Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

BMC
Medical Informatics & Decision Making

Autonomic care platform for optimizing query

performance

Kristof Steurbaut', Steven Latré?", Johan Decruyenaere? and Filip De Turck'

Abstract

reduction of 13.04%.

Background: Asthe amount of information in electronic health care systems increases, data operations get more
complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee
the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making.
Manual optimization of query executions has become difficult to handle due to the increased amount of queries
across multiple sources. Hence, a more automated management is necessary to increase the performance of database
queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as
self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control
loops in network and software systems, this approach has not been applied so far for health information systems.

Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform
for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We
used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day
more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take
action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the
execution time of microbiology queries directly related to the visual displays of patients’ data on the bedside screens.

Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in
the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of
microbiology results. The combined application of the reactive and deliberative control loop results in an average
query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a

Conclusions: We found that by controlled reduction of queries’ executions the performance for the end-user can be
improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive
effect on the timely data visualization for the physician and nurse.

Background

With an increased growth of clinical support services and
data sources, clinical information service platforms are
becoming more and more complex. The emergence of
medical devices, which monitor and collect data at high
frequency, the availability of data in numerous databases
and the increased utilization of the electronic patient
data to support physicians’ clinical decisions, demand
a high speed of data processing. Physicians and nurses

*Correspondence: steven.latre@uantwerpen.be

2Department of Mathematics and Computer Science, University of Antwerp -
iMinds, Middelheimlaan 1, 2020 Antwerp, Belgium

Full list of author information is available at the end of the article

() BiolVled Central

put trust in electronic medical records to evaluate the
patients’ conditions and to treat patients by taking ther-
apeutic decisions. Slow data retrievals force the physi-
cian to wait longer for results of the current state of
the patient. Due to the large amount of data variables
and hence a high number of database queries, manual
maintenance operations are no longer possible. For exam-
ple, manually disabling time-consuming non-priority data
retrievals in case of high load on the system is diffi-
cult. Moreover, in the medical environment the contents
of the database is constantly changing with inserts of
medical data or updates of existing values from medical
devices which monitor the patient at high frequency or
analyse the patients’ laboratory samples. Despite system

© 2013 Steurbaut et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

administrators’ efforts to maintain critical health systems,
symptoms of data slowdown cannot be detected in time
and actions cannot be taken quickly enough to prevent
performance decrease or system failure. This leads to
a degradation of service quality and availability. There-
fore, the manual reaction to such slow processes under-
mines the robustness and performance of the complete
system.

Adding autonomic capabilities to the COSARA system

The autonomic computing paradigm aims to develop
systems capable of self-management, which make deci-
sions on their own and respond with appropriate actions
on system failures or optimizations. This concept is in
analogy with the autonomic nervous system, which man-
ages our vital functions in the body without conscious
directions [1]. In autonomic computing, an autonomic
manager implements control loops in which the man-
aged element and the environment is monitored, data is
analyzed, and actions are taken if components are in an
undesirable state. It envisions a self-aware software sys-
tem. In this article, we extend the existing COSARA health
care platform with autonomic components. COSARA is
an infection surveillance and antibiotic management ser-
vice platform for the Intensive Care Unit (ICU) [2]. We
propose extensions to COSARA by introducing multiple
autonomic control loops. The reactive control loop takes
an immediate action when slow data query executions
are detected. In the deliberative control loop the deci-
sion to act is evaluated in an anomaly detection algorithm
with detection of anomalies in the execution times of data
retrievals. Anomalies are also predicted in the reflective
control loop by detecting temporal periods with slow per-
formance. A detailed analysis has been performed based
on real-life data logs from the COSARA platform in the
ICU of Ghent University Hospital. This article is struc-
tured as follows. In Section ‘Related work’, an overview of
autonomic computing architectures is presented and spe-
cific models from the health care domain are explored.
The problem of managing COSARA data queries is thor-
oughly explained in Section ‘Problem statement’. The
extended architecture of the COSARA service platform
is presented in Section ‘Architecture’. Section ‘Design of
FOCALE-based control loops in the COSARA architecture’
describes the multiple control loops, which enhance per-
formance of data queries. This includes a reactive loop,
a deliberative loop that takes a decision by executing
an anomaly detection algorithm and a reflective con-
trol loop that takes a proactive approach by detecting
temporal patterns. Subsequently, the optimizations are
evaluated in detail in Section ‘Results and discussion’.
Finally, Section ‘Conclusions’ presents the conclusions of
this paper.

Page 2 of 18

Related work

Although autonomic management has received attention
in enterprise wide network platforms, only a limited num-
ber of studies apply autonomic management to health care
platforms. In this section we examine related work in both
domains.

Autonomic management in health care

Autonomic computing has already been applied in body
area networks in health care. On-body sensors moni-
tor the patient’s vital functions such as heartbeat, body
temperature or electrocardiogram (ECG) in a body area
network and transmit the signals to a processing unit.
Since this equipment is hard to maintain by its develop-
ers, the system should adapt automatically to changes. The
telemonitoring applications that use continuous mon-
itoring of patients’ health conditions require the self-
management ability that autonomic systems propose [3].
In [4], an event service for autonomic management sup-
port for e-health systems is proposed using Self-managed
cells (SMCs). SMCs are autonomic systems that are able
to add or remove components, detect failures of sensors
automatically and adapt the system. In [5], it is described
as an architectural pattern to provide Autonomic Man-
agement of Ubiquitous e-health Systems (AMUSE). The
system needs to be self-configuring and self-managing
with limited user interaction and autonomously adapts
to changes in user activity, device failure and service
addition. The SMC consists of an event bus, for com-
munication between devices and management services, a
discovery service and policy service [4]. The policy service
specifies the adaptation strategy (adaptation, authoriza-
tion policies and event-condition-action rules) whereas
the discovery service implements the protocol to search
and integrate new devices in the SMC and maintains the
connections. Changes in the environment are indicated
by events, which trigger policies in the policy service
and hence perform the action [6]. In the used publish-
subscribe mechanism, messages are published on the
event bus and delivered to its subscribers, instead of
directly delivering the message. In the VESTA system, the
AMUSE system is extended with security support and pol-
icy management for authentication and access control [6].
In [7], an autonomic model for the management of health
care applications has been presented, adopting the MAPE
control loop. This control loop consists of monitor, anal-
yse, plan and execute phases and interacts with a knowl-
edge layer. The model has been used to assure process
quality of the medical information system and as supervi-
sor of the compliance of medical decisions with the pro-
tocols [7]. It has been applied for the treatment planning
of diabetes. The prediction service in this system, which
predicts the patient’s diagnosis using multiple regression,
is implemented as a web service. Autonomic computing

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

has also been applied in the hospital’s emergency depart-
ment to maintain optimal quality of service and optimize
performance of operations [8]. These departments suf-
fer from a high workload due to an increased demand
on health resources and a limited clinicians staff. Sen-
sors monitor the state of the environment (for example by
using optical sensors, radio-frequency identifiers (RFIDs)
and counters for people and workload). However, related
work in papers covering autonomic health care mainly
concentrates on the architectural models. To the authors
best knowledge, no previous studies have been conducted
which design, implement and evaluate autonomic con-
trol loops in the intensive care, with the aim to increase
performance of data retrievals.

Autonomic architectures

Autonomic architectures have been applied in industry
systems to find early indications of failures and to inves-
tigate fault causes. The MAGNETO project [9](2010)
focuses on probabilistic fault diagnosis to find the cause
of service problems, such as service degradation and ser-
vice breakdowns, in home area networks. The causes
of network failures and observed network variables are
modeled in a bayesian network which can infer the prob-
ability of the cause of a service failure. Several initiatives
for building autonomic network architectures have been
investigated in [10], consisting of hierarchical architec-
tures, flat autonomic architectures and self-organizing
networks. One of the hierarchical architectures is the
Autonomic Internet project (Autol) which deals with the
autonomic management for the future internet in which
autonomic management is applied to the management
of virtual resources. The Component-ware for Auto-
nomic, Situation-aware Communications, and Dynam-
ically Adaptable Services (CASCADAS) deals with the
development of an autonomic framework for creating,
executing, and provisioning situation-aware and dynam-
ically adaptable communication services [11]. In [12], an
anomaly detection framework was proposed to provide
techniques to analyze and detect anomalies in runtime
data of cloud systems by applying (i) data transformation,
(ii) feature selection, (iii) outlier detection. Anomalies or
outliers are patterns in data that do not conform to a
well defined notion of normal behavior [13]. Detection
techniques have been developed to find these patterns
which often represent exceptions, indications of system
failure or interesting data which should lead to actions.
Anomaly detection has been used in a variety of domains
such as fraud detection of credit cards, fault detection
in safety critical systems, insurance or health care, mili-
tary surveillance using a diversity of techniques such as
statistical methods, data mining, machine learning [13].
Rabatel et al. [14] addressed the problem of maintaining
complex systems through preventive maintenance which

Page 30f 18

detects abnormal behavior though collecting sensor data
and analysis and found that these anomalies may lead to
failure. In our case, we want to detect low data query
performance.

Control loops

The core of an autonomic system is the Autonomic Man-
ager (AM) which includes one or more control loops that
monitor the resources, analyze the data to determine if the
status is normal or if adaptations are needed. If actions are
needed, these are planned and executed. This type of con-
trol loop maps the sequence: Monitor, Analyze, Plan and
Execute (MAPE), as introduced by IBM [1]. Since the orig-
inal proposal of autonomic computing by IBM several new
control loops have been proposed extending the MAPE
control loop. One of the most widely used set of control
loops is those of the FOCALE architecture. The FOCALE
autonomic architecture (Foundation - Observe - Compare -
Act - Learn - rEason) consists of advanced control loops
with extended capabilities for knowledge use and learn-
ing [15]. The FOCALE control loops have served as basis
for the CASCADAS architecture and have been success-
fully applied to, amongst others, fault management [16]
and management of the home network [17]. Because of
its popularity, we use the FOCALE control loops as the
basis of our autonomic manager and discuss its details
in the remainder of this section. The FOCALE control
loops are shown in Figure 1. The components in FOCALE
are connected by an enterprise service bus (ESB), an
event-driven message broker that supports different types
of knowledge and performs processing before delivery.
FOCALE uses a combination of information/data mod-
els and ontologies [15]. The FOCALE control loops are
formed by running through a number of steps. In the
Observe step, monitored observations are retrieved and
fed to a model-based translation process of the Normal-
ize step. The process facilitates the translation of device
specific information into a normalized form. This normal-
ized data is then analyzed to determine the current state
of the system. Subsequently the current state is compared
to the desired state of the system in the Compare step. In
the Reason step, a reasoning algorithm evaluates the deci-
sions and in the Learn step future predictions are made.
FOCALE features several dynamic control loops, which
can be classified into three categories that also resem-
ble actions identified in mental concepts of the human
brain [18]. More specifically, FOCALE allows to define
three different types of control loops that each have an
increasing level of cognitive capabilities. Reactive control
loops take immediate responses based on external stim-
uli. They react in order to carry out one or multiple goals.
Additionally, shortcuts can be taken in order to perform
high-priority and urgent tasks. The reactive control loops
run at the highest frequency and circumvent the decide,

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

Page 4 0of 18

Context
l l Observe }—ﬁ Normalize W Compare 1—* Decide
fiintbull s Mnlingioll f intiatintin | ol .
g A
I Y A
| A 4 A 4 N !
\ \4
[T ~]
A ——— \ |
_______ ‘. -— e \ \
— — Reactive ((= - — —) |
— . - Deliberative S S R oo -
_______ Reflective L Learn J L Reason) L Act)

Figure 1 The FOCALE control loops. FOCALE features several dynamic control loops: reactive, deliberative and reflective control loops. The
control loop is formed by the following steps: Observe, Normalize, Compare, Decide, Act, Reason and Learn. The different types of control loops are
shown on the figure. The reactive control loop takes immediate action based on external observations. The deliberative control loop uses long and
short memory to create an action plan. The reflective control loop uses the learning component to take preventive actions in the future.

reason and learn components. Deliberative control loops
receive data from and can send commands to the reactive
processes. They use long and short term memory to create
more elaborate plans of action. The deliberative loops run
at a lower frequency and circumvent the learning com-
ponent. Finally, the reflective control loops supervise the
deliberative processes. They study decisions made in the
past, and analyse them. The conclusions are then used to
prevent sub-optimal actions from being taken again in the
future. The reflective loops run at the lowest frequency.
The major advantage of the above described FOCALE
cognitive control loop approach is its high variety in
offered pro-activeness. As it consists of multiple control
loops with different characteristics (reactive, deliberative
and reflective) urgent tasks can be a less complex con-
trol loop (e.g., a reactive variant) and iteratively improved
later on by a more complex control loop (i.e., a deliber-
ative or reflective control loop). The FOCALE cognitive
control loops have mainly seen an implementation in
the area of network and service management. In previ-
ous work, we applied it to manage multimedia services
by extending it with semantic capabilities [19]. In this
work, the focus was on combining different elements to
jointly manage a service such as the streaming of multi-
media in a computer network. Choi et al. have embedded
the FOCALE control loop in their HiMang architecture
[20]. Their focus is more on the architectural aspect
of the FOCALE architecture and less on the algorith-
mic implementations of the different control loops: they
investigate the integration with policies and information
models. Moreover their application domain is different
to our approach as they study cloud-based networks,
Quality of Service management and fault management.
Kim et al. have implemented the FOCALE control loops
to manage OpenFlow-based networks (i.e., the protocol
that steers the Software-Defined Networking paradigm)
[21]. Their solution uses the FOCALE control loops to
allow setting up and maintaining paths in OpenFlow,

even if unexpected link failures occur. Their approach
focuses on maintaining datapath connectivity, while our
approach has query optimization and management as pri-
mary goal. For this reason, the algorithmic approach is
completely different. The same authors have also imple-
mented the FOCALE control loops to prioritize and
group alarms raised by a network management system
[16]. As this corresponds with a classification problem,
it is more related to our approach. However, we use a
semi-supervised learning approach through an anomaly
detection algorithm, while they propose a more static
rule-based approach.

Control theory approaches to query optimization

In this article, we propose an autonomic management
approach to query optimization in a health information
system. We present anomaly detection based algorithms
that implement the aforementioned FOCALE cognitive
control loops. The concept of control loops stem from
control theory [22], which is a paradigm that allows to
dynamically manage a system based the maximization of
an objective and periodic or continuous feedback from
the managed system. In the past, control theory has been
successfully applied to many application domains (e.g.,
resource allocation [23], web server management [24],
application server management [25]). Typically these con-
trol loop approaches try to predefined service level objec-
tives. Parekh et al. describe a methodology for designing
control loops for managing service level objectives in
performance management [26]. Through the design of
a statistical model, fit to historical measurements, they
avoid requiring large and complex mathematical models.
Our proposed system, and more specifically the reflective
and deliberative control loops, uses the same approach:
by detecting temporal patterns in historical data opti-
mal actions are learned without requiring a model of the
complete system. Hellerstein et al. also introduced the
concept of such a statistical approach to predict future

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

demands of software systems (e.g., a Web Server) [27].
Our approach extends this idea and introduces different
levels of learnings.

Optimization of query processing often re-uses con-
cepts of control theory and has mainly been studied in
the context of grids [28]. More recently, with the grow-
ing attention towards Big Data, new application domains
of this research have been found [29]. These approaches
typically focus on large scale and distributed databases. As
such, they are complementary to our approach as they can
be used if the scale of the database system itself increases
(e.g., introducing a higher level of replication). Also in
the area of query optimization, dynamic management
approaches have been proposed. Paton et al. [30] propose
an adaptive query processing algorithm with the same goal
as our approach: reducing the overall response times of
query processing. They focus mainly on the joint opti-
mization of multiple queries as they are often grouped,
requested by a single user. Park et al. present an approach
where queries consisting of multiple joins are optimized
[31]. Their main approach consists of developing mul-
tiple candidate processing plans and only selecting the
best plan after some initial pre-processing steps. Avnur
et al. focus on adaptive query processing in large-scale
and federated databases [32] by continuously reorder-
ing joins inside a single query based on the observed -
and highly dynamic - response times of subqueries in
such a federated database. The above approaches can
be seen as complementary solutions to our approach as
they focus on the optimization of specific queries. As
such, they investigate the structure of each query but
are agnostic to the application demands regarding these
queries. Instead, we focus on the application demands
and allow the application to prioritize the queries based
on the application logic and user expectations. By dis-
abling less important queries we can already considerably
improve the response time. This response time could
even be improved further by applying the aforementioned
techniques.

More generally speaking, the problem investigated in
this article relates to dynamic scheduling in a resource
constrained environment. In this area, several well-known
techniques exist for scheduling requests (in our case:
queries) such as earliest deadline first, first come first
served, etc. We refer to the work of Suresh et al. for a com-
plete survey of these approaches [33]. Also in grids [34]
and, more recently, cloud systems [35] job and applica-
tion scheduling algorithms have been successfully applied.
These techniques typically have a very broad applica-
tion domain but also often parameters to be set (e.g., the
deadline of every request). In our approach, these tech-
niques can be used as an alternative to the current applied
optimization action: the disablement of less important
queries. We chose not to use these actions as we observed

Page 5of 18

little effect in performance compared to a higher complex-
ity in the configuration of the algorithm.

In summary, compared to the current state of the art,
our approach is novel for the following reasons. First, the
adopted three-layer approach, inspired by the FOCALE
cognitive control loops, provides an important flexibility
in the level of proactiveness that can be achieved. Com-
pared to other data management approaches, we are able
to quickly react to local problems and at the same time
carry out more complex optimizations on a larger time
scale. Second, to the best of the authors’s knowledge, our
approach is the first that implements these control loops
for data management. As such, the proposed anomaly
detection algorithms and their integration with the three
different loops, are completely novel and fundamentally
different from previous approaches, which focused more
on network and service management.

Methods

Problem statement

The COSARA platform is a platform for infection surveil-
lance and antibiotic management in the intensive care [2].
It is being used by physicians and nurses at the ICU of
Ghent University Hospital, as part of the clinical work-
flow. COSARA is designed as a service oriented architec-
ture and manages the antibiotic consumption and infec-
tion related information in the ICU [2]. The COSARA
system collects data from the laboratory, the clinical infor-
mation system, and its own historical COSARA-database,
processes these data, and presents the information or
medical advice on a bedside computer, desktop at the
physician’s office or at a mobile device.

The most frequently consulted data on the bedside com-
puters consists of the patient’s clinical values and the
microbiology results in this ICU. COSARA has a module
offering a clinical overview with the values of tempera-
ture, white bloodcell count (WBC), thrombocytes, organ
failure score, and prescribed antibiotics, and a module
giving all microbiology results (samples with cultures,
antibiogram and blood analyses). The COSARA system is
designed in such a way that each time a physician or nurse
requests the clinical values of a patient, all necessary infor-
mation is requested through a series of queries (called a
query group). This typically results in a burst of queries,
each time a patient record is requested.

Besides these queries who feed the displayed modules,
other COSARA queries update data in the background.
On an average day, approximately 2 million COSARA
queries are executed, with an average of approximately
85,000 queries per hour. The growing popularity of the
COSARA application affects the data response times in
the client. With more queries being executed simultane-
ously, the execution time of data retrievals increases and
delays are noticed. This is illustrated in Figure 2, which

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

Page 6 of 18

200000

180000

160000

140000 h A

A\
/\

/ W
120000
/

e Nl

\k./-/\'i-\/

100000 -
80000 ﬁ

60000

40000 4

Microbiology Query Group
Execution Time (ms)

20000 -
0

observed around 27 s execution time.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2
Timeline (hours)

—4—Mean -—@—98th Perc

Figure 2 Delay of COSARA microbiology query group over 24h window: average execution time and 98th percentile. This figure shows the
delay of the COSARA microbiology query group, consisting of microbiology samples, cultures, antibiograms and analyses, over a 24h time window:
the average execution time and 98th percentile. It corresponds to the page load of the microbiology module in the COSARA application. As shown,
the highest peaks of the 98th percentile show execution times of 182's, 162 s, 59 s in a 60 minutes time frame, whereas average execution times are

shows the average execution time and 98th percentile
required to retrieve the microbiology samples, cultures,
antibiogram and analyses on the microbiology module. It
shows the page load of the microbiology module in the
COSARA application. As shown, the highest peaks of the
98th percentile show execution times of 182 s, 162 s and
59 s in a 60 minutes time frame, whereas average execu-
tion times are observed around 27 s execution time. As
physicians depend on the application to support their clin-
ical decision, high delays have to be prevented. The human
operator is unable to guard the execution of the 150 dif-
ferent query types in the COSARA database. Therefore,
potential delays in the data retrieval should be prevented
autonomously by system components.

Architecture

The system should identify, manage and thus prevent
the performance issues autonomously by reacting quickly
on behavior changes in the system components. These
changes can result, for example, from high utilization
or an increased frequency of data retrievals. To make
appropriate and reliable decisions, the concern is to pos-
sess data that is accurate enough, timely enough and
consistent enough [36]. Figure 3 illustrates the domain
where autonomic management is applied in health care:
(i) the data management of timely bedside procedures
and (ii) the management of data retrieval and process-
ing. The COSARA service-oriented architecture consists
of layers for presentation, business processing and data
persistence [2]. We extended the architecture with com-
ponents, as shown in Figure 4. The client is designed in
a modular way (Modules and Module Manager) using
the OSGi technology as basis. Modules can be added,
removed or updated on all bedside clients by chang-
ing the configuration on the server. Both in client and

platform services, monitoring and logging components
are added in order to be able to track the state of bed-
side client and server-side components. The Data Lookup
Service (DLS), which forms the interface towards the data
sources, is extended with a statistics component. The DLS
logs every data access and includes the invocation time,
the logical query name and the query’s execution time
(in milliseconds). The DLS executes all queries (antibi-
otics, laboratory, microbiology, infection-related queries)
on the different data sources (the laboratory database
GLIMS, the intensive care information system (ICIS) or
the COSARA database). The autonomic analyzer ensures
that the monitored data and logs are examined dynam-
ically (as detailed in the control loops). In the iterative
design and evaluation of COSARA, we already started
with the addition of recovery tools and limited detection
mechanisms, but the loop was not closed and the human
administrator had to take action. The analyzer now
detects performance decreases in the execution of queries
and instructs the Controller-Anticipator to respond and
adapt the query executions autonomously to optimize the
quality of service. In the implemented control loops, the
Controller-Anticipator responds by temporarily disabling
less important queries, which are typically part of the
query group stemming from a physician’s or nurse request
for a patient record or background queries.

Figure 5 illustrates how this functional architecture is
mapped to the physical infrastructure. As shown, the busi-
ness logic, deployed at the application server responds
to user queries and/or background tasks (e.g., periodic
maintenance). This results in the execution of a series of
queries, which are forwarded to the different databases,
via the controller. Each query execution has a certain
response time. These response times are monitored and
aggregated: for each query execution the delay before

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

Page 7 of 18

Clinical Database Systems

COSARA
Application Servers

Figure 3 Overview of the COSARA setting in ICU. This figure illustrates the domain where autonomic management is applied in health care. It
includes the data management of timely bedside procedures and the management of data retrieval and processing. On the bedside screen the
retrieval time for the microbiology data should be optimized. On the server side, the data management with underlying query executions on the
database should be optimized further. The bedside and serverside management are linked with each other.

Intensive Care Unit

query execution and return of the result is monitored and
grouped in the according query group. A query group is
a group of queries that are all executed as a reaction to
a user operation (e.g., the retrieval of a patient’s record).
Note that the monitoring of these response times occurs
completely locally. As discussed above, the result of these

measurements are analysed, which can potentially lead to
the selective disablement of queries.

Note that we chose to disable the queries instead of
opting for more complex scheduling algorithms as dis-
cussed in Section ‘Related work’. The reason for this is the
following: priority-based algorithms would assign lower

T N e NN N ¢ Datatiaship
I : | Services P! L Services I
' | l |
I
I Modules I [
| | : DLS I | Cosara PACS | || Data Collect g] :
I N = M L Services |
I oy <| Statistics |> : | : : |
! s l |
| | ModuleManager | | £ = : _ICIS _GLIMS ! : pata 51| 1
| | § | Monitoring | | | svnch ata |
| : | & Logging | 5 | ynchronisation |
: | ! | % Filter 2 | | :
SubjectManager |
: . g : | i < | Transform®] | |
2 i |
| | : Client =] : g | Caleulator g] : Services |
| | Configuration 9 _
I Desktop 210 : I | § | Outlier 5] I :
| Integration I : & Detection : Recovery g] |
| | |
+ + : Event g] : : Tools |
I o I's Notifications -
| Monitoring= | | | £ : I 58] Actions | :
| & Logging I sh /' 38 on quer@ AN ;
| | ~_ — e — —— §§ ________
{ ; / Business \, 85 Evaluator 2 _|
N o / __ _ _Logic
Figure 4 The extended COSARA architecture. The COSARA architecture has been extended with components to enable autonomic
management. The architecture was a service oriented architecture consisting of layers for presentation, business processing and data persistence.
As shown on the figure, the added components include Monitor components, Autonomic Analyzer, and Controller and Anticipator. These
components correspond to the steps in the FOCALE architecture.

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

Page 8 of 18

Analysis of
peak periods/”

Monitoring of query
response time

pmm e

Users of the system

databases.

Application Server

Figure 5 Mapping of the functional architecture to the physical topology of the application. This figure depicts how the functional
architecture of Figure 4 maps to physical locations. Moreover, it shows how different functional modules in the architecture are connected with
each other to form an autonomic control loop. Finally, it clarifies how response times are measured on the application server by interacting with the

N
Selective O
disablement
of queries >
4
\ Anticipator) COSARA

\ 4

\ 4

g0

o

QO

QO

<

QO

(2]

0

o

o

w

[0}

2

(@]

(0]

@
0 @5// Q
ﬁlllﬂ afi

@
C
<
[}

O

\4

7
(]

PACS
Databases

priorities to less relevant queries. The particular problem
tackled in this manuscript, however, has to deal with long
peak periods. As during peak periods, new high prior-
ity queries are constantly being introduced, low-priority
queries are continously ignored, until their relevance
becomes obsolete. As a result, their execution becomes
useless and the effect is similar to action we chose,
which is disabling the less important queries from the
start.

Query selection process

As described above, the approach presented in this arti-
cle aims at reducing the response times of queries during
peak hours in the COSARA architecture by temporarily
disabling less important queries. A first step in achieving
this is the selection of queries, which have lower prior-
ity for the users of the COSARA system. This requires
domain knowledge about the application. In this section,
we first describe how this knowledge is modelled and
subsequently present an algorithm for selecting candidate
queries.

Knowledge model

We model the domain knowledge of the COSARA appli-
cation using RDF?, which is a standardized model for data
interchange. One advantage of RDF is that models for
well-known and generic concepts are available in RDF or
the ontology language OWLP, which uses RDE-based seri-
alization. For this reason, we re-use existing models for
incorporating the relevant knowledge as much as possible.

More specifically, we use the IntelLEO Workflow
ontology® to model how users and background pro-
cesses interact with the COSARA system. The IntelLEO
Workflow ontology defines concepts such as roles and
users, and allows defining a sequence of activities and
tasks. As will be described below, this is used to define
the clinical decision process of the users in combination
with the COSARA system. In defining these workflows,
we often need to refer to medical terminology. Therefore,
we use the Galen ontology [37], which defines this ter-
minology and their links. Finally, we need to model the
application specific knowledge linked with the COSARA
application (e.g., which queries are executed when). We
do this by linking newly defined concepts to the tasks and
activities defined in the workflow. More specifically, we
allow a task to refer to a set of queries: each query can have
subqueries and has attributes such as a value defining its
complexity and priority.

Figure 6 provides an example of how the knowledge is
modelled for the COSARA application. For the sake of
readability, we only show the link with the workflows and
queries, not with the Galen ontology. Here we defined
two workflows: one periodic activity belonging to a back-
ground process in the application and one patient spe-
cific activity, which is carried out by a COSARA user
(either a physician or nurse). The periodic activity con-
sists of several maintenance tasks, which are sequentially
executed. Each task has its own query, with multiple
subqueries (not shown in the figure). As these are mainte-
nance task, their priority is small (note that a high priority

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120 Page 9 of 18
http://www.biomedcentral.com/1472-6947/13/120
assignedToRole COSARA
User
followingActivity assignedToRole
assignedToRole Background RecordModification
Process Activity
- - Type: Optional
PeriodicActivity PatientRecord
Activity
followingTask followingTask followingActivity|
UrineSediment Patient MicroBiology
Update Identification Activity
hasQuery hasQuery
- -) I MicroBiol MicroBiol
UrineSedimentQuery PatientldentificationQuery followingTask g,oenl,?e(jvgy followingTask > Iifa\;/iizgy
Complexity: 12 Complexity: 9 Type: Mandatory [Type: Optional
Priority: 10 Priority: 10 hasQ
% \ hasQuery +
MicroBiologySample MicroBiologyCulture " MicroBiologyAnalysisQuery
Complexity: 5 Complexity: 4 Complexity: 9
Priority: 1 Priority: 1 Priority: 6
‘@chm\eryA ‘@mou\ewt A{Subﬁ

Figure 6 Knowledge modelling of two illustrative workflows in the COSARA system: one periodic background process and one
user-triggered process. This figure shows an example of how domain knowledge about the COSARA application, and more specifically the
interaction between workflow and query optimization, is modeled in our approach. Two illustrative workflows are shown: one corresponding with
an automated background process and one corresponding with a sequence of activities carried out by a COSARA user.

value, corresponds to a low priority). The user-triggered
activity details how a user accesses microbiology results
in the COSARA application. The user is first shown a
summarized view on the patient’s details. To create this
view several queries are required. The user then has the
option to either modify the patient’s details (after which he
returns to the patient overview) or to get an overview of
the microbiology details. This microbiology activity con-
sists of one mandatory task (with several queries required
to create this view) and one optional task, which performs
the analysis of the results.

Identification of candidate queries for disablement

In this section, we present an assisted algorithm for iden-
tifying less important queries. The algorithm ranks the
different queries in the COSARA system based on their
importance for the users. This ranking is then given to an
administrator as an aid in selecting the queries that can be
disabled when a scarcity in resources occur.

Overall, the ranking is done based on three factors
(i) the visibility of the queries in the application, (ii)
the query’s complexity and (iii) the importance of the
queries in the clinical decision process. The algorithm
provides a formal implementation of a manual heuristic,
which was initially carried out by the administrator of the
COSARA system. An overview of the algorithm is given in
Algorithm 1. As shown, the algorithm iterates on all dif-
ferent activities and corresponding tasks and queries in
the workflow. Each query is given an initial rank of 1,
which corresponds to the highest importance. However,
several factors can increase the rank value (i.e., lower the
query’s importance). For example, background processes

and optional activities or tasks are penalized with a factor
(PenaltyNonUser, PenaltyOptionalActivity and Penalty-
OptionalTask, respectively). Moreover, high complexity
and priority values further increase the rank value. The set
of queries and their according rank are stored, sorted and
finally presented to the administrator for revision. The
query selection process only determines the order of the
queries and leaves it up to the administrator to select the
actual queries for disablement.

Algorithm 1 Algorithmic details of the query selection
process.

1: queries < ¢

2: activities <— getAllActivities()
3: for all activity € activities do
4
5

rank < 1
if activity.assignedToRole == BackgroundProcess
then
6 rank < rank x PenaltyNonUser
7. ifactivity.type == Optional then
8: rank < rank x PenaltyOptionalActivity
9. for all task € activity.tasks do
10: if task.type == Optional then
11 rank < rank x PenaltyOptionalTask
12: for all query € task.queries do
13: qrank <— rank x query.complexity
14: qrank <— qrank x query.priority
15: queries <— queries + {query—qrank}

16: sort(queries)
17: return queries

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

Design of FOCALE-based control loops in the COSARA
architecture
Following the FOCALE cognition model, we define three
dynamic control loops with the aim of optimizing the per-
formance of query execution. The goal of all three control
loops is to keep the response time of a query group below
a threshold, which corresponds with an acceptable delay.
Note that the quantization of an acceptable delay is a sub-
jective matter as it relates to how the users of the system
perceive it quality (i.e., the so called Quality of Experience).
Furthermore, what is acceptable also depends both on
the type of application and type of operation performed
(i.e., the type of query group). For our COSARA system,
an acceptable delay for the most occurring query group
(i.e., the microbiology query group) is up to approximately
25 seconds. This value was determined through discus-
sions with the users of the COSARA system and based on
their day-to-day experience with the system.
Performance is monitored via a statistics component in
the data lookup service (DLS) which stores the execu-
tion time for each query. By analyzing the execution time
and deciding when a serious performance delay occurs,
other queries can be disabled temporarily to ensure faster
retrieval of patient’s data in the displayed client mod-
ule. The method to decide and take action differs in the
three presented control loops. Figure 7 depicts the activ-
ities of each control loop as explained below. Reactive
control loops take immediate actions based on immedi-
ately perceived external stimuli, while the deliberative and
reflective loops feature an increased level of learning: the
first based on anomaly detection, while the later focuses
on the clustering and detection of temporal patterns. We
describe the details of all three loops in the remainder of
this section.

Reactive control loop

The goal of the reactive control loop is to detect the occur-
rence of a large disruption of the system. Only if the per-
formance of the system is severely affected, an immediate
action is taken corresponding with the disablement of less

Page 10 0f 18

important queries. As such, the reactive control loop con-
tinuously monitors the delay of page loads, as observed by
the physician, in the COSARA application. To do this, the
execution times of all all queries in the DLS component
are monitored (FOCALE’s monitor step) and summed to a
total delay as several queries will be responsible for a single
page load (observe step). When this total delay is unac-
ceptably high, denoted by the threshold Z¢4csive, an alarm
is raised in the control loop (Compare step). The effect of
this alarm is the following: on one hand the administrator
gets notified of the data problem to allow him to have a
closer look of the root cause of the anomaly. On the other
hand, an automatic action is also taken to ensure a grace-
ful degradation of the system. Therefore, the automatic
execution of a subset of queries, corresponding to less
important data retrievals (e.g., cron jobs, side informa-
tion) is disabled for a time window We,ctive. As the total
number of queries will decrease, the goal of the reactive
control loop is to considerably reduce the overall per-
ceived delay. For example, to improve the execution of
microbiology samples, redundant queries of urine sedi-
ment are disabled because these queries are not shown in
the module. If the physician wants to consult this urine
value, a warning informs him that the query is disabled
temporarily. The physician can retrieve the value by click-
ing a request button, in which case the value is retrieved
using a duplicate urine sediment query (which can only
be executed on request and is not filtered). As these urine
sediment queries will only be executed when the data is
actually required by the physician, the number of queries
will be considerably reduced.

Deliberative control loop

In the deliberative control loop, decisions and actions are
made using an anomaly detection algorithm. In this loop
there is an explicit evaluation of the decision before act-
ing. This control loop continuously monitors the query
execution time of each individual query and groups them
according to the query type. Note that, in contrast to
the reactive control loop, the monitoring occurs based on

Monitor DLS Compare Anomaly
Statistics (query | execution time |—» Detection
execution time) of queries Algorithm

Reacti\N i Deliberative
Predict Execute
Anomaly [__ """ """ ""7] Action
Time Windows Reflective

Figure 7 Activities in the control flows for performance optimization. This figure depicts the activities of each control loop. The reactive control
loop reacts immediately based on the monitored query execution times. The deliberative control loop includes an anomaly detection algorithm.
The reflective control loop detects temporal patterns in the query execution times. The figure shows the three control loop types.

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120
http://www.biomedcentral.com/1472-6947/13/120

each individual query and not on the grouped perceived
page load. By monitoring each query type, a specific
model is built that represents the typical expected query
execution time of each query type. Based on this model,
an anomaly detection algorithm can detect out of profile
behaviour, i.e., outliers. If the share of recently detected
outliers becomes abnormally high, a similar query disable-
ment action as carried out in the reactive control loop
is executed. Queries are proactively disabled when a dis-
ruption of the system is likely to occur (i.e., signalled by
an increased share of abnormal individual query execu-
tions). This is in contrast to the reactive control loop
where queries are disabled after a system disruption is
detected. Therefore, the deliberative control loop detects
patterns that typically occur just before a shortage of
resources (leading to high response times) and enforces
a pro-active disablement of queries to avoid the resource
shortage. Additionally the deliberative control loop incor-
porated knowledge from a domain expert to detect the
outliers. As such, the control loop consists of a training
phase, where the system is trained to build the model
and detect outliers, and a deployment phase, where the
outliers are detected on-line and appropriate actions are
taken. We discuss the algorithmic details of both phases
in the remainder of this section.

Training phase During the training phase, a model is
built for each query type based on knowledge from a
domain expert. This is shown in Figure 8. In a first step, a
historical data set D containing the query execution times
and query types over the course of a day is labeled by the
domain expert (e.g., the system operator). The goal of the
labelling is to select a subset D,y corresponding with
normal query execution times for each query type. Conse-
quently, the subset Dy yier = D\ Dyormai corresponds with

Page 11 0f 18

abnormal or out of profile query executions. In a second
step, a random subset Dy C Dyopmar is taken as train-
ing set. In our case, we take 85% of random samples out
of D,,ormal- Based on Dy, a model can be built of normal
query execution times by calculating the mean and stan-
dard deviation of the population in Dyy;,. These values
are then used to determine whether a random sample x
of query execution times belongs to the calculated model
or not. To do this, a z-score is calculated, which is a well
known anomaly detection algorithm, as follows:

| — e (Dtrain) |

w4 = 0 (Drain)

oy

Here, w(D¢qin) denotes the mean of Dyyiy, while
0 (Dtrain) is the standard deviation of Dyy;,. The larger the
calculated z-score is, the more likely the sample x is to
be an outlier. However, it is difficult to define a threshold
for this as this depends on the distribution of the dataset,
which is unknown. To address this, in a third and final
step, the remaining dataset Dy, = D \ Dyyiy is used for
determining a threshold z;. Based on this threshold, a ran-
dom sample x can be classified as an outlier (if z(x) > z;)
or not. Note that D,y C Dyess: hence, Dyeg; will con-
tain both normal and out of profile query execution times.
For each ¥ € Dy, the z-score as defined in Equation
(1) is calculated. Furthermore, for several possible values
of z;, the samples x are classified and the classification
is compared with the labelling of D,ier and Dyypppma by
the domain expert. By comparing the classification for a
given z; parameter configuration and the classification by
the domain expert, the best z; parameter configuration
can be chosen. More specifically, we select the z; param-
eter that maximises the precision and recall values, two
metrics that are used to assess the accuracy of a classi-
fication system. Precision is calculated as the number of

Query Execution Times

Train: Trainingset = 85% of (1)
Test: Testset day = 15% of (1) and (2)
and Validation testset other day (3)

Label = 2
“Potential g °#
2 » 5 08
anomaly N
04
8 Label 5, |
1 “Normal 2. | -
execution” & lw 112 13 14 15
Score
Label dataset Timeline :> Optimal Score | gcore
+ detection of anomalies by algorithm (Training) | (Testset)

Figure 8 Schematic illustration of the anomaly detection algorithm and determination of the detection score. This schematic illustration
shows the training phase and anomaly detection algorithm of the deliberative control loop. The dataset is split up in a trainingset and a test set. The
query execution times are labeled with behavior normal or as an anomaly. The trainingset is used to find the optimal detection score. Precision and
recall are used to choose the score. The figure illustrates the detection step in the deliberative control loop.

Determination of the Anomaly Detection Score

Choosing the best score for detection
(Compare Labels with Detection score)

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

true positives (i.e. the number of true outliers) divided
by the total number of elements belonging to the posi-
tive/outliers class (i.e. the number of detected outliers by
the algorithm, and also including those that were listed as
outlier but are not observed outlier). Recall is defined as
the number of true positives divided by the total number
of elements observed as outlier (i.e. the number of out-
liers that were detected, and also including those that were
missed by the outlier detection). The result of the training
phase is (i) a model for each query type, defined through
the mean and standard deviation of a population of that
type, that defines the normal behaviour of query execution
times for that query type and (ii) a threshold z; for each
query type that can be used to perform an on-line outlier
detection in the deployment phase.

Deployment phase Once trained, the calculated model
and threshold can be used to detect the occurrence of
outliers on-line for each query type and act accordingly.
Therefore, the deliberative control loop will continuously
monitor the query execution times for each individual
query and will classify each execution time as being nor-
mal or out profile according to the trained configuration.
Next, the share of outliers compared to the total set of
queries in the last time window Wy, is continuously
calculated. If the calculated share exceeds a predefined
threshold sy, the deliberative control loop assumes
that there is a high risk of system degradation. As a reac-
tion, it decides to execute actions that can reduce the
typical query execution times (e.g., disabling other queries
as discussed in Section ‘Identification of candidate queries
for disablement’.

Reflective control loop
In the reflective control loop, the long term memory is
taken into account to take proactive actions (i.e, before
the execution of the actual queries). The reflective loop
detects temporal patterns in the occurrence of outliers
and proactively disables low priority queries. In practice,
the COSARA system often experiences quality degrada-
tions during peak periods (e.g., at the beginning and end of
the work day of physicians). The goal of the reflective con-
trol loop is to autonomically detect these peak periods and
disable the queries accordingly. Therefore, the reflective
control loop has a similar goal as the deliberative control
loop: it proactively disables queries to avoid high response
times. The main difference is that the reflective control
loop focuses on diurnal effects (i.e., patterns that can be
observed on a daily basis) and disables queries for a longer
time period (i.e., at least 30 minutes) based on detected
historical patterns on a very long time frame (i.e., several
weeks).

The reflective control loop works as follows. Based on
the data set D4, constructed in the deliberative control

Page 12 0f 18

loop using the z-score-based anomaly detection algo-
rithm, a new data set D, is derived. As discussed, Doy ier
contains all queries (with their response time and time of
execution information), which are identified by the delib-
erative control loop of having abnormally high execution
times (i.e., being outliers).

Based on this set of outliers, the data set D,.; denotes
the frequency of outliers given the current time of day.
To determine the frequency, we use bins of correspond-
ing to a 30 minute time window. Hence, D,y contains 48
elements. Note that, two outliers occurring on complete
different days but on the same time of day will be assigned
to the same bin. The relevance of this newly constructed
data set is the following: we observed that peak periods
often occur at the moment in time across days. This is
because the physicians and nurses often use the COSARA
system, as part of their routine, at the same time each day.
The typical busy hours every day correspond with the start
and end of every working day as well as the lunch break
(around noon).

By deriving the data set D, we can identify the afore-
mentioned busy hours, as they will correspond with a
high number of outliers in D, and thus in large val-
ues for the frequency in that time zone. In order to detect
the highest values, we apply the same anomaly detection
algorithm as discussed above: we calculate the z-score as
well as the optimal z-score threshold and classify a time
window as an outlier if its z-score is above the defined
threshold. This process is illustrated in Figure 9.

In this context, the detection of an outlier signifies
a time window of 30 minutes, where the deliberative
control loop has found an abnormal amount of high
response times. Hence, this builds further on the knowl-
edge learned in the previous control loop. If such a time
window is identified as an outlier, the queries are disabled
during that time window. This is done pro-actively on
every day in the future, until the reflective control loop no
longer flags this as a busy period.

Results and discussion

In this section we study the influence of the actions of the
FOCALE based reactive and deliberative control loops on
the query execution time. The executed queries of a ran-
dom day in January 2012 were taken and executed again in
a test environment, as described in the evaluation setup.
The duration of each COSARA query was measured. In
these experiments we evaluated the impact of an imme-
diate action in reactive control loop, the decision to take
action by the described anomaly detection algorithm in
the deliberative loop and its impact.

Evaluation setup
The COSARA platform is set up in the real life produc-
tion environment of the Ghent University Hospital. By

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

Page 13 0f 18

Query Execution Times

Timeline

—
Determine time window with high
frequency of anomalies

 ——
Learn where
anomalies occur M
in time and take '
action in that
time window

Figure 9 Schematic illustration of the choice of a time window with high frequency of anomalies. This schematic illustration shows the
reflective control loop step. In a time window with a constant high frequency of anomalies an action is taken. The action prevents the high
execution times in a time window. It is learned where anomalies occur in time and the action is taken in that specific time window.

Query Execution Times

Timeline

Take action in that predicted time
window to optimize the queries

logging the performed queries in the production environ-
ment, we were able to emulate the query executions on the
COSARA database in a test environment and evaluate the
impact of optimization without interfering in the clinical
workflow of the production environment. Due to the sen-
sitivity of the patients’ electronic health records and the
medical decisions based on this data, we have replicated
the COSARA database queries on test servers. In this
section, we detail the used experimental setup to repli-
cate COSARA’s behavior. In the experiments we measure
the query execution times by replicating the COSARA
queries in a multi-threaded application. By replaying the
queries again with a specific action, we are able to eval-
uate the impact of action by the control loops on the
query execution time. In the action we disable the queries
COSARA UrineSediment and Identification as these were
identified as less important by our query selection pro-
cess. For executing the query selection process, we set the
penalty parameters PenaltyUser, PenaltyOptional Activity
and PenaltyOptionalTask to 10, 5 and 3, respectively. The
UrineSediment queries retrieve the urine sediment value.
The Identification queries retrieve changes made to the
identification. Both queries are not important when the
physician is actually displaying the patients’ microbiology.

The results include the average query execution time of
the query executions. These percentiles show the worst
execution times. These executions cause delay on the
physicians screen while displaying microbiology samples.
The experiments were carried out on one core Intel Xeon
E5620 processor with 2.40 GHz and 3.0 GB RAM. We
emulated the client and server interaction by replicat-
ing the COSARA queries of the trace log. As such, it
shows behavior identical to the query executions in pro-
duction environment. Figure 10 shows the test setup.
On the server node a MySQL database server 5.0.51 is
running and on the client node we rerun the real exe-
cuted queries and measure its execution time and the
improvements by the actions in the presented control
loops.

Performance evaluation of the control loops

Performance evaluation of the reactive control loop

In the reactive control loop an action is immediately taken
if the performance is severely affected. We set parameter
treactive t0 90,000 ms and parameter Wiegctive to 2 min-
utes. The value £e4csive corresponds to the execution time,
which is considered very obstructive by the COSARA
user. It is expected that similar high execution times are

Execution of COSARA
Database Queries

Emulator of the Client System
(Client node)

Figure 10 Setup of COSARA client and server on nodes of the generic test environment. The generic test environment consists of an emulator
for the COSARA client and for the COSARA server. The client system executes the queries on the COSARA database, a MySQL database. With this
experimental setup, as shown on the figure, the COSARA behavior is replicated and the effect of the applied control loops can be measured.

Emulator of the Database System
(Server node)

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120
http://www.biomedcentral.com/1472-6947/13/120

Page 14 of 18

50000
45000
40000 -
350003[A
i£ 30000 3
25000
20000 7\, T =t +
15000 4 . T . .
10000 L
5000 -
04 - e
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2
Time (hours)

Execution Time (ms)

Microbiology Query Group

——o—Mean -¢=Mean React

Figure 11 Average execution time of microbiology query group without management and with actions by reactive loop. This figure shows
the average execution time of the microbiology query group over 24 hours without autonomic management and with actions taken by the reactive
control loop. The average exeution time is 27 s without autonomic action and 24 s with the reactive action.

prevented by setting a time window of 2 minutes for the
action.

Figure 11 depicts the average execution time of a
COSARA microbiology group without autonomic man-
agement actions and with the action taken in the reactive
control loop. The average execution time is 27,308 ms
without autonomic action and 24,956 ms with the reac-
tive action. The reactive control loop provides a gain of
8.61% or 2,352 ms on the average query execution time
of the microbiology query group. The impact of the con-
trol loops on the query execution times of microbiology
queries group is analysed per hour, as shown in Figure 11.
The highest gain is observed in the period from 9 to 10
am with a reduction of 15.92% on the average execution
time.

Performance evaluation of the deliberative control loop
The reactive control loop already offers an important gain
but optimizations are still possible. In the deliberative

control loop the decision and action are made using an
anomaly detection algorithm. In this section we evaluate
the effect of the deliberative control loop on the query
execution times. First we determine the detection score
z;, as discussed in Section ‘Deliberative control loop’.
We varied the score from 2 to 8. Figure 12 shows an
example of the determination of the anomaly detection
score with precision and recall (based on training set,
data log of January, 19, 2012). Based on this we set the
anomaly detection score z; to 2 because of its highest pre-
cision and recall. The figure also shows the precision and
recall of Dy (log results of January, 20, 2012, the test
set). We analysed the queries which retrieve microbiology
samples, cultures, antibiogram and analyses and deter-
mined the scores. Then, we set Wy, to a time period of
1000 ms in which queries were executed. The parameter
Soutlier Was set to 20% to obtain the best share of outliers.
The action, identical to the disabling of queries in the
reactive loop, was performed when s, was exceeded.

O .

Eob S

— 0,8 \

S 0,7 \ \

o 0,6 N\ \

205 \\

® 04

€03 N\ ~

S o2 N\ e

2 01 — —
g o g
o 2 3 4 5 6 7 8

Anomaly Detection Score

=o—D test Recall (19-01) =D test Recall (20-01)
D test Precision (19-01) ==<=D test Precision (20-01)

Figure 12 Example of the determination of anomaly detection score based on highest precision and recall. The figure shows an example of
the determination of anomaly detection score z for query COSARA Microbiology Samples based on highest precision and recall.

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

Page 15 of 18

50000

45000

40000 -

35000 4

ime (ms)

o\

30000 T
25000 -
0000 +

1 1

Execution Ti
_ 2N

5000 74 : i

Microbiology Query Group

5000

0000
0 ——

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2

——o—Mean --Mean React + Delib

Figure 13 Average execution time of microbiology without management and with actions taken by reactive, deliberative loops. The
figure shows the average execution time of the microbiology query group over 24 hours without autonomic management and with actions taken

by the reactive and deliberative control loops.

Time (hours)

Figure 13 shows the average query execution time without
autonomic management and with actions taken in the
reactive and deliberative control loop. We compared each
observation with its original execution time. The combi-
nation of the reactive and deliberative control loop per-
forms better than only the reactive one. The combination
gives a reduction of 2,980 ms or 10.92% to the original
average execution time without management. The com-
bined actions give an average execution time of 24,327 ms.
The highest reduction of the average execution time is
observed in the period from 9 to 10 am with a reduction
of 19.69%.

Performance evaluation of the reflective control loop

In the reflective control loop, queries are disabled proac-
tively during peak periods of high query execution times.
In the detected time intervals (7h to 7h30), (9h to 10h),
(12h to 12h30) and (16h to 17h), we disable the UrineSed-
iment and Identification query proactively. The combi-
nation of the reactive, deliberative and reflective actions

affects the query group execution times additionally
during the selected time intervals. Figure 14 shows the
average query group execution time per hour. The micro-
biology group query execution time without autonomic
management is 27,308 ms, where the execution time with
the combination of reactive, deliberative and reflective
actions is 23,747 ms or a reduction with 13.04%. In abso-
lute values, the above results show that we can keep the
average response times below 25 seconds with the excep-
tion of peaks caused by nightly background tasks, which
are not perceivable by the users. As discussed above and
based on feedback from the users of the COSARA system,
this is an acceptable response time. In the selected time
interval from 9 to 10 am, a reduction of 36.11% is observed
on the average exeution time by applying the three con-
trol loops where the reactive gave only a reduction of
15.92% and the reactive and deliberative gave a reduction
of 19.69%. The reflective control loop acts proactively dur-
ing predicted peak periods and hence prevents high query
execution times.

50000

45000

40000
35000 ¢

30000 i
25000 P\ —
20000 f

15000

Execution Time (ms)

10000
5000

Microbiology Query Group

0 T T

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2

—o—Mean

—#=Mean React + Delib + Refle

Timeline(hours)

Figure 14 Average execution time of microbiology without management and with actions taken by reactive, deliberative, reflective
loops. The figure shows the average execution time of the microbiology query group over 24 hours without autonomic management and with
actions taken by the reactive, deliberative and reflective control loops.

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

Page 16 of 18

Average Microbiology Query Group
Execution Time (ms)

bt

= Without Mgmt

"+ React
React+Delib
React+Delib+Refle

<. Baseline

Mean

Figure 15 Comparison of the average microbiology query execution time without and with autonomic management. The average
microbiology query execution time is compared. The figure shows the query exeuction time of the reactive, deliberative and reflective control
loops. It shows the affected average query execution times with the combined control loops and the baseline over 24 hours.

Discussion

The proposed solution introduces an alternative to sim-
ply increasing the amount of resources by upgrading the
physical infrastructure. The control loop solution is viable
as the response times in query processing experience
important peak periods during certain moments in time
(e.g., the beginning and end of the day). Upgrading the
physical infrastructure to accommodate these peaks is
possible, but at the same time costly as the infrastructure
would often be idle during less busy periods. As our solu-
tion takes care of the abnormally high peaks in response

time, the result is a more flat behaviour of response
time over the day. Therefore, if the system’s usage would
increase further, deploying alternative solutions such as
database replication in combination with our proposed
solution will be more advantageous.

Figure 15 and Figure 16 summarize all the evalu-
ation results. Figure 15 compares the average query
group execution times. The reactive control loop reduces
the average execution time by 8.61%. The combination
of the actions of the reactive and deliberative control
loop reduce the average execution time by 10.92%. The

130000
g
3 120000
S
2~ 110000
iz
(e =2
> @ 100000
SE
2 : 90000
38
S 3
= 2 80000 -
g w
©
5 70000 -
>
<
60000 -
50000 -

95th Percentile

| Without Mgmt . React

React+Delib

98th Percentile

React+Delib+Refle = Baseline

Figure 16 Comparison of the 95th and 98th percentile of microbiology query execution without and with management. Comparison of
the 95th and 98th percentile of the microbiology query execution time without and with autonomic management of the reactive, deliberative and
reflective control loops. The figure shows the affected 95th and 98th percentile query execution times with the combined control loops and the

baseline over 24 hours.

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

combination with the reflective control loop affects the
average execution time with 13.04%. By disabling the
queries during the whole day the baseline is set. Although
this shows the highest possible gain, the queries COSARA
UrineSediment and Identification are disabled completely.
Compared to the baseline, the control loops provide a
reduction of more than one third of the possible improve-
ment. The baseline showed a difference of 32.09% com-
pared to the average execution time without actions. We
also compared the effect on the 95th and 98th percentile,
as shown in Figure 16. The reactive control loop, reac-
tive and deliberative control loop, and reactive, delibera-
tive and reflective show reductions of 8.79%, 11.04% and
13.57% respectively in the 95th percentile. In the 98th per-
centile the execution time is reduced by 6.27%, 8.07% and
8.50% respectively.

Overall, the solution has a high scalability for several
reasons. All three control loops rely on detecting peaks
based on summarized data. This means that the memory
consumption does not grow linearly with an increasing
number of users of the system. Furthermore, the control
loops introduce only a marginal overhead in terms of com-
putational complexity. Finally, in the design of all three
loops, care has been taken to maintain a good scalabil-
ity. For example, the reactive control loop was deliberately
kept relatively simple in terms of computational complex-
ity and memory consumption as it needs to run at a very
high frequency (i.e,, in the order of seconds). Control
loops which run on a more daily basis (e.g., the reflective
control loop) are allowed to introduce a higher complex-
ity. Note that, as the reflective control loop mainly relies
on clustering, it also has a high scalability as the number
of users increases.

Conclusions

This paper presents the extension of the existing health
care platform COSARA in the ICU with autonomic con-
trol loops. The introduced control loops provide an auto-
mated mechanism to detect low performance and to take
action, thereby limiting human technical interventions.
The monitoring of the execution times of the data queries
of this real life intensive care platform allow the inves-
tigation of low performance. A reactive, deliberative and
reflective control loop have been proposed to optimize
the data query performance and thus the page load of
the microbiology module. In the reactive control loop
the action is immediately taken when the performance of
the system is affected. The action disables less important
queries not relevant for the display of microbiology data.
In the deliberative control loop we use an anomaly detec-
tion algorithm with an explicit evaluation of the decision
before the action is taken. In the reflective control loop,
proactive actions are taken after temporal patterns of out-
liers are detected. We evaluated the impact of the reactive,

Page 17 of 18

deliberative and reflective control loop on the query exe-
cution of the microbiology data. The results show a time
reduction of 8.61% by the reactive control loop on the
average query execution times. The addition of the delib-
erative control loop reduced the average query execution
time by 10.9% and by combining the three control loops
the average execution time was reduced by 13.04%.

Endnotes

2 Resource Description Framework (RDF) - http://
www.w3.org/RDF/

> OWL Web Ontology Language Overview - http://
www.w3.org/TR/owl-features/

¢ IntelLEO Workflow ontology - http://www.intelleo.
eu/ontologies/workflow/spec/

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

The work presented was carried out in collaboration between all authors. KS
and SL carried out the study of the control loops on the COSARA platform,
participated in the design and development of the control loops as described
in this paper and drafted the manuscript. FDT and JD supervised the study,
participated in the design and coordination and helped to draft the final
manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank the Institute for the Promotion of Innovation
by Science and Technology in Flanders (IWT) for supporting the COSARA
research project.

Author details

! Department of Information Technology, Ghent University - iMinds Gaston
Crommenlaan 8 Bus 201, 9050 Gent, Belgium. 2Department of Mathematics
and Computer Science, University of Antwerp - iMinds, Middelheimlaan 1,
2020 Antwerp, Belgium. 3Department of Intensive Care, Ghent University
Hospital, De Pintelaan 185, 9000 Gent, Belgium.

Received: 22 February 2013 Accepted: 16 October 2013
Published: 27 October 2013

References

1. Kephart JO, Chess DM: The vision of autonomic computing. Computer
2003, 36:41-50. http://dx.doi.org/10.1109/MC.2003.1160055.

2. Steurbaut K, Colpaert K, Gadeyne B, Depuydt P, Vosters P, Danneels C,
Benoit D, Decruyenaere J, De Turck F: COSARA: integrated service
platform for infection surveillance and antibiotic management in
the ICU. J Med Syst 2012, 36(6):3765-3775. http://dx.doi.org/10.1007/
$10916-012-9849-8.

3. Pour G: Prospects for expanding telehealth: multi-agent autonomic
architectures. In Computational Intelligence for Modelling, Control and
Automation, 2006 and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce, International Conference on. Sydney:
IEEE; 2006:130. http://dx.doi.org/10.1109/CIMCA.2006.166.

4. Strowes S, Badr N, Heeps S, Lupu E, Sloman M: An event service
supporting Autonomic Management of Ubiquitous Systems for
e-Health. In 26th [EEE International Conference on Distributed Computing
Systems Workshops (ICDCSW06). Lisbon: [EEE; 2006:22. http://dx.doi.org/
10.1109/ICDCSW.2006.17.

5. Lupu E, Dulay N, Sloman M, Sventek J, Heeps S, Strowes S, Twidle K,
Keoh SL, Filho AS: AMUSE: Autonomic Management of Ubiquitous
e-Health Systems. Concurr Comput Pract Exper 2008, 20(3):277-295.
http://dx.doi.org/10.1002/cpe.v20:3.

6. ZhuY, Sloman M, Lupu E, Loong Keoh S: Vesta: A secure and
autonomic system for pervasive healthcare. In Proceedings of the 3d

http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.intelleo.eu/ontologies/workflow/spec/
http://www.intelleo.eu/ontologies/workflow/spec/

Steurbaut et al. BMC Medical Informatics and Decision Making 2013, 13:120

http://www.biomedcentral.com/1472-6947/13/120

20.

21.

22.

International ICST Conference on Pervasive Computing Technologies for
Healthcare. London: ICST; 2009:1-8. http://dx.doi.org/10.4108/ICST.
PERVASIVEHEALTH2009.5939.

Omar WM, Samir K, Taleb-Bendiab A: Autonomic model for managing
complex healthcare applications. In Fourth [EEE International Workshop
on Engineering of Autonomic and Autonomous Systems (EASe‘07).
Newcastle-under-Lyme: IEEE; 2007:94-98. http://dx.doi.org/10.1109/EASE.
2007.7.

Almomen S, Menascé DA: An autonomic computing framework for
self-managed emergency departments. In HEALTHINF. Edited by
Traver V, Fred ALN, Filipe J, Gamboa H, Traver V, Fred ALN, Filipe J,
Gamboa H. Rome: SciTePress; 2011:52-60. [http://dblp.uni-trier.de/rec/
bibtex/conf/biostec/AlmomenM11]

Arozarena P, Toribio R, Kielthy J, Quinn K, Zach M: Probabilistic fault
diagnosis in the MAGNETO autonomic control loop mechanisms for
autonomous management of networks and services. In HEALTHINF
Volume 6155 of Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin / Heidelberg; 2010:102-105. http://dx.doi.org/10.1007/
978-3-642-13986-4_14.

Movahedi Z, Ayari M, Langar R, Pujolle G: A survey of autonomic
network architectures and evaluation criteria. Commun Surv Tutorials,
IEEE 2012, 14(2):464-490. http://dx.doi.org/10.1109/SURV.2011.
042711.00078.

Marquezan CC, Granville LZ: State of the art self-* and P2P for network
management. In Communications Surveys & Tutorials, IEEE, SpringerBriefs
in Computer Science. London: Springer London; 2012:5-25.
http://dx.doi.org/10.1007/978-1-4471-4201-0_2.

Smith D, Guan Q, Fu S: An anomaly detection framework for
autonomic management of compute cloud systems. In Computer
Software and Applications Conference Workshops (COMPSACW) 2010 IEEE
34th Annual: IEEE; 2010:376-381. http://dx.doi.org/10.1109/COMPSACW.
2010.72.

Chandola V, Banerjee A, Kumar V: Anomaly detection: a survey. ACM
Comput Surv 2009, 41(3):1-72. http.//dxdoi.org/10.1145/1541880.1541882.
Rabatel J, Bringay S, Poncelet P: Anomaly detection in monitoring
sensor data for preventive maintenance. £xpert Syst with Appl 2011,
38(6):7003-7015. http://dx.doi.org/10.1016/j.eswa.2010.12.014.

Strassner J, Hong JWK, van der Meer S: The design of an autonomic
element for managing emerging networks and services. In Ultra
Modern Telecommunications & Workshops, 2009, ICUMT. International
Conference on. Saint-Petersburg: [EEE; 2009:1-8. http://dx.doi.org/
10.1109/ICUMT.2009.5345533.

Kim SS, Seo S s, Kang JM, Hong JWK: Autonomic fault management
based on cognitive control loops. In Network Operations and
Management Symposium (NOMS) 2012 IEEE. Maui: IEEE; 2012:1104-1110.
http://dx.doi.org/10.1109/NOMS.2012.6212036.

Lozano JA, Castro A, Gonzélez JM, Lépez de Vergara JE, Villagré VA,
Olmedo V: Autonomic Provisioning Model for Digital Home Services
Modelling Autonomic Communications Environments. In Modelling
Autonomic Communications Environments Volume 5276 of Lecture Notes in
Computer Science. Edited by Meer S, Burgess M, Denazis S. Berlin,
Heidelberg: Springer, Berlin / Heidelberg; 2008:114-119.
http://dx.doi.org/10.1007/978-3-540-87355-6_11.

Sloman A: Designing human-like minds. In /n Proceedings of the 1997
European Conference on Arti Life (ECAL-97). Brighton, Heidelberg: Springer
Berlin; 1997. [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
210.3370]

Famaey J, Latré S, Strassner J, Turck FD: Semantic context dissemination
and service matchmaking in future network management. /nt J Netw
Manag 2012, 22(4):285-310. http://dx.doi.org/10.1002/nem.805.

Choi T, Lee TH, Kodirov N, Lee J, Kim D, Kang JM, Kim S, Strassner J, Hong
JK: HiMang: Highly manageable network and service architecture
for new generation. Commun Netw, J 2011, 13(6):552-566.

Kim S, Kang JM, Seo S s, Hong JWK: A cognitive model-based approach
for autonomic fault management in OpenFlow networks. Int J Netw
Manag 2013. pre-print. http://dx.doi.org/10.1002/nem.1839.

Abdelzaher T, Diao Y, Hellerstein J, Lu C, Zhu X: Introduction to control
theory and its application to computing systems. In Performance
Modeling and Engineering. Edited by Liu Z, Xia C. US: Springer;
2008:185-215. http://dx.doi.org/10.1007/978-0-387-79361-0_7.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34.

35.

36.

37.

Page 18 of 18

Abdelzaher T, Stankovic J, Lu C, Zhang R, Lu Y: Feedback performance
control in software services. Control Syst [EEE 2003, 23(3):74-90.

LuC, LuY, Abdelzaher T, Stankovic J, Son SH: Feedback control
architecture and design methodology for service delay guarantees
in web Servers. Parallel Distributed Syst IEEE Trans 2006, 17(9):1014-1027.
Hellerstein JL, Morrison V, Eilebrecht E: Applying control theory in the
real world: experience with building a controller for the .NET thread
pool. SIGMETRICS Perform Eval Rev 2010, 37(3):38-42.
http://doi.acm.org/10.1145/1710115.1710123.

Parekh S, Gandhi N, Hellerstein J, Tilbury D, Jayram T, Bigus J: Using
control theory to achieve service level objectives in performance
management. In Integrated Network Management Proceedings, 2001,
IEEE/IFIP International Symposium on. Seattle: IEEE; 2001:841-854.
Hellerstein JL, Zhang F, Shahabuddin P: A statistical approach to
predictive detection. Comput Netw 2001, 35:77-95. [http://www.
sciencedirect.com/science/article/pii/S1389128600001511].

Hameurlain A, Morvan F, El Samad M: Large scale data management in
grid systems: a survey. In Information and Communication Technologies:
From Theory to Applications, 2008. ICTTA 2008. 3rd International Conference
on. Damascus; 2008:1-6.

Doulkeridis C, Nervag K: A survey of large-scale analytical query
processing in MapReduce. The VL.DB J 2013. pre—print.
http://dx.doi.org/10.1007/500778-013-0319-9.

Paton NW, de Aragao MA, Fernandes AA: Utility-driven adaptive query
workload execution. Future Generat Comput Syst 2012, 28(7):1070-1079.
[http://www.sciencedirect.com/science/article/pii/S0167739X11002123]
Park HK, Lee WS: Adaptive optimization for multiple continuous
queries. Data Knowl Eng 2012, 71:29-46. [http://www.sciencedirect.
com/science/article/pii/S0169023X11001054]

Avnur R, Hellerstein JM: Eddies: continuously adaptive query
processing. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, SIGMOD '00. New York: ACM;
2000:261-272. http://doi.acm.org/10.1145/342009.335420.

Suresh V, Chaudhuri D: Dynamic scheduling—a survey of research.
Int J Production Econom 1993, 32:53-63. [http://www.sciencedirect.com/
science/article/pii/0925527393900078]

Jiang C, Wang C, Liu X, Zhao Y: A survey of job scheduling in grids. In
Advances in Data and Web Management, Volume 4505 of Lecture Notes in
Computer Science. Edited by Dong G, Lin X, Wang W, Yang Y, Yu J.
Heidelberg: Springer Berlin; 2007:419-427. http://dx.doi.org/10.1007/
978-3-540-72524-4_44.

Bharathi S, Chervenak A: Scheduling data-intensive workflows on
storage constrained resources. In Proceedings of the 4th Workshop on
Workflows in Support of Large-Scale Science, WORKS ‘09. New York: ACM;
2009:3:1-3:10. http://doi.acm.org/10.1145/1645164.1645167.

Kerr K, Norris T, Stockdale R: Data quality information and decision
making: A Healthcare case study. In 18th Australasian Conference on
Information Systems. Melbourne: Association for Information Systems
Research; 2007.

Rector A, Rogers J, Zanstra P, Van der Haring E: OpenGALEN: open source
medical terminology and tools. In Proceedings of the AMIA Annual
Symposium. American Medical Informatics Association: Washington; 2003.

doi:10.1186/1472-6947-13-120

Cite this article as: Steurbaut et al: Autonomic care platform for opti-
mizing query performance. BMC Medical Informatics and Decision Making
2013 13:120.

http://dblp.uni-trier.de/rec/bibtex/conf/biostec/AlmomenM11
http://dblp.uni-trier.de/rec/bibtex/conf/biostec/AlmomenM11
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.210.3370
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.210.3370
http://www.sciencedirect.com/science/article/pii/S1389128600001511
http://www.sciencedirect.com/science/article/pii/S1389128600001511
http://www.sciencedirect.com/science/article/pii/S0167739X11002123
http://www.sciencedirect.com/science/article/pii/S0169023X11001054
http://www.sciencedirect.com/science/article/pii/S0169023X11001054
http://www.sciencedirect.com/science/article/pii/0925527393900078
http://www.sciencedirect.com/science/article/pii/0925527393900078

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Adding autonomic capabilities to the COSARA system
	Related work
	Autonomic management in health care
	Autonomic architectures
	Control loops
	Control theory approaches to query optimization

	Methods
	Problem statement
	Architecture
	Query selection process
	Knowledge model
	Identification of candidate queries for disablement

	Design of FOCALE-based control loops in the COSARA architecture
	Reactive control loop
	Deliberative control loop
	Training phase
	Deployment phase

	Reflective control loop

	Results and discussion
	Evaluation setup
	Performance evaluation of the control loops
	Performance evaluation of the reactive control loop
	Performance evaluation of the deliberative control loop
	Performance evaluation of the reflective control loop

	Discussion

	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

