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Abstract

Background: Lifestyle-related diseases represented by metabolic syndrome develop as results of complex
interaction. By using health check-up data from two large studies collected during a long-term follow-up, we
searched for risk factors associated with the development of metabolic syndrome.

Methods: In our original study, we selected 77 case subjects who developed metabolic syndrome during the
follow-up and 152 healthy control subjects who were free of lifestyle-related risk components from among 1803
Japanese male employees. In a replication study, we selected 2196 case subjects and 2196 healthy control subjects
from among 31343 other Japanese male employees. By means of a bioinformatics approach using a fuzzy neural
network (FNN), we searched any significant combinations that are associated with MetS. To ensure that the risk
combination selected by FNN analysis was statistically reliable, we performed logistic regression analysis including
adjustment.

Results: We selected a combination of an elevated level of γ-glutamyltranspeptidase (γ-GTP) and an elevated white
blood cell (WBC) count as the most significant combination of risk factors for the development of metabolic
syndrome. The FNN also identified the same tendency in a replication study. The clinical characteristics of γ-GTP
level and WBC count were statistically significant even after adjustment, confirming that the results obtained from
the fuzzy neural network are reasonable. Correlation ratio showed that an elevated level of γ-GTP is associated with
habitual drinking of alcohol and a high WBC count is associated with habitual smoking.

Conclusions: This result obtained by fuzzy neural network analysis of health check-up data from large long-term
studies can be useful in providing a personalized novel diagnostic and therapeutic method involving the γ-GTP
level and the WBC count.

Keywords: Data mining, Combinational risk factor, Fuzzy neural network, Glutamyltranspeptidase, Lifestyle disease,
Personalized diagnostic method, White blood cell

Background
Metabolic syndrome (MetS) is characterized by a cluster-
ing of metabolic abnormalities, including glucose intoler-
ance, insulin resistance, central obesity, dyslipidemia, and
hypertension, and it has been identified as a frequent
cause to the development of cardiovascular disease [1].

The prevalence of MetS in Japan has increased over re-
cent decades as a result of changes in diet and physical
activity [2]. To investigate the relationship between diet
or physical activity and risk marker plays effective roles
in finding the most suitable lifestyle factor to improve
developing MetS. It is useful for proposing a personalized
diagnostic and therapeutic method. There is also an ur-
gent need to establish an appropriate and sensitive
screening marker to identify individuals at a high risk of
developing MetS, thereby preventing a further increase
in its incidence. So far, indices such as the low-density
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lipoprotein (LDL) to high-density lipoprotein (HDL) ratio
(L/H) [3] or the ratio of adiponectin to homeostasis model
assessment–insulin resistance (adiponectin/HOMA-IR
ratio) [4] have been proposed as combinational risk fac-
tors. We have also reported that a combination of adipo-
nectin receptor 1 (ADIPOR1; rs1539355) with an
environmental factor (smoking habit) is suitable as a com-
binational risk factor for MetS [5]. There is, however, a
need to identify new combinational risk factors.
In this study, we used a fuzzy neural network (FNN)

in a bioinformatics approach to search for complex risk
characteristics. Hirose et al. predicted the prevalence of
MetS using artificial neural network [6]. The FNN is
one of artificial neural network models that have been
used in medical research as a powerful tool for the ac-
curate detection of causal relationships [7-10]. FNN
analysis has two main advantages. The first is its ability
to select parameters on the basis of a parameter-
increase method to permit the identification of the
most influential parameters in the data. FNN analysis
has the same predictable ability as multiple logistic re-
gression. The second is its ability to extract predictive
rules called fuzzy rule that can predict objective prop-
erties to reproduce the results.
So far, FNN has shown considerable flexibility in mod-

eling of such complex phenomena as biochemical engin-
eering processes (modeling of links between process
valuables and process outputs) [11,12], food science
(modeling of links between chemical components and
sensory evaluation) [13], protein structural science
(modeling of links between amino acid sequences and
enzyme function) [14], housing science (modeling of
links between physical environmental factors and human
sensory evaluations) [15], and peptide science (modeling

of links between peptide sequences and peptide func-
tions) [16,17]. We therefore conjectured that FNN might
serve as a suitable method for identifying specific char-
acteristics that affect the pathogenesis of MetS.
The present study had two chief merits. The first was

that the studies were based on subjects receiving health
check-ups rather than on clinical patients; this has the
advantage that periodical health examination is free of
model bias, so that our results apply to the general
population. The second merit was the high quality of
our data because the relevant studies involved large
numbers of subjects who were followed over a long time
(at least seven years).
Overall, the aim of our studies was to identify reliable

combinational risk factors associated with MetS by using
an FNN and to contribute to the prevention of MetS by
mitigating the identified risk combination.

Methods
Study design
To identify a significant combination of factors asso-
ciated with MetS, we performed a two-stage study. The
clinical characteristics before study start are summar-
ized in Tables 1 and 2. In the original study, we
selected 77 case subjects and 152 healthy control sub-
jects from among 1803 Japanese male employees [5].
This longitudinal study was conducted by using health
check-up data collected during a long-term follow-up
(at least seven years). A replication study involved 2196
case subjects and 2196 healthy control subjects from
among another 31343 other Japanese male employees.
This study was also a longitudinal one and was con-
ducted over eight years. All studies were performed
according to the guidelines of the Declaration of

Table 1 Characteristics of original study

Characteristic n Case mean± SD or n (%) n Healthy control mean± SD or n (%) P value

Male n (%) 77 77 (100) 152 152 (100) 1.000

Age (years) 77 31.4 ± 7.5 152 30.6 ± 4.6 0.299

Height (cm) 77 172.1 ± 5.4 152 170.9 ± 5.5 0.125

Weight (kg) 77 68.2 ± 5.8 152 59.9 ± 6.3 8.28 × 10−19

BMI (kg/m2) 77 23.0 ± 1.4 152 20.5 ± 1.9 1.58 × 10−21

Systolic blood pressure (mmHg) 75 130.0 ± 12.5 152 116.9 ± 11.2 7.45 × 10−14

Diastolic blood pressure (mmHg) 75 78.4 ± 9.2 152 69.8 ± 7.0 1.92 × 10−13

Serum total cholesterol (mg/dl) 57 187.5 ± 28.5 99 166.0 ± 21.5 3.37 × 10−7

Serum triglycerides (mg/dl) 57 166.0 ± 148.7 98 74.1 ± 34.9 2.74 × 10−8

Serum HDL-cholesterol (mg/dl) 54 48.0 ± 11.0 90 57.1 ± 9.8 9.14 × 10−7

Fasting plasma glucose (mg/dl) 53 92.2 ± 9.7 85 88.2 ± 7.9 9.60 × 10−3

Alcohol habit n (%) 76 63 (82.9) 152 131 (86.2) 0.513

Smoking habit n (%) 75 51 (68.0) 151 81 (53.6) 3.94 × 10−2

Data are mean ± SD or n (%) unless noted otherwise.
Differences in characteristics between case and healthy control subjects were evaluated by linear regression analysis.
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Helsinki. Informed consent was obtained from all parti-
cipants, and the studies were approved by Nagoya Uni-
versity School of Medicine. In both studies, we used
clinical data before follow-up to predict the cause of
MetS.

Definitions of case, healthy control and normal control
We used the criteria proposed by the Japan Society for
the Study of Obesity (JASSO) [18] to identify subjects
with MetS and supercontrol subjects.

1) Obesity: Waist circumference ≥85 cm in men or
body-mass index (BMI) ≥25 kg/m2 if the waist
circumference was not measured.

2) Raised blood pressure: systolic blood pressure
≥130 mmHg and/or diastolic blood pressure
≥85 mmHg.

3) Dyslipidemia: triglyceride ≥150 mg/dL and/or HDL
cholesterol <40 mg/dL

4) Raised fasting glucose: fasting glucose ≥110 mg/dL

Subjects were classified as suffering from MetS if they
were obese and they showed any two of the other three
criteria. Subjects who were free of any of the risk com-
ponents were classified as supercontrol. Then we defined
case, healthy control and normal control according to
the criteria below.

Case: Subjects who developed MetS during the
follow-up.
Healthy control: Subjects who were remained as
supercontrol during the follow-up.
Normal control: Subjects who weren’t MetS during
follow-up.

Subjects with antihypertensive, lipid-lowering and
anti-diabetic agents were excluded from analysis.

Measurements
The baseline health examination performed before
follow-up included physical measurements, serum bio-
chemical measurements, urine measurements, medica-
tion use and a questionnaire. Physical measurements of
height, weight and body mass index were measured in
the fasting state. Blood samples were obtained from sub-
jects in the fasted condition for serum biochemical mea-
surements. After the subject had rested for 10 min in
sitting position, 14 ml of blood were collected from the
antecubital vein into tubes containing EDTA. After
blood samples were sent to the clinical laboratory testing
company, biochemical measurements were determined
according to standard laboratory procedures. Biochem-
ical measurements collected in this study include;

(1) Lipids: total cholesterol, triglyceride and HDL-
cholesterol.

(2) Carbohydrate: glucose.
(3) Non-protein nitrogenous compounds: urea

nitrogen, creatinine and uric acid.
(4) Serum enzymes: γ-glutamyltranspeptidase (γ-GTP),

glutamic-oxyacetic transaminase (GOT), glutamic-
pyvuvic transaminase (GPT).

(5) Hematology: red blood cells (RBC), hemoglobin,
hematocrit and white blood cells (WBC).

Urine samples were also collected in the morning.
After urine samples were sent to clinical laboratory test-
ing company, urine uribilinogen, urine protein, urine

Table 2 Characteristics of replication study

Characteristic n Case mean± SD or n (%) n Healthy control mean± SD or n (%) P value

Male n (%) 2196 2196 (100) 2196 2196 (100) 1.000

Age (years) 2196 43.5 ± 7.7 2196 43.4 ± 5.4 0.519

Height (cm) 2196 170.3 ± 5.7 2196 169± 5.8 1.58 × 10−13

Weight (kg) 2196 72.4 ± 9.1 2196 60.4 ± 6.7 <1.0 × 10−99

BMI (kg/m2) 2196 24.9 ± 2.7 2196 21.1 ± 1.9 <1.0 × 10−99

Systolic blood pressure (mmHg) 2194 125 ± 13.7 2196 110.4 ± 9.4 <1.0 × 10−99

Diastolic blood pressure (mmHg) 2195 79.9 ± 10.0 2196 69.3 ± 7.6 <1.0 × 10−99

Serum total cholesterol (mg/dl) 2196 204.9 ± 34.8 2196 186.7 ± 30.4 3.10 × 10−73

Serum triglycerides (mg/dl) 2196 161.4 ± 115.6 2196 76.1 ± 28.0 <1.0 × 10−99

Serum HDL-cholesterol (mg/dl) 2196 55.0 ± 13.3 2196 67.6 ± 14.8 <1.0 × 10−99

Fasting plasma glucose (mg/dl) 2196 99.7 ± 19.9 2196 90.1 ± 7.4 1.28 × 10−95

Alcohol habit n (%) 2194 1693 (77.2) 2195 1704 (77.6) 0.712

Smoking habit n (%) 2195 1427 (65.0) 2195 1195 (54.4) 8.17 × 10−13

Data are mean ± SD or n (%) unless noted otherwise.
Differences in characteristics between case and healthy control subjects were evaluated by linear regression analysis.
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sugar and urinary occult blood were measured. Medi-
cation use was assessed by the examining physicians.
Drinking habit and smoking habit were collected by
standard questionnaire. The questionnaire asked about
the frequency of alcohol consumption on a weekly
basis and smoking habit (never, past or current
smoker). Drinking habit was defined as the subject
who drank once a week and more. Smoking habit was
defined as past or current smoker. In replication study,
exercise habit was also divided into four categories by
the time of exercise per week; exercising every day, ex-
ercising twice or more a week, exercising once a week
and no-exercising. The aim of our studies was to iden-
tify risk factors from routine health check-up para-
meters generally measured. Therefore, the well-defined
risk factors such as insulin weren’t measured in our
study.

FNN analysis
We conducted an FNN analysis to identify any signifi-
cant combinations that are associated with MetS. The
procedure for constructing the model is shown schemat-
ically in Figure 1. This model has two inputs x1 and x2,
one output y*, and two membership functions flow and
fhigh in each premise. FNN has three kinds of connection
weights: Wc, Wg, and Wf [19]. The connection weights
Wc and Wg determine the positions and gradients of the
sigmoid functions; these decide the grade of each mem-
bership function flow or fhigh by means of the formula
shown below,

f xð Þ ¼ 1= 1þ exp �Wg xþWcð Þ� �� � ð1Þ

where x is input value and f(x) is the product of the
grade of membership function. The products of the
grades are fed to the next unit Π. Wf is the weight of

each production rule and decides the output y* by
means of the sum of the connection weights Wf and Π.
In our original study, for input data we used 16 clinical
characteristics that were not directly related to MetS cri-
teria (Table 3). In our replication study, we used the two
clinical characteristics that were identified as a result of
the original study. All datasets were randomly arranged,
divided equally into five datasets, and subjected to a five-
fold cross-validation (CV) by using four datasets as
training data and one dataset for validation. Through
this fivefold CV, the combination of two input para-
meters that provided the best predictive accuracy as an
average throughout the CV was selected by means of the
forward-selection method. The accuracy was calculated
as shown below, and the model with the highest accur-
acy was selected as the best combination.

Accuracy %ð Þ
¼ f the number of correct estimation for training datað Þ

= the number of training datað Þg � 1=3

þf the number of correct estimation for test datað Þ
= the number of test datað Þg � 2=3

Here, we judged that a correct estimation was
achieved if the output signal y* from the model was
more than 0 for a case subject and less than 0 for a
healthy control subject; otherwise, the estimation was
judged to be incorrect. We compared the accuracy in
FNN analysis with those in multiple linear regression
and multiple logistic regression.

Statistical analysis
To ensure that the risk combination selected by FNN
analysis was statistically reliable, we performed logistic
regression analysis involving a selected characteristic as
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Figure 1 Fuzzy neural network (FNN) model (two inputs, one output). The most effective combination of input characteristic contributing to
MetS was identified by the use of parameter-increasing method.
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an independent variable and the definition of “case sub-
ject” or “healthy control subject” as a dependent variable.
Study estimates were adjusted for age, drinking habit,
smoking habit and the components of MetS including
BMI, systolic blood pressure, diastolic blood pressure,
triglyceride, HDL-cholesterol and fasting plasma glucose.
In replication study, we added exercise habit for adjust-
ment. In addition, using correlation coefficient and cor-
relation ratio, we tested the association between the
selected characteristic and other clinical characteristics.
A characteristic was considered statistically significant at
a P value of less than 0.05. All statistical analyses were
performed with R software (Version 2.13.1, http://www.
r-project.org/).

Results
Clinical characteristics
The clinical characteristics before study start in the ori-
ginal study and in the replication study are listed in
Tables 1 and 2, respectively. In both studies, the weight,
BMI, systolic blood pressure, diastolic blood pressure,
serum total cholesterol, serum triglyceride, and fasting
plasma glucose were significantly higher in the case sub-
jects than in the healthy control subjects, whereas serum
HDL–cholesterol was significantly lower in the case sub-
jects. In the replication study, the case subjects were sig-
nificantly taller than the healthy control subjects.

FNN analysis (original study)
By means of the FNN analysis of health check-up data
before study start from the original study (Table 4), we

identified a combination of the γ-glutamyltranspeptidase
(γ-GTP) level and the white blood cell (WBC) count as
being indicative of MetS. The FNN analysis had a high
accuracy of 77.4% compared with the baseline of 63.7%
calculated by the null method that estimates all subjects
to be case subjects or healthy control subjects. This ac-
curacy in FNN analysis was similar to an accuracy of
75.8% in multiple linear regression and an accuracy of
75.8% in multiple logistic regression. This combination
of parameters, which showed the best predictive accu-
racy, is illustrated as a fuzzy rule in Figure 2A. In this
matrix, most case subjects were classified in the high
γ-GTP level (≥26.9 IU/L) and high WBC count
(≥5.83 × 103 cells/μL) group, whereas most healthy
control subjects were classified in the low γ-GTP level
(<26.9 IU/L) and low WBC count (<5.83 × 103 cells/μL)
group. The numbers of case subjects and healthy control
subjects are shown in the upper line of each cell of the
matrix and the weights required to yield a case of MetS
are shown in the lower line of each cell of the matrix. The
matrix for the high γ-GTP level and high WBC count
showed a high weight of 1.07, which corresponds to a
significant factor for a case of MetS. This trend was also
shown by a scatter plot of γ-GTP level versus WBC
count (Figure 3A).

FNN analysis (replication study)
The replication study confirmed the association between
MetS development and a combination of a high γ-GTP
level and a high WBC count. The FNN analysis showed
a high accuracy of 67.1% compared with a baseline of
50.0%. This accuracy was similar to an accuracy of 66.1%
in multiple linear regression and an accuracy of 68.5% in
multiple logistic regression (Table 4). In the fuzzy rule,
most case subjects were classified as showing a combina-
tion of a high γ-GTP level (≥30.2 IU/L) and a high WBC
count (≥6.64× 103 cells/μL), which corresponded to a high
weighting of 1.08 (Figure 2B). This fuzzy rule was also
visualized as a scatter plot (Figure 3B).

Statistical verification of the γ-GTP level and WBC count
as an indicator of MetS
Table 5 shows the differences in the γ-GTP level and the
WBC count between the case subjects and the healthy

Table 4 Inputs selected by FNN

Study Input
number

Baseline
(%)

FNN Accuracy (%) number of subject Input characteristic

multiple linear
regression

multiple logistic
regression

Case Healthy
control

1 input 2 inputs

Original Study 1 input 63.46 73.88 69.23 73.72 57 99 γ-GTP (IU/L) −

2 inputs 63.71 77.43 75.81 75.81 45 79 γ-GTP (IU/L) WBC (cells/μL)

Replication Study 1 input 50.00 64.96 64.18 66.44 2196 2196 γ-GTP (IU/L) −

2 inputs 50.00 67.14 66.10 68.53 2196 2196 γ-GTP (IU/L) WBC (cells/μL)

Table 3 Sixteen input characteristics for the FNN analysis

Input number

1 Smoking habit 9 Hematocrit (%)

2 Blood urea nitrogen (mg/dl) 10 RBC (million cells/μL)

3 Creatinine (mg/dl) 11 WBC (cells/μL)

4 Uric Acid (mg/dl) 12 Urine urobilinogen (%)

5 γ-GTP (IU/L) 13 Urine protein (%)

6 Hemoglobin (g/dl) 14 Urine sugar (%)

7 GOT (IU/L) 15 Urinary occult blood (%)

8 GPT (IU/L) 16 Alcohol habit
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control subjects. The difference between γ-GTP level
and MetS was significant after adjusting for age, drinking
habit, smoking habit and the components of MetS (ori-
ginal study: P= 0.014, replication study: P= 1.71 × 10−5,
combined study: P= 3.11 × 10−6). This significant differ-
ence remained significant after adjusting for exercising
habit in replication study (P= 1.69 × 10−5). Although the
difference between WBC and MetS was weak after
adjusting for age, drinking habit, smoking habit and the
components of MetS in replication study, the association
remained significant in combined study (original study:
P= 0.002, replication study: P= 0.107, combined study:
P= 0.031). These results showed that the γ-GTP level
and the WBC count, as selected by FNN analysis, to-
gether form a statistically reliable indicator.
To explain the difference between the γ-GTP levels

in the original study (mean in healthy control
subjects = 16.3 IU/L) and those in the replication study
(mean in healthy control subjects = 27.3 IU/L), we com-
pared the clinical characteristics of the participants in
the two studies. We found that age had a significant

effect (P < 1.0 × 10–99), so we investigated the correl-
ation coefficient between age and γ-GTP levels. A scat-
ter plot of age versus γ-GTP levels showed that the
difference in the mean γ-GTP level was due to age
(Figure 4).
Finally, we calculated correlation ratio for the original

study (Table 6). The γ-GTP level was significantly asso-
ciated with habitual drinking of alcohol (P= 1.41 × 10−2),
but not with habitual smoking (P= 0.406). On the other
hand, the WBC count was significantly associated with
habitual smoking (P= 1.18 × 10−5), but not with habitual
drinking (P= 0.695). The same tendency was found in
the replication study (Table 7).

Discussion
In our study, we used an FNN as a computational
method to analyze complex characteristics. The FNN
analysis is a powerful machine-learning method for
detecting, with maximal accuracy, significant combina-
tions of characteristics that are associated with a particu-
lar attribute. By using an FNN, we identified that a
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combination of the γ-GTP level and the WBC count is a
characteristic that is associated with MetS. As shown in
Table 4, the accuracy in FNN analysis was similar to the
accuracy in multiple linear regression and the accuracy
in multiple logistic regression. However, FNN analysis
also has an ability to visualize the risk of the high γ-GTP
level and high WBC count group easily using fuzzy rule
as Figure 2. The FNN also lacked statistical significance,
so we reexamined selected characteristics by means of
statistical analysis with suitable adjustments. The statis-
tical results confirmed that the γ-GTP level and the
WBC count are significant factors in MetS, confirming
that the FNN has good predictive powers and is suitable
for use in practical applications.
We excluded the characteristics included in judgments

of metabolic syndrome. We firstly conducted FNN ana-
lysis including the components of metabolic syndrome,

selecting a combination of triglycerides and WBC. How-
ever, we thought these components directly affect the
prevalence of MetS. We aimed to search latent risk fac-
tors using remaining 16 clinical and laboratory charac-
teristics. We showed that an elevated γ-GTP level and
an elevated WBC count are combinational risk factors
for MetS. γ-GTP is a marker of fatty liver disease and
γ-GTP levels have been found to be associated with
the prevalence of MetS in previous East Asian studies
[20-22]. An increase in levels of liver enzymes may be
related to excess deposition of fat in the liver. The
WBC count is a marker of systemic inflammation and it
has also been found to be associated with the preva-
lence of MetS in a previous study [23]. The WBC count
is controlled by cytokines, especially interleukin-6 and
interleukin-8 [24], and WBCs play a major role in in-
flammatory processes and in defending the body against

Table 5 Statistical analysis of characteristics selected by FNN

Study Characteristic model 1 model 2b model 3c model 4d

OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value

Original
Study

γ-GTP
(doubling)a

4.71
(2.63–8.41)

1.69 × 10−7 5.98
(3.12–11.5)

7.25 × 10−8 4.06
(1.33–12.4)

0.014 –

WBC
(1000 cells/μL)

1.83
(1.39–2.41)

1.62 × 10−5 1.94
(1.41–2.65)

3.86 × 10−5 2.69
(1.44–5.02)

0.002

Replication
Study

γ-GTP
(doubling)a

2.64
(2.45–2.85)

<1.0 × 10−99 2.84
(2.62–3.08)

<1.0 × 10−99 1.32
(1.17–1.51)

1.71 × 10−5 1.33
(1.17–1.51)

1.69 × 10−5

WBC
(1000 cells/μL)

1.31
(1.26–1.35)

2.73 × 10−51 1.30
(1.25–1.35)

5.06 × 10−42 1.05
(0.99–1.12)

0.107 1.06
(0.99–1.12)

0.094

Combined
Studye

γ-GTP
(doubling)a

2.65
(2.46–2.86)

<1.0 × 10−99 2.86
(2.64–3.10)

<1.0 × 10−99 1.35
(1.19–1.53)

3.11 × 10−6 –

WBC
(1000 cells/μL)

1.32
(1.27–1.36)

1.28 × 10−55 1.31
(1.26–1.36)

1.62 × 10−45 1.07
(1.01–1.14)

0.031

Odds ratio (OR) with 95 % confidence interval (CI) indicates the proportional change in risk associated with each increase by the amount indicated in parentheses.
ageometric mean (2.5–97.5 %) was used because of skewed distriburions.
Differences in characteristics between case and healthy control subjects were evaluated by logistic regression analysis.
bDifferences were evaluated by logistic regression analysis with adjustment for age, drinking habit and smoking habit.
cDifferences were evaluated by logistic regression analysis with adjustment for age, drinking habit, smoking habit and the components of MetS.
dDifferences were evaluated by logistic regression analysis with adjustment for age, drinking habit, smoking habit, the components of MetS and exercise habit.
eIn combined study, the difference of study was added in adjustment.
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Figure 4 Scatter plots of age versus γ-GTP level. Scatter plots of age versus γ-GTP level show that the difference in the γ-GTP level between
the original study and the replication study was due to the age of the subjects. (A): Original study. (B): Replication study.
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infectious disorders. In addition, a previous study has
shown that the mean WBC count increases with an in-
crease in serum γ-GTP [25]; this implied that elevated
γ-GTP levels might reflect subclinical inflammation.
This result from our FNN method may show that this
combination has a synergistic effect.
Our study also showed that habitual drinking is related

to an elevated level of γ-GTP, in agreement with a previ-
ous study [26]. However, we also showed that there is no
significant association between habitual drinking and
MetS. Similarly, we showed that habitual smoking is
linked to an increase in the WBC count. However, the
association between habitual smoking and MetS was low
significant. This tendency was the same that found in a
previous study [27]. Although γ-GTP levels and WBC
counts are generally included in blood tests performed
during periodic health examinations, these characteris-
tics have seldom been considered in risk assessment.
Our result could be useful in a personalized risk-
prevention method, advising people with elevated γ-GTP
level and an elevated WBC count to improve their diet
and physical activity.
In this study, completely healthy people were used as

controls. We also conducted logistic regression analysis
between case subjects who developed MetS during the
follow-up and normal control subjects who weren’t
MetS during the follow-up. In original study, including
77 case subjects and 597 normal control subjects, the
significant association between γ-GTP and MetS wasn’t
observed (P value = 0.213). On the other hand, the sig-
nificant association between WBC and MetS was
observed (P value = 4.76 × 10−4). In replication study, in-
cluding 2196 case subjects and 27246 normal control
subjects, the significant association between γ-GTP and
MetS was observed (P value = 5.00 × 10−21). The signifi-
cant association between WBC and MetS was also
observed (P value = 1.41 × 10−26). Although our study
couldn’t find significant association between γ-GTP and

MetS in original study partly because of small sample,
we showed significant associations in replication study
consisted of large subjects. This result suggests that both
of the association between γ-GTP and MetS and the as-
sociation between WBC and MetS may be derived from
the difference between those who will develop the overt
clinical picture of metabolic syndrome and those who
will develop some of its components without fulfilling
the criteria for its diagnosis.
Our present study has several limitations however.

First, for clinical data before the follow-up, we used a
modified definition of MetS involving the BMI instead
of the waist circumference; however, several studies have
shown that the BMI is an equally effective characteristic
as the waist circumference and it has been adopted for
analyses of the association between the adiponection
gene and metabolic traits, including MetS [28]. Secondly,
we analyzed data from male subjects exclusively. This
was because only one woman showed an indication of
MetS among 2061 Japanese company employees in our
original study. Although the potential bias was mini-
mized by adjusting for age, drinking habit, and smoking
habit, our findings may have limited value in the case of
women. Thirdly, we could not subdivide drinking habit
and smoking habit quantitatively. As in a previous study
[26], the strength of risk of MetS may be related to the
drinking status or the smoking status.

Conclusions
We have shown that the combination of the γ-GTP level
and the WBC count is the most significant risk factor
associated with MetS. By using a statistical analysis
adjusted by age, drinking habit, smoking habit and the
components of MetS, we confirmed that the FNN ana-
lysis method is suitable for identifying combinations of
factors associated with the risk of lifestyle diseases. Our
results may be useful in providing a novel personalized
diagnostic and therapeutic method, depending on the in-
dividual subject’s γ-GTP level and WBC count.
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Table 6 Correlation ratios in original study

Characteristic 1 Characteristic 2 n η P value

γ-GTP (IU/L) Alcohol habit 155 0.197 1.41 × 10−2

γ-GTP (IU/L) Smoking habit 153 0.068 0.406

WBC (cells/μL) Alcohol habit 137 −0.034 0.695

WBC (cells/μL) Smoking habit 135 0.369 1.08 × 10−5

Table 7 Correlation ratios in replication study

Characteristic 1 Characteristic 2 n η P value

γ-GTP (IU/L) Alcohol habit 4389 0.232 <1.0 × 10−99

γ-GTP (IU/L) Smoking habit 4390 0.068 7.01 × 10−6

WBC (cells/μL) Alcohol habit 4389 −0.074 9.74 × 10−7

WBC (cells/μL) Smoking habit 4390 0.386 <1.0 × 10−99
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