

Name Crisp sets

Sex {Male, female}

Smoke {Yes, no}

Atrial premature beat {Yes, no}

Significant change in ST in ECG {Yes, no}

Has heart events recently {Yes, no}

Anamnesis of coronary heart disease {Yes, no}

Anamnesis of renal insufficiency {Yes, no}

Anamnesis of bleeding {Yes, no}

Anamnesis of diabetes {None, type 1, type 2}

Anamnesis of hyperlipaemia {Yes, no}

Anamnesis of hypertension {None, level I, level II, level III}

Has aspirin in recent 7 days {Yes, no}

Has percutaneous coronary intervention {Yes, no}

Lungs event as expectoration with blood {Yes, no}

Change in T {Yes, No}

Heart event by drinking {Yes, no}

Irregular pulse {Yes, no}
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Results and discussion
To evaluate the feasibility of the presented methods, a
clinical case study is conducted through the cooperation
with the Cardiology Department of the Chinese PLAGen-
eral Hospital. The data-set collected from the hospital
consists of 54 patient cases. The target classes of UA risk
levels include: low-risk,medium-risk, and high-risk. Physi-
cians that evaluated these cases are experienced clinicians
working for the hospital with 10 years of working experi-
ence on average. As a result, 16 cases are classified into the
low-risk group, 33 cases are classified into the medium-
risk group, and 5 cases are classified into the high-risk
group, respectively. Patient features (9 numerical features
and 17 categorical features) that appear in the data-set are
shown in Table 4. These features are regularly recorded in
UA treatment practice.
All experiments were performed on a Lenevo Com-

patible PC with an Intel Pentium IV CPU 2.8 GHz, 4G
byte main memory running on Microsoft Windows 7.
The algorithms were implemented using Microsoft C#.
A 10-fold cross-validation was performed to evaluate the
proposed method, by using a 90% of the data-set as the
training set, and the remaining 10% as the validation set.

To reduce variability, 10 rounds of this validation process
were performed by using different partitions.
For the first step of patient feature discretization, we

applied Hierarchical Agglomerative Clustering method to
each numerical feature to generate a set of fuzzy sets. The
derived fuzzy sets of input numerical patient features are
shown in Figure 3.
To mine fuzzy association rules, we have taken the pop-

ulation size as 100, the number of generation as 1000, the
crossover rate as 1.0, and the mutation rate as 0.2 in the
proposed genetic algorithm. By using these parameters,
we run our genetic algorithm for each target class of UA
risk level, one by one, to obtain a set of fuzzy rules for a
given class.
Table 5 shows the rules obtained, which have the best

fitness values for the target classes of UA risk level (i.e.,
low-risk, medium-risk, and high-risk). In this table, the
number of patient features involved in each rule (# of
Feature.), and the Support and Confidence of each rule
are shown. The values of Support and Confidence are
between zero and one. High values in support means that
the rule coversmost of patient cases which are categorized
into the class, and high values in confidence means that

Figure 3Membership function of input numerical patient features.
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Table 5 Results for low-risk, medium-risk, and high-risk

Risk level # of feature Support Confidence

Low
9 0.204 0.375

8 0.195 0.380

Medium
10 0.448 0.633

10 0.449 0.631

High

10 0.067 0.114

9 0.064 0.115

the rule has few negative patient cases [12]. Note that the
knowledge discovered for each target value of risk level is
understandable by physicians due to the use of fuzzy logic
and the low number of rules and conditions in the rule
antecedents (below 40% of 26 patient features). Tables 6, 7
and 8 show the rules obtained which have the best fitness
values corresponding to the target classes of risk level.
Now, acquiring fuzzy rule base, it is possible to complete

UA risk assessment through the proposed classification
model. As we mentioned above, the ensemble of fuzzy
rules and the proposed classification model perform the
role of a mathematical function to obtain the system out-
put. This output is the stratification of UA risk. This way,
for each patient whose data are informed as system inputs,
the most likely risk level for that patient is generated.
The comparison between the proposed model and

physicians’ decisions is done for each partition of data-
set. The comparison is given in Figure 4. The proposed
system made the same decisions as the physician in 46
(out of a total of 54) tested cases (85.2%). From Figure 4,
the proposed model did not predict the risk well in the
case of the fifth (the physician assessment is medium-
risk while the proposed model assessment is low-risk),
the twenty third (the physician assessment is low-risk
while the proposed model assessment is medium-risk),
the twenty ninth (the physician assessment is medium-
risk while the proposed model assessment is low-risk), the
thirty third (the physician assessment is low-risk while the
proposed model assessment is medium-risk), the thirty
fourth (the physician assessment is medium-risk while the

Table 6 Rules for low-risk

# Rule Rule

1 IF Age is ( Young OR Meddle-aged ) AND AST is ( Low OR
Medium ) AND Creatinine is ( Low OR Medium ) AND CK is
( Low OR Medium ) AND LDH is ( Low OR Medium ) AND
CK MB is ( Medium ) AND has PCI is ( No ) AND Hypertension
is ( No OR Level I OR Level II ) AND Arrhythmia is ( No ) THEN
Risk is Low

2 IF Age is ( Young OR Meddle-aged ) AND AST is ( Low OR
Medium ) AND Creatinine is ( Low OR Medium ) AND CK is
( Low OR Medium ) AND LDH is ( Low OR Medium ) AND
CK MB is ( Medium ) AND has PCI is ( No ) AND Hypertension
is ( No OR Level I OR Level II ) THEN Risk is Low

Table 7 Rules formedium-risk

# Rule Rule

1 IF Age is ( Old ) AND Creatinine is ( Low OR Medium ) AND CK is
( Low OR Medium ) AND LDH is ( Medium ) AND SBP is ( Medium
OR High ) AND Heart Events Recently is ( Yes ) AND Aspirin in
Recently 7 days is ( No ) AND has PCI is ( Yes ) AND Hypertension
is ( Level I OR Level II OR Level III ) AND Hyperlipaemia is ( No )
THEN Risk is Medium

2 IF Age is ( Middle-aged OR Old ) AND Creatinine is ( Low OR
High ) AND CK is ( Low OR High ) AND LDH is ( Medium ) AND
SBP is ( Medium OR High ) AND Heart Events Recently is ( Yes )
AND Aspirin in Recently 7 days is ( No ) AND has PCI is ( Yes )
AND Hypertension is ( Level I OR Level II OR Level III ) AND
Hyperlipaemia is ( No ) THEN Risk is Medium

proposed model assessment is low-risk), the forty (the
physician assessment is medium-risk while the proposed
model assessment is low-risk), the forty second (the physi-
cian assessment is medium-risk while the proposedmodel
assessment is low-risk), and the forty seventh (the physi-
cian assessment is medium-risk while the proposedmodel
assessment is low-risk).
Furthermore, we measure the accuracy of the proposed

approach using the sum of two performance measures:
sensitivity (probability that the test correctly classifies a
case with a specific risk level) and specificity (probability
of correctly classifying a case without a specific risk level).

Sensitivity(vclass) =
∑n

i=1 TP(σi)∑n
i=1 TP(σi) + ∑n

i=1 FN(σi)

(15)

Specificity(vclass) =
∑n

i=1 TN(σi)∑n
i=1 TN(σi) + ∑n

i=1 FP(σi)

(16)

where vclass ∈ {low-risk,medium-risk, high-risk}; TP is the
set True Positive, patient cases with the specific risk level
vclass classified correctly; FN is the set False Negative,
patient cases with the specific risk level vclass classified as
other risk levels; TN is the set True Negative, patient cases
without the specific risk level vclass classified; FP is the

Table 8 Rules for high-risk

# Rule Rule

1 IF Age is ( Old OR Very-Old ) AND AST is ( High ) AND Creatinine
is ( High ) AND CK is ( Medium ) AND LDH is ( Medium OR High )
AND CK MB is ( High ) AND SBP is ( Low OR Medium ) AND
Smoke is ( Yes ) AND Hypertension is ( Level II OR Level III ) AND
Diabetes is ( Type 1 OR Type 2 ) THEN Risk is High

2 IF Age is ( Old OR Very-Old ) AND AST is ( High ) AND Creatinine
is ( High ) AND CK is ( Medium ) AND LDH is ( Medium OR High )
AND CK MB is ( High ) AND SBP is ( Low OR Medium ) AND
Hypertension is ( Level II OR Level III ) AND Diabetes is ( Type 1
OR Type 2 ) THEN Risk is High



Dong et al. BMCMedical Informatics and DecisionMaking 2014, 14:12 Page 9 of 10
http://www.biomedcentral.com/1472-6947/14/12

Figure 4 Comparison between the proposedmodel and physicians’ decisions.

set False Positive, patient cases without the specific risk
level vclass classified as vclass. In Table 9 the sensitivity and
specificity obtained for each risk level are presented. The
experimental results indicate that the proposed method
is feasible for predicting risk levels of unstable angina
patients.

Conclusion
In this paper, we have presented an intelligent sys-
tem for UA risk assessment by combining genetic
algorithm and fuzzy association rule mining. The devel-
oped approach has been tested on a data-set consisting of
54 UA patient cases from the Cardiology department of
Chinese PLA General hospital. The experimental results
show that considerable agreement is achieved between
the proposed approach and physicians’ problem solving
knowledge.
The main novelty of the developed model is that it

represents a valuable objective tool for UA risk assess-
ment. In medical literature, physicians are in discrepan-
cies about the risk factors highlighted. This research has
focused on the application of computational intelligence.
In particular, a genetic-fuzzy system, to identify the key
factors behind UA, is proposed, which could be used for
educational purposes, and with further improvements,
could assist and guide young physicians in their daily
work.
For future studies, there may be a comparison of effec-

tiveness in terms of the proposed system with traditional
UA risk assessment models, such as TIMI, GRACE, etc.
The application of the proposed system to other kinds
of CVD, such as heart failure, will also be investigated.

Table 9 Sensitivity and specificity with different risk levels

Sensitivity Specificity

Low-risk 0.8125 0.8421

Medium-risk 0.8182 0.85

High-risk 1.0 1.0

Furthermore, other computational intelligence techniques
can be associated with the developed system.
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